The Impact of Varying Lactose-to-Maltodextrin Ratios on the Physicochemical and Structural Characteristics of Pasteurized and Concentrated Skim and Whole Milk–Tea Blends
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Preparation of Black Tea Infusions
2.2.2. Formulation of Milk–Tea Blend
2.3. Physicochemical Characterization of Liquid and Concentrated Milk–Tea Formulas
2.3.1. pH
2.3.2. Color
2.3.3. Total Phenolic Content (TPC)
2.3.4. Zeta Potential and Z-Average Particle Size
2.4. Structural Characterization of Liquid and Concentrated Milk–Tea Formulas
2.4.1. Fourier Transform Infrared Spectroscopy (FTIR)
2.4.2. Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS PAGE)
2.4.3. Polarizing Microscopy
2.5. Statistical Analysis
3. Results and Discussion
3.1. Changes in the Physicochemical Properties of Liquid and Concentrated Milk–Tea Affected by Varying L:M Ratios
3.1.1. pH and Zeta
3.1.2. Size
3.1.3. BI and Total Phenolic Content
3.2. Structural Properties Affected by L:M Ratios of Liquid and Concentrated Milk–Tea
3.2.1. Polarized Micrographs
3.2.2. FTIR and PAGE Analysis
4. Mechanisms for the Preservation Effect of Polyphenols
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, F.; He, Y.; Wang, L. Application of effective wavelengths and BP neural network for the discrimination of varieties of instant milk tea powders using visible and near infrared spectroscopy. MIPPR 2007 Pattern Recognit. Comput. Vis. 2007, 6788, 67882U. [Google Scholar] [CrossRef]
- Song, Y.; Wang, X.; Luo, H.; Wang, M.; Chen, J. Reducing the Flocculation of Milk Tea Using Different Stabilizers to Regulate Tea Proteins. Foods 2023, 12, 1484. [Google Scholar] [CrossRef]
- Kent, R.M.; Fitzgerald, G.F.; Hill, C.; Stanton, C.; Paul Ross, R. Novel approaches to improve the intrinsic microbiological safety of powdered infant milk formula. Nutrients 2015, 7, 1217–1244. [Google Scholar] [CrossRef]
- Xu, Y.; Chen, H.; Feng, Y.; Wu, Y.; Yang, L. Milk Tea Powder and Preparation Method Thereof. Patent No. CN103689088A, 19 December 2013. Available online: https://patents.google.com/patent/CN103689088A/en#patentCitations (accessed on 27 March 2024).
- Gao, Z.; Liu, H.; Zheng, J.; Chen, X. Milk Tea Powder. Patent No. CN1171889A, 30 July 1996. Available online: https://patents.google.com/patent/CN1171889A/en (accessed on 4 February 2024).
- Costa, S.L.; da Rossi, N.P.; Maldonado, R.R. Evaluation of Lactose in Milk and Dairy Products. Int. J. Innov. Educ. Res. 2013, 1, 56–59. [Google Scholar] [CrossRef]
- Masum AK, M.; Chandrapala, J.; Adhikari, B.; Huppertz, T.; Zisu, B. Effect of lactose-to-maltodextrin ratio on emulsion stability and physicochemical properties of spray-dried infant milk formula powders. J. Food Eng. 2019, 254, 34–41. [Google Scholar] [CrossRef]
- Hofman, D.L.; van Buul, V.J.; Brouns FJ, P.H. Nutrition, Health, and Regulatory Aspects of Digestible Maltodextrins. Crit. Rev. Food Sci. Nutr. 2016, 56, 2091–2100. [Google Scholar] [CrossRef] [PubMed]
- Ali, D.Y.; Pranowo, D.; Sunarharum, W.B.; Prananto, Y.P.; Tansil, C.Z.L. Optimization on Maltodextrin Concentration and Inlet Spray Drying Temperature in Producing Edamame (Glycine max L. Merr.) Milk Powder: Nutritional and Microbiological Profile. IOP Conf. Ser. Earth Environ. Sci. 2020, 515, 012064. [Google Scholar] [CrossRef]
- Jafari, S.; Jouki, M.; Soltani, M. Modification of physicochemical, structural, rheological, and organoleptic properties of sweetened condensed milk by maltodextrin, fructose, and lactose. J. Food Meas. Charact. 2021, 15, 3800–3810. [Google Scholar] [CrossRef]
- Lopez, C. Focus on the supramolecular structure of milk fat in dairy products. Reprod. Nutr. Dev. 2005, 45, 497–511. [Google Scholar] [CrossRef]
- Mc Sweeney, P.L.H.; Omahony, J.A. (Eds.) Advanced Dairy Chemistry In Advanced Dairy Chemistry: Volume 1B: Proteins: Applied Aspects: Fourth Edition; Springer: New York, NY, USA, 2016. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, H. Editorial: Chemical and biological changes of polyphenols caused by food thermal processing. Front. Nutr. 2022, 9, 948894. [Google Scholar] [CrossRef]
- Quan, T.H.; Benjakul, S.; Sae-leaw, T.; Balange, A.K.; Maqsood, S. Protein–polyphenol conjugates: Antioxidant property, functionalities and their applications. Trends Food Sci. Technol. 2019, 91, 507–517. [Google Scholar] [CrossRef]
- Halabi, A.; Deglaire, A.; Hamon, P.; Bouhallab, S.; Dupont, D.; Croguennec, T. Kinetics of heat-induced denaturation of proteins in model infant milk formulas as a function of whey protein composition. Food Chem. 2020, 302, 125296. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhao, T.; Li, H.; Yu, J. Effect of Heat Treatment on the Property, Structure, and Aggregation of Skim Milk Proteins. Front. Nutr. 2021, 8, 714869. [Google Scholar] [CrossRef]
- Zhao, X.; Cheng, M.; Zhang, X.; Li, X.; Chen, D.; Qin, Y.; Wang, J.; Wang, C. The effect of heat treatment on the microstructure and functional properties of whey protein from goat milk. J. Dairy Sci. 2020, 103, 1289–1302. [Google Scholar] [CrossRef] [PubMed]
- Gedara, M.; Thejangani, A.; Mediwaththe, M. Impact of Heating and Shearing on Native Milk Proteins in Raw Milk. Research Master’s Thesis, Victoria University, Melbourne, Australia, 2017. [Google Scholar]
- Xiang, J.; Liu, F.; Wang, B.; Chen, L.; Liu, W.; Tan, S. A Literature Review on Maillard Reaction Based on Milk Proteins and Carbohydrates in Food and Pharmaceutical Products: Advantages, Disadvantages, and Avoidance Strategies. Foods 2021, 10, 1998. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, L.; Shen, Y.; Wan, L.; Zhuang, K.; Yang, X.; Man, C.; Zhao, Q.; Jiang, Y. Effects of different reducing carbohydrate types on the physicochemical characteristics of infant formula food stored for special medical purposes. Food Chem. X 2024, 21, 101055. [Google Scholar] [CrossRef]
- Masum, A.K.M.; Chandrapala, J.; Huppertz, T.; Adhikari, B.; Zisu, B. Effect of storage conditions on the physicochemical properties of infant milk formula powders containing different lactose-to-maltodextrin ratios. Food Chem. 2020, 319, 126591. [Google Scholar] [CrossRef]
- Clouard, C.; Le Bourgot, C.; Respondek, F.; Bolhuis, J.E.; Gerrits, W.J. A milk formula containing maltodextrin, vs. lactose, as main carbohydrate source, improves cognitive performance of piglets in a spatial task. Sci. Rep. 2018, 8, 9433. [Google Scholar] [CrossRef]
- Diez-Sánchez, E.; Quiles, A.; Hernando, I. Interactions between Blackcurrant Polyphenols and Food Macronutrients in Model Systems: In Vitro Digestion Studies. Foods 2021, 10, 847. [Google Scholar] [CrossRef]
- Emmambux, M.N. Tannin Binding of Kafirin and its Effects on Kafirin Films. Ph.D. Thesis, University of Pretoria, Hatfield, Pretoria, South Africa, March 2004; p. 180. [Google Scholar]
- Zhang, H.; Yu, D.; Sun, J.; Guo, H.; Ding, Q.; Liu, R.; Ren, F. Interaction of milk whey protein with common phenolic acids. J. Mol. Struct. 2014, 1058, 228–233. [Google Scholar] [CrossRef]
- Chen, H.; Zheng, H.; Brennan, M.A.; Chen, W.; Guo, X.; Brennan, C.S. Effect of Black Tea Infusion on Physicochemical Properties, Antioxidant Capacity and Microstructure of Acidified Dairy Gel during Cold Storage. Foods 2020, 9, 831. [Google Scholar] [CrossRef]
- Irakli, M.; Tsifodimou, K.; Sarrou, E.; Chatzopoulou, P. Optimization infusions conditions for improving phenolic content and antioxidant activity in Sideritis scardica tea using response surface methodology. J. Appl. Res. Med. Aromat. Plants 2018, 8, 67–74. [Google Scholar] [CrossRef]
- Ozer, B.; Yaman, H. Milk and Milk Products|Microbiology of Liquid Milk. In Encyclopedia of Food Microbiology; Elsevier: Amsterdam, The Netherlands, 2014; Volume 2, pp. 721–727. [Google Scholar] [CrossRef]
- Xu, J.; Zhou, L.; Miao, J.; Yu, W.; Zou, L.; Zhou, W.; Liu, W. Effect of cinnamon essential oil nanoemulsion combined with ascorbic acid on enzymatic browning of cloudy apple juice. Food Bioprocess Technol. 2020, 13, 860–870. [Google Scholar] [CrossRef]
- de Oliveira, A.H.; Mata, M.E.R.M.C.; Fortes, M.; Duarte, M.E.M.; Pasquali, M.; Lisboa, H.M. Influence of spray drying conditions on the properties of whole goat milk. Dry. Technol. 2021, 39, 726–737. [Google Scholar] [CrossRef]
- Uduwana, S.; Abeynayake, N.; Wickramasinghe, I. Synergistic, antagonistic, and additive effects on the resultant antioxidant activity in infusions of green tea with bee honey and Citrus limonum extract as additives. J. Agric. Food Res. 2023, 12, 100571. [Google Scholar] [CrossRef]
- Rashidinejad, A.; Birch, E.J.; Everett, D.W. Interactions between milk fat globules and green tea catechins. Food Chem. 2016, 199, 347–355. [Google Scholar] [CrossRef]
- Silva, M.; Zisu, B.; Chandrapala, J. Influence of low-frequency ultrasound on the physico-chemical and structural characteristics of milk systems with varying casein to whey protein ratios. Ultrason. Sonochem. 2018, 49, 268–276. [Google Scholar] [CrossRef]
- Xiong, X.; Ho, M.T.; Bhandari, B.; Bansal, N. Foaming properties of milk protein dispersions at different protein content and casein to whey protein ratios. Int. Dairy J. 2020, 109, 104758. [Google Scholar] [CrossRef]
- Olson, D.W.; White, C.H.; Richter, R.L. Effect of pressure and fat content on particle sizes in microfluidized milk. J. Dairy Sci. 2004, 87, 3217–3223. [Google Scholar] [CrossRef]
- Ye, M.P.; Zhou, R.; Shi, Y.R.; Chen, H.C.; Du, Y. Effects of heating on the secondary structure of proteins in milk powders using mid-infrared spectroscopy. J. Dairy Sci. 2017, 100, 89–95. [Google Scholar] [CrossRef]
- Grewal, M.K.; Huppertz, T.; Vasiljevic, T. FTIR fingerprinting of structural changes of milk proteins induced by heat treatment, deamidation and dephosphorylation. Food Hydrocoll. 2018, 80, 160–167. [Google Scholar] [CrossRef]
- Usoltsev, D.; Sitnikova, V.; Kajava, A.; Uspenskaya, M. Systematic FTIR spectroscopy study of the secondary structure changes in human serum albumin under various denaturation conditions. Biomolecules 2019, 9, 359. [Google Scholar] [CrossRef]
- Mejares, C.T.; Huppertz, T.; Chandrapala, J. Heat-induced changes in blends of skimmed buffalo and bovine milk. Int. Dairy J. 2023, 141, 105627. [Google Scholar] [CrossRef]
- Maher, P.G.; Auty MA, E.; Roos, Y.H.; Zychowski, L.M.; Fenelon, M.A. Microstructure and lactose crystallization properties in spray dried nanoemulsions. Food Struct. 2015, 3, 1–11. [Google Scholar] [CrossRef]
- Gunstone, F.D. Chemical reactions of fatty acids with special reference to the carboxyl group. Eur. J. Lipid Sci. Technol. 2001, 103, 307–314. [Google Scholar] [CrossRef]
- Youravong, W.; Grandison, A.S.; Lewis, M.J. The effects of physicochemical changes on critical flux of skimmed milk ultrafiltration. Membr. Sci. Technol. 2002, 24, 929–939. [Google Scholar]
- Salaun, F.; Mietton, B.; Gaucheron, F. Buffering capacity of dairy products. Int. Dairy J. 2005, 15, 95–109. [Google Scholar] [CrossRef]
- Azizkhani, M.; Tooryan, F. Chemical and microbial quality of Iranian commercial pasteurized milk samples at their expiration date. J. Food Qual. Hazards Control 2017, 4, 53–57. [Google Scholar]
- Ma, Y.; Barbano, D.M. Milk pH as a Function of CO2 Concentration, Temperature, and Pressure in a Heat Exchanger. J. Dairy Sci. 2003, 86, 3822–3830. [Google Scholar] [CrossRef]
- Sinaga, H.; Bansal, N.; Bhandari, B. Effects of milk pH alteration on casein micelle size and gelation properties of milk. Int. J. Food Prop. 2017, 20, 179–197. [Google Scholar] [CrossRef]
- Gao, M. The influence of intrinsic and extrinsic factors on protein-polyphenol interactions in dairy systems. In BIO Web of Conferences; EDP Sciences: Les Ulis, France, 2022; Volume 55, p. 01025. [Google Scholar]
- Smykov, I.T. Protein-polysaccharide interactions in dairy production. Food Syst. 2021, 3, 24–33. [Google Scholar] [CrossRef]
- Ozdal, T.; Capanoglu, E.; Altay, F. A review on protein–phenolic interactions and associated changes. Food Res. Int. 2013, 51, 954–970. [Google Scholar] [CrossRef]
- Ruggeri, M.; Bianchi, E.; Rossi, S.; Boselli, C.; Cornaglia, A.I.; Malavasi, L.; Sandri, G. Maltodextrin-amino acids electrospun scaffolds cross-linked with Maillard-type reaction for skin tissue engineering. Biomater. Adv. 2022, 133, 112593. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, H.; Li, L.; Sun, L.; Jia, B.; Yang, H.; Zuo, F. Preparation of fat substitute based on the high-methoxyl pectin of citrus and application in moon-cake skin. Food Sci. Technol. 2022, 42, e92121. [Google Scholar] [CrossRef]
- Kalyankar, S.D.; Deshmukh, M.A.; Khedkar, C.D.; Deosarkar, S.S.; Sarode, A.R. Condensed Milk. In Encyclopedia of Food and Health, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 291–295. [Google Scholar] [CrossRef]
- Gołębiowski, A.; Pomastowski, P.; Rafińska, K.; Zuvela, P.; Wong, M.W.; Pryshchepa, O.; Madajski, P.; Buszewski, B. Functionalization of Alpha-Lactalbumin by Zinc Ions. ACS Omega 2022, 7, 38459–38474. [Google Scholar] [CrossRef]
- Singh, H. Interactions of milk proteins during the manufacture of milk powders. Le Lait 2007, 87, 413–423. [Google Scholar] [CrossRef]
- Anema, S.G.; Li, Y. Association of denatured whey proteins with casein micelles in heated reconstituted skim milk and its effect on casein micelle size. J. Dairy Res. 2003, 70, 73–83. [Google Scholar] [CrossRef]
- Markoska, T. Properties of Milk System during Concentration and Subsequent Heating. Ph.D. Dissertation, Victoria University, Melbourne, Australia, 2018. [Google Scholar]
- Liu, D.Z.; Dunstan, D.E.; Martin, G.J. Evaporative concentration of skimmed milk: Effect on casein micelle hydration, composition, and size. Food Chem. 2012, 134, 1446–1452. [Google Scholar] [CrossRef]
- Raz, C.; Paramonov, M.M.; Shemesh, M.; Argov-Argaman, N. The milk fat globule size governs a physiological switch for biofilm formation by Bacillus subtilis. Front. Nutr. 2022, 9, 844587. [Google Scholar] [CrossRef]
- Wang, W.; Wang, M.; Xu, C.; Liu, Z.; Gu, L.; Ma, J.; Jiang, L.; Jiang, Z.; Hou, J. Effects of Soybean Oil Body as a Milk Fat Substitute on Ice Cream: Physicochemical, Sensory and Digestive Properties. Foods 2022, 11, 1504. [Google Scholar] [CrossRef]
- Bienvenue, A.; Jiménez-Flores, R.; Singh, H. Rheological properties of concentrated skim milk: Importance of soluble minerals in the changes in viscosity during storage. J. Dairy Sci. 2003, 86, 3813–3821. [Google Scholar] [CrossRef]
- Cao, J.; Zhang, W.; Wu, S.; Liu, C.; Li, Y.; Li, H.; Zhang, L. Effects of nanofiltration and evaporation on the physiochemical properties of milk protein during processing of milk protein concentrate. J. Dairy Sci. 2015, 98, 100–105. [Google Scholar] [CrossRef]
- Grotenhuis, E.; ten Tuinier, R.; de Kruif, C.G. Phase Stability of Concentrated Dairy Products. J. Dairy Sci. 2003, 86, 764–769. [Google Scholar] [CrossRef]
- Panja, S.; Khatua, D.K.; Halder, M. Investigations on the Effect of Fatty Acid Additives on Casein Micelles: Role of Ethylenic Unsaturation on the Interaction and Structural Diversity. ACS Omega 2018, 3, 821–830. [Google Scholar] [CrossRef]
- Markoska, T.; Daniloski, D.; Vasiljevic, T.; Huppertz, T. Structural Changes of β-Casein Induced by Temperature and pH Analysed by Nuclear Magnetic Resonance, Fourier-Transform Infrared Spectroscopy, and Chemometrics. Molecules 2021, 26, 7650. [Google Scholar] [CrossRef]
- Rocha-Mendoza, D.; Jiménez-Flores, R. Casein Nomenclature, Structure, and Association. In Encyclopedia of Dairy Sciences; Elsevier: Amsterdam, The Netherlands, 2022; pp. 870–880. [Google Scholar] [CrossRef]
- Kijewska, M.; Zawadzka, M.; Stefanowicz, P. High-Temperature, Solid-Phase Reaction of α-Amino Groups in Peptides with Lactose and Glucose: An Alternative Mechanism Leading to an α-Ketoacyl Derivative. J. Agric. Food Chem. 2023, 71, 5796–5803. [Google Scholar] [CrossRef]
- Turk-Gul, A.; Urgu-Ozturk, M.; Koca, N. The effects of different amounts of maltodextrin on the rheological behaviour and stability of white cheese emulsions, and the physical, microstructural, chemical and sensory properties of white cheese powders. Int. Dairy J. 2023, 138, 105552. [Google Scholar] [CrossRef]
- Ertan, K.; Bayana, D.; Gökçe, Ö.; Alatossava, T.; Yılmaz, Y.; Gürsoy, O. Total Antioxidant Capacity and Phenolic Content of Pasteurized and UHT-Treated Cow Milk Samples Marketed in Turkey Kubra. Akad. Gıda 2017, 15, 103–108. [Google Scholar] [CrossRef]
- Jakobek, L. Interactions of polyphenols with carbohydrates, lipids and proteins. Food Chem. 2015, 175, 556–567. [Google Scholar] [CrossRef]
- Hunziker, O.F.; Nissen, B.H. Lactose Solubility and Lactose Crystal Formation: I. Lactose Solubility. J. Dairy Sci. 1926, 9, 517–537. [Google Scholar] [CrossRef]
- Huppertz, T.; Gazi, I. Lactose in dairy ingredients: Effect on processing and storage stability. J. Dairy Sci. 2016, 99, 6842–6851. [Google Scholar] [CrossRef]
- Brunner, J.R. Protein-Lipid Interactions and their Relation to the Physical-Chemical Stability of Concentrated Milk. A Review. J. Dairy Sci. 1962, 45, 943–951. [Google Scholar] [CrossRef]
- Hajihashemi, Z.; Nasirpour, A.; Scher, J.; Desobry, S. Interactions among lactose, β-lactoglobulin and starch in co-lyophilized mixtures as determined by Fourier Transform Infrared Spectroscopy. J. Food Sci. Technol. 2014, 51, 3376–3382. [Google Scholar] [CrossRef]
- Corredig, M.; Dalgleish, D.G. The mechanisms of the heat-induced interaction of whey proteins with casein micelles in milk. Int. Dairy J. 1999, 9, 233–236. [Google Scholar] [CrossRef]
- Hill, A.R. The β-Lactoglobulin-χ-Casein Complex. Can. Inst. Food Sci. Technol. J. 1989, 22, 120–123. [Google Scholar] [CrossRef]
- Oka, D.; Ono, W.; Ohara, S.; Noguchi, T.; Takano, K. Effect of heat-induced κ-casein dissociation on acid coagulation of milk. J. Dairy Res. 2018, 85, 104–109. [Google Scholar] [CrossRef]
- Wang, Q.; Pan, M.H.; Chiou, Y.S.; Li, Z.; Wei, S.; Yin, X.; Ding, B. Insights from alpha-Lactoalbumin and beta-Lactoglobulin into mechanisms of nanoliposome-whey protein interactions. Food Hydrocoll. 2022, 125, 107436. [Google Scholar] [CrossRef]
- Gentile, L. Protein–polysaccharide interactions and aggregates in food formulations. Curr. Opin. Colloid Interface Sci. 2020, 48, 18–27. [Google Scholar] [CrossRef]
- Tonolini, M.; Sørensen, K.M.; Skou, P.B.; Ray, C.; Engelsen, S.B. Prediction of α-lactalbumin and β-lactoglobulin composition of aqueous whey solutions using Fourier transform mid-infrared spectroscopy and near-infrared spectroscopy. Appl. Spectrosc. 2021, 75, 718–727. [Google Scholar] [CrossRef]
- Ellis, R.J. Macromolecular crowding: Obvious but underappreciated. Trends Biochem. Sci. 2001, 26, 597–604. [Google Scholar] [CrossRef]
- Sen, C.; Arora, S.; Singh, R.; Sharma, V.; Meena, G.S.; Singh, A.K. Reduction of maillard browning in spray dried low-lactose milk powders due to protein polysaccharide interactions. Food Res. Int. 2024, 183, 114175. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Alvarenga, M.S.; Martinez-Rodriguez, E.Y.; Garcia-Amezquita, L.E.; Olivas, G.I.; Zamudio-Flores, P.B.; Acosta-Muniz, C.H.; Sepulveda, D.R. Effect of Maillard reaction conditions on the degree of glycation and functional properties of whey protein isolate–Maltodextrin conjugates. Food Hydrocoll. 2014, 38, 110–118. [Google Scholar] [CrossRef]
- Rufián-Henares, J.A.; Morales, F.J. Functional properties of melanoidins: In Vitro antioxidant, antimicrobial and antihypertensive activities. Food Res. Int. 2007, 40, 995–1002. [Google Scholar] [CrossRef]
- Wijegunawardhana, D.; Wijesekara, I.; Liyanage, R.; Truong, T.; Silva, M.; Chandrapala, J. Process-Induced Molecular-Level Protein–Carbohydrate–Polyphenol Interactions in Milk–Tea Blends: A Review. Foods 2024, 13, 2489. [Google Scholar] [CrossRef] [PubMed]
WM-T | Liquid | Concentrate | ||||
---|---|---|---|---|---|---|
Zeta Potential | TPC | BI | Zeta Potential | TPC | BI | |
L:M Ratio | 0.252 | −0.348 | −0.099 | 0.091 | 0.462 | 0.010 |
SM-T | Liquid | Concentrate | ||||
L:M Ratio | 0.648 ** | −0.516 * | −0.931 ** | 0.084 | −0.368 | −0.584 * |
L:M Ratio | Physiochemical Property (SM-T Liquid) | Physiochemical Property (SM-T Concentrate) | ||||
---|---|---|---|---|---|---|
Zeta Potential (mV) | TPC | BI | Zeta Potential (mV) | TPC | BI | |
(µg GAE/mL) | (µg GAE/mL) | |||||
Control | −29.30 ± 1.15 Bb | 792.28 ± 3.04 d | 42.64 ± 0.19 Eb | −28.93 ± 0.84 Bd | 649.59 ± 1.02 e | 77.80 ± 19.30 Ca |
100:0 | −29.28 ± 0.88 Bb | 701.05 ± 1.76 c | 40.30 ± 1.52 Dc | −31.06 ± 2.12 Ac | 564.79 ± 1.01 c | 73.17 ± 1.07 Ba |
90:10 | −29.22 ± 1.01 Bb | 605.15 ± 1.02 a | 35.47 ± 1.93 Ba | −28.78 ± 2.13 Bd | 567.13 ± 4.05 c | 64.63 ± 1.21 Ba |
85:15 | −27.17 ± 0.45 Cc | 680.00 ± 4.64 b | 36.69 ± 0.51 Ca | −30.24 ± 1.27 Bc | 425.03 ± 2.68 a | 61.95 ± 11.1 Ba |
80:20 | −27.60 ± 0.44 Bc | 681.75 ± 3.51 b | 35.59 ± 0.57 Ba | −30.13 ± 0.58 Bc | 622.11 ± 1.76 d | 54.31 ± 8.26 Aa |
75:25 | −27.25 ± 1.83 Cc | 671.82 ± 8.29 b | 43.81 ± 0.79 Fd | −28.69 ± 0.81 Bd | 535.56 ± 3.65 b | 62.87 ± 5.19 Ba |
L:M Ratio | Physiochemical Property (WM-T Liquid) | Physiochemical Property (WM-T Concentrate) | ||||
Zeta Potential (mV) | TPC | BI | Zeta Potential (mV) | TPC | BI | |
(µg GAE/mL) | (µg GAE/mL) | |||||
Control | −30.52 ± 0.88 Cb | 969.47 ± 0.01 e | 44.37 ± 0.19 Fe | −33.81 ± 0.82 Ba | 677.08 ± 1.02 b | 67.45 ± 4.32 Ba |
100:0 | −29.99 ± 0.36 Db | 857.78 ± 9.97 c | 44.60 ± 0.89 Fe | −33.41 ± 0.89 Ba | 639.06 ± 9.00 a | 70.74 ± 2.40 Ba |
90:10 | −31.66 ± 1.35 Ca | 809.83 ± 9.77 b | 43.16 ± 0.39 Ed | −31.99 ± 0.83 Cc | 709.82 ± 5.27 c | 63.89 ± 3.17 Ba |
85:15 | −31.65 ± 1.00 Ca | 922.11 ± 7.65 d | 40.44 ± 2.28 Dc | −34.21 ± 1.70 Aa | 696.96 ± 5.64 c | 66.74 ± 5.03 Ba |
80:20 | −30.17 ± 2.02 Db | 759.53 ± 2.68 a | 36.61 ± 0.73 Cb | −32.88 ± 1.70 Bb | 651.34 ± 2.68 a | 63.60 ± 4.80 Ba |
75:25 | −28.97 ± 1.31 Eb | 905.15 ± 1.02 d | 32.65 ± 0.36 Aa | −33.19 ± 1.75 Ba | 736.14 ± 6.32 d | 71.36 ± 5.96 Ba |
L:M Ratio | WM-T Liquid % | WM-T Concentrate % | ||||
---|---|---|---|---|---|---|
α-La | β-Lg | κ-Casein | α-La | β-Lg | κ-Casein | |
Control | 16.19 | 20.23 | 32.14 | 27.52 | 8.43 | 51.43 |
90:10 | 14.77 | 19.22 | 32.69 | 16.70 | 25.37 | 36.08 |
75:25 | 12.13 | 17.38 | 40.45 | 25.65 | 25.51 | 35.92 |
SM-T Liquid % | SM-T Concentrate % | |||||
Control | 8.43 | 48.35 | 76.79 | 27.80 | 51.52 | 73.07 |
90:10 | 12.65 | 18.16 | 99.91 | 24.69 | 46.01 | 72.10 |
80:20 | 12.71 | 49.64 | 70.91 | 22.49 | 40.56 | 75.93 |
Secondary Structure | SM-T Concentrate (%) | WM-T Concentrate (%) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Control | 100:0 | 90:10 | 85:15 | 80:20 | 75:25 | Control | 100:0 | 90:10 | 85:15 | 80:20 | 75:25 | |
β-sheets | 55.76 | 52.18 | 50.46 | 24.09 | 34.29 | 38.57 | 20.43 | 32.60 | 24.89 | 22.38 | 23.03 | 21.62 |
Random coil | 0.00 | 11.03 | 18.56 | 0.00 | 32.26 | 23.14 | 62.91 | 31.15 | 0.00 | 0.00 | 0.00 | 0.00 |
α-helices | 11.74 | 0.00 | 0.00 | 59.04 | 0.00 | 0.00 | 0.00 | 0.00 | 55.31 | 57.59 | 68.72 | 69.45 |
Large loops | 0.00 | 9.93 | 0.00 | 0.00 | 23.04 | 0.00 | 13.10 | 28.95 | 0.00 | 0.00 | 0.00 | 0.00 |
β-turns | 32.50 | 26.86 | 30.99 | 16.87 | 10.40 | 38.29 | 3.57 | 7.30 | 19.80 | 20.03 | 8.25 | 8.92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wijegunawardhana, D.; Wijesekara, I.; Liyanage, R.; Truong, T.; Silva, M.; Chandrapala, J. The Impact of Varying Lactose-to-Maltodextrin Ratios on the Physicochemical and Structural Characteristics of Pasteurized and Concentrated Skim and Whole Milk–Tea Blends. Foods 2024, 13, 3016. https://doi.org/10.3390/foods13183016
Wijegunawardhana D, Wijesekara I, Liyanage R, Truong T, Silva M, Chandrapala J. The Impact of Varying Lactose-to-Maltodextrin Ratios on the Physicochemical and Structural Characteristics of Pasteurized and Concentrated Skim and Whole Milk–Tea Blends. Foods. 2024; 13(18):3016. https://doi.org/10.3390/foods13183016
Chicago/Turabian StyleWijegunawardhana, Dilema, Isuru Wijesekara, Rumesh Liyanage, Tuyen Truong, Mayumi Silva, and Jayani Chandrapala. 2024. "The Impact of Varying Lactose-to-Maltodextrin Ratios on the Physicochemical and Structural Characteristics of Pasteurized and Concentrated Skim and Whole Milk–Tea Blends" Foods 13, no. 18: 3016. https://doi.org/10.3390/foods13183016
APA StyleWijegunawardhana, D., Wijesekara, I., Liyanage, R., Truong, T., Silva, M., & Chandrapala, J. (2024). The Impact of Varying Lactose-to-Maltodextrin Ratios on the Physicochemical and Structural Characteristics of Pasteurized and Concentrated Skim and Whole Milk–Tea Blends. Foods, 13(18), 3016. https://doi.org/10.3390/foods13183016