In Vitro Human Gastrointestinal Digestibility and Colonic Fermentation of Wheat Sourdough and Yeast Breads
Abstract
:1. Introduction
2. Materials and Methods
2.1. Flour Characterization
2.2. Sourdough and Bread Preparation
2.3. Bread TPA
2.4. In Vitro Upper GIT Digestion
2.5. Nutritional Composition Pre- and Post-Digestion
2.5.1. Mineral Quantification
2.5.2. Carbohydrate Quantification
2.5.3. Protein Quantification
2.5.4. Phytate Quantification
2.6. Colon On-a-Plate™
2.7. Microbiota Metabolic Activity and Composition
2.8. Statistical Analysis
3. Results
3.1. Flour Characterization
3.2. Bread Characterization Pre-Digestion
3.2.1. Texture Profile Analysis
3.2.2. Nutritional Composition
3.3. In Vitro Digestibility
3.3.1. Mineral Release
3.3.2. Carbohydrate Release
3.3.3. Protein Release
3.3.4. Amino Acid Release
3.3.5. Phytate Content
3.4. Colonic Fermentation of the Undigested Fraction in the Colon-on-a-Plate™ Model
3.4.1. Microbiota Metabolic Activity
3.4.2. Microbiota Composition
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Johnston, C.; Ying Leong, S.; Teape, C.; Liesaputra, V.; Oey, I. In vitro digestion properties and use of automatic image analysis to assess the quality of wheat bread enriched with whole faba bean (Vicia faba L.) flour and its protein-rich fraction. Food Res. Int. 2023, 174, 113630. [Google Scholar] [CrossRef] [PubMed]
- Aghalari, Z.; Dahms, H.U.; Sillanpaa, M. Evaluation of nutrients in bread: A systematic review. J. Health Popul. Nutr. 2022, 41, 50. [Google Scholar] [CrossRef]
- FoodData Central. Available online: https://fdc.nal.usda.gov/fdc-app.html#/food-details/335240/nutrients (accessed on 16 May 2024).
- Minekus, M.; Alminger, M.; Alvito, P.; Ballance, S.; Bohn, T.; Bourlieu, C.; Carriere, F.; Boutrou, R.; Corredig, M.; Dupont, D.; et al. A standardised static in vitro digestion method suitable for food—An international consensus. Food Funct. 2014, 5, 1113–1124. [Google Scholar] [CrossRef]
- Isenring, J.; Bircher, L.; Geirnaert, A.; Lacroix, C. In vitro human gut microbiota fermentation models: Opportunities, challenges, and pitfalls. Microbiome Res. Rep. 2023, 2, 2. [Google Scholar] [CrossRef] [PubMed]
- Gwala, S.; Pallares Pallares, A.; Palchen, K.; Hendrickx, M.; Grauwet, T. In vitro starch and protein digestion kinetics of cooked Bambara groundnuts depend on processing intensity and hardness sorting. Food Res. Int. 2020, 137, 109512. [Google Scholar] [CrossRef] [PubMed]
- Pallares Pallares, A.; Loosveldt, B.; Karimi, S.N.; Hendrickx, M.; Grauwet, T. Effect of process-induced common bean hardness on structural properties of in vivo generated boluses and consequences for in vitro starch digestion kinetics. Br. J. Nutr. 2019, 122, 388–399. [Google Scholar] [CrossRef]
- Pallares Pallares, A.; Rousseau, S.; Chigwedere, C.M.; Kyomugasho, C.; Hendrickx, M.; Grauwet, T. Temperature-pressure-time combinations for the generation of common bean microstructures with different starch susceptibilities to hydrolysis. Food Res. Int. 2018, 106, 105–115. [Google Scholar] [CrossRef]
- Khrisanapant, P.; Leong, S.Y.; Kebede, B.; Oey, I. Effects of hydrothermal processing duration on the texture, starch and protein in vitro digestibility of cowpeas, chickpeas and kidney beans. Foods 2021, 10, 1415. [Google Scholar] [CrossRef]
- Wang, Y.; Jian, C.; Salonen, A.; Dong, M.; Yang, Z. Designing healthier bread through the lens of the gut microbiota. Trends Food Sci. Technol. 2023, 134, 13–28. [Google Scholar] [CrossRef]
- Rooks, M.G.; Garrett, W.S. Gut microbiota, metabolites and host immunity. Nat. Rev. Immunol. 2016, 16, 341–352. [Google Scholar] [CrossRef]
- Gasaly, N.; de Vos, P.; Hermoso, M.A. Impact of bacterial metabolites on gut barrier function and host immunity: A focus on bacterial metabolism and its relevance for intestinal inflammation. Front. Immunol. 2021, 12, 658354. [Google Scholar] [CrossRef] [PubMed]
- Cani, P.D. Microbiota and metabolites in metabolic diseases. Nat. Rev. Endocrinol. 2019, 15, 69–70. [Google Scholar] [CrossRef] [PubMed]
- Caffrey, E.B.; Sonnenburg, J.L.; Devkota, S. Our extended microbiome: The human-relevant metabolites and biology of fermented foods. Cell Metab. 2024, 36, 684–701. [Google Scholar] [CrossRef]
- Shen, G.; Wu, J.; Ye, B.C.; Qi, N. Gut microbiota-derived metabolites in the development of diseases. Can. J. Infect. Dis. Med. Microbiol. 2021, 2021, 6658674. [Google Scholar] [CrossRef]
- Wu, L.; Tang, Z.; Chen, H.; Ren, Z.; Ding, Q.; Liang, K.; Sun, Z. Mutual interaction between gut microbiota and protein/amino acid metabolism for host mucosal immunity and health. Anim. Nutr. 2021, 7, 11–16. [Google Scholar] [CrossRef] [PubMed]
- De Angelis, M.; Minervini, F.; Siragusa, S.; Rizzello, C.G.; Gobbetti, M. Wholemeal wheat flours drive the microbiome and functional features of wheat sourdoughs. Int. J. Food Microbiol. 2019, 302, 35–46. [Google Scholar] [CrossRef]
- Da Ros, A.; Polo, A.; Rizzello, C.G.; Acin-Albiac, M.; Montemurro, M.; Di Cagno, R.; Gobbetti, M. Feeding with sustainably sourdough bread has the potential to promote the healthy microbiota metabolism at the colon level. Microbiol. Spectr. 2021, 9, e0049421. [Google Scholar] [CrossRef] [PubMed]
- Arora, K.; Gaudioso, G.; Solovyev, P.; Tuohy, K.; Di Cagno, R.; Gobbetti, M.; Fava, F. In vitro faecal fermentation of Tritordeum breads and its effect on the human gut health. Curr. Res. Microb. Sci. 2024, 6, 100214. [Google Scholar] [CrossRef]
- Smith, C.; Van Haute, M.J.; Rose, D.J. Processing has differential effects on microbiota-accessible carbohydrates in whole grains during in vitro fermentation. Appl. Environ. Microbiol. 2020, 86, e01705-20. [Google Scholar] [CrossRef]
- Ney, L.M.; Wipplinger, M.; Grossmann, M.; Engert, N.; Wegner, V.D.; Mosig, A.S. Short chain fatty acids: Key regulators of the local and systemic immune response in inflammatory diseases and infections. Open Biol. 2023, 13, 230014. [Google Scholar] [CrossRef]
- AACC Approved Methods of Analysis, 11th ed.; Cereals & Grains Association: St. Paul, MN, USA, 2024; Available online: https://www.cerealsgrains.org/resources/Methods/About/Pages/Cite.aspx (accessed on 20 August 2024).
- AOAC International. AOAC Official Method 990.03, Protein (Crude) in Animal Feed, Combustion Method, 18th ed.; Official Methods of Analysis of AOAC International; ASA-SSA Inc.: Gaithersburg, MD, USA, 2006. [Google Scholar]
- Kowalski, S.; Mikulec, A.; Mickowska, B.; Skotnicka, M.; Mazurek, A. Wheat bread supplementation with various edible insect flours. Influence of chemical composition on nutritional and technological aspects. LWT 2022, 153, 113220. [Google Scholar] [CrossRef]
- Szcześniak, A.S. Classification of textural characteristics. J. Food Sci. 1963, 28, 385–389. [Google Scholar] [CrossRef]
- Mackie, A.; Rigby, N. InfoGest Consensus Method. In The Impact of Food Bioactives on Health: In Vitro and Ex Vivo Models; Verhoeckx, K., Cotter, P., Lopez-Exposito, I., Kleiveland, C., Lea, T., Mackie, A., Requena, T., Swiatecka, D., Wichers, H., Eds.; Springer: New York, NY, USA, 2015; Volume 1, pp. 13–22. [Google Scholar] [CrossRef]
- Van den Abbeele, P.; Kamil, A.; Fleige, L.; Chung, Y.; De Chavez, P.; Marzorati, M. Different oat ingredients stimulate specific microbial metabolites in the gut microbiome of three human individuals in vitro. ACS Omega 2018, 3, 12446–12456. [Google Scholar] [CrossRef] [PubMed]
- Miller, L.; Houghton, J.A. The micro-Kjeldahl determination of nitrogen content of amino acids and proteins. J. Biol. Chem. 1945, 159, 373–383. [Google Scholar] [CrossRef]
- Perreau, C.; Thabuis, C.; Verstrepen, L.; Ghyselinck, J.; Marzorati, M. Ex vivo colonic fermentation of NUTRIOSE® exerts immuno-modulatory properties and strong anti-inflammatory effects. Nutrients 2023, 15, 4229. [Google Scholar] [CrossRef]
- Verhoeckx, K.; Cotter, P.; Lopez-Exposito, I.; Kleiveland, C.; Lea, T.; Mackie, A.; Requena, T.; Swiatecka, D.; Wichers, H. The Impact of Food Bioactives on Health: In Vitro and Ex Vivo Models; Springer: New York, NY, USA, 2015. [Google Scholar] [CrossRef]
- De Weirdt, R.; Possemiers, S.; Vermeulen, G.; Moerdijk-Poortvliet, T.C.; Boschker, H.T.; Verstraete, W.; Van de Wiele, T. Human faecal microbiota display variable patterns of glycerol metabolism. FEMS Microbiol. Ecol. 2010, 74, 601–611. [Google Scholar] [CrossRef]
- Ottesen, A.; Ramachandran, P.; Reed, E.; White, J.R.; Hasan, N.; Subramanian, P.; Ryan, G.; Jarvis, K.; Grim, C.; Daquiqan, N.; et al. Enrichment dynamics of Listeria monocytogenes and the associated microbiome from naturally contaminated ice cream linked to a listeriosis outbreak. BMC Microbiol. 2016, 16, 275. [Google Scholar] [CrossRef]
- Ponnusamy, D.; Kozlova, E.V.; Sha, J.; Erova, T.E.; Azar, S.R.; Fitts, E.C.; Kirtley, M.L.; Tiner, B.L.; Andersson, J.A.; Grim, C.J.; et al. Cross-talk among flesh-eating Aeromonas hydrophila strains in mixed infection leading to necrotizing fasciitis. Proc. Natl. Acad. Sci. USA 2016, 113, 722–727. [Google Scholar] [CrossRef]
- Lax, S.; Smith, D.P.; Hampton-Marcell, J.; Owens, S.M.; Handley, K.M.; Scott, N.M.; Gibbons, S.M.; Larsen, P.; Shogan, B.D.; Weiss, S.; et al. Longitudinal analysis of microbial interaction between humans and the indoor environment. Science 2014, 345, 1048–1052. [Google Scholar] [CrossRef]
- Hasan, N.A.; Young, B.A.; Minard-Smith, A.T.; Saeed, K.; Li, H.; Heizer, E.M.; McMillan, N.J.; Isom, R.; Abdullah, A.S.; Bornman, D.M.; et al. Microbial community profiling of human saliva using shotgun metagenomic sequencing. PLoS ONE 2014, 9, e97699. [Google Scholar] [CrossRef]
- Segata, N.; Izard, J.; Waldron, L.; Gevers, D.; Miropolsky, L.; Garrett, W.S.; Huttenhower, C. Metagenomic biomarker discovery and explanation. Genome Biol. 2011, 12, R60. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.; Soneson, C.; Germain, P.L.; Schmidt, T.S.B.; Mering, C.V.; Robinson, M.D. treeclimbR pinpoints the data-dependent resolution of hierarchical hypotheses. Genome Biol. 2021, 22, 157. [Google Scholar] [CrossRef]
- De Vuyst, L.; Van Kerrebroeck, S.; Harth, H.; Huys, G.; Daniel, H.M.; Weckx, S. Microbial ecology of sourdough fermentations: Diverse or uniform? Food Microbiol. 2014, 37, 11–29. [Google Scholar] [CrossRef] [PubMed]
- Ganzle, M.G. Enzymatic and bacterial conversions during sourdough fermentation. Food Microbiol. 2014, 37, 2–10. [Google Scholar] [CrossRef]
- Thiele, C.; Gänzle, M.G. Contribution of sourdough Lactobacilli, yeast, and cereal enzymes to the generation of amino acids in dough relevant for bread flavor. Cereal Chem. 2002, 79, 45–51. [Google Scholar] [CrossRef]
- Miller, J.L. Iron deficiency anemia: A common and curable disease. Cold Spring Harb. Perspect. Med. 2013, 3, a011866. [Google Scholar] [CrossRef] [PubMed]
- Black, M.M. Micronutrient deficiencies and cognitive functioning. J. Nutr. 2003, 133, 3927S–3931S. [Google Scholar] [CrossRef]
- Bhattacharya, P.T.; Misra, S.R.; Hussain, M. Nutritional aspects of essential trace elements in oral health and disease: An extensive review. Scientifica 2016, 2016, 5464373. [Google Scholar] [CrossRef]
- Shewry, P.R. Improving the protein content and composition of cereal grain. J. Cereal Sci. 2007, 46, 239–250. [Google Scholar] [CrossRef]
- Priyadarshini, M.; Kotlo, K.U.; Dudeja, P.K.; Layden, B.T. Role of short chain fatty acid receptors in intestinal physiology and pathophysiology. Compr. Physiol. 2018, 8, 1091–1115. [Google Scholar] [CrossRef]
- Morrison, D.J.; Preston, T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes 2016, 7, 189–200. [Google Scholar] [CrossRef] [PubMed]
- Aoe, S.; Nakamura, F.; Fujiwara, S. Effect of wheat bran on fecal butyrate-producing bacteria and wheat bran combined with barley on Bacteroides abundance in Japanese healthy adults. Nutrients 2018, 10, 1980. [Google Scholar] [CrossRef] [PubMed]
White Flour | Whole Grain Flour | |
---|---|---|
Flour properties | ||
Moisture, % per 100 g flour | 13.0 | 12.7 |
Protein, % per 100 g flour | 11.45 | 12.6 |
Ash, % per 100 g flour | 0.68 | 1.58 |
Falling number | 391 | 356 |
Water absorption, % | 56.6 | 63.1 |
Mineral content, ppm | ||
Potassium | 1870 | 4160 |
Calcium | 228 | 364 |
Magnesium | 258 | 966 |
Iron | 10.5 | 28.7 |
Carbohydrates, % | ||
Sucrose | 0.3 | 0.5 |
Maltose | 0.7 | 0.4 |
Glucose and fructose | <0.2 | <0.2 |
Fermentable starch | 67.8 | 58.6 |
Damaged starch | 4.7 | 3 |
Amylase, U/g | ||
Ceralpha pH 5.2 | 0.18 | 0.24 |
Ceralpha pH 4.0 | 0.01 | 0.02 |
Betamyl pH 5.2 | 16.9 | 20.2 |
Betamyl pH 4.0 | 13.3 | 17.4 |
Parameter | Bread Recipe | Adjusted p-Value | ||||||
---|---|---|---|---|---|---|---|---|
BR1 | BR2 | BR3 | BR4 | BR1 vs. BR2 | BR3 vs. BR4 | BR1 vs. BR3 | BR2 vs. BR4 | |
Hardness (g) | 806.57 ± 172.11 | 2053.80 ± 397.91 | 848.81 ± 228.39 | 2674.17 ± 222.27 | <0.001 | <0.001 | 0.737 | 0.006 |
Fracturability (g) | 311.68 ± 79.29 | 468.85 ± 121.86 | 334.63 ± 95.28 | 464.20 ± 141.57 | <0.001 | <0.001 | 0.505 | 0.805 |
Springiness (%) | 95.0 ± 1.0 | 91.3 ± 1.1 | 93.6 ± 1.0 | 85.4 ± 14.1 | <0.001 | <0.001 | < 0.001 | 0.003 |
Cohesiveness (%) | 72.6 ± 3.3 | 65.8 ± 3.4 | 65.6 ± 3.9 | 57.8 ± 1.2 | <0.001 | <0.001 | < 0.001 | <0.001 |
Gumminess (-) | 579.97 ± 101.67 | 1339.75 ± 211.66 | 549.31 ± 123.40 | 1544.85 ± 119.73 | <0.001 | <0.001 | 0.504 | 0.072 |
Chewiness (-) | 550.45 ± 93.94 | 1222.66 ± 189.68 | 513.77 ± 113.47 | 1316.67 ± 212.55 | <0.001 | <0.001 | 0.462 | 0.462 |
Resilience (%) | 43.0 ± 3.2 | 36.1 ± 3.2 | 35.4 ± 2.9 | 27.4 ± 1.2 | <0.001 | <0.001 | <0.001 | <0.001 |
Parameter | Bread Recipe | Adjusted p-Value | ||||||
---|---|---|---|---|---|---|---|---|
BR1 | BR2 | BR3 | BR4 | BR1 vs. BR2 | BR3 vs. BR4 | BR1 vs. BR3 | BR2 vs. BR4 | |
Micronutrients | ||||||||
Minerals (mg/100 g dry bread) | ||||||||
Free P | 82.95 ± 6.36 | 266.27 ± 14.62 | 74.58 ± 6.63 | 151.22 ± 2.56 | 0.094 | 0.14 | 0.571 | 0.411 |
Total P a | 143.01 ± 16.28 | 324.19 ± 11.04 | 135.23 ± 6.52 | 288.67 ± 21.59 | 0.07 | 0.179 | 0.734 | 0.411 |
Free Ca | 35.82 ± 3.47 | 27.23 ± 0.43 | 19.78 ± 0.47 | 9.34 ± 0.56 | 0.308 | 0.308 | 0.083 | 0.083 |
Total Ca a | 55.79 ± 1.44 | 61.50 ± 7.92 | 53.10 ± 0.64 | 56.93 ± 9.44 | 0.497 | 0.411 | 0.411 | 0.411 |
Free Mg | 34.00 ± 2.18 | 115.20 ± 4.33 | 29.18 ± 1.93 | 40.72 ± 0.64 | 0.083 | 0.083 | 0.308 | 0.308 |
Total a Mg | 34.26 ± 2.37 | 122.03 ± 2.04 | 33.86 ± 2.28 | 98.13 ± 9.26 | 0.051 | 0.226 | 0.91 | 0.411 |
Free Fe | 0.15 ± 0.07 | 0.25 ± 0.02 | 0.12 ± 0.003 | 0.17 ± 0.10 | 0.348 | 0.821 | 0.821 | 0.348 |
Total a Fe | 1.78 ± 0.45 | 2.59 ± 0.63 | 1.87 ± 0.51 | 2.93 ± 0.62 | 0.226 | 0.226 | 0.821 | 0.821 |
Free Zn | 0.64 ± 0.01 | 0.83 ± 0.02 | 0.14 ± 0.02 | 0.09 ± 0.004 | 0.308 | 0.308 | 0.308 | 0.009 |
Total a Zn | 0.74 ± 0.09 | 1.30 ± 0.17 | 0.66 ± 0.08 | 1.21 ± 0.23 | 0.108 | 0.108 | 0.734 | 0.734 |
Free P + Ca + Mg + Fe + Zn | 153.56 ± 5.22 | 409.78 ± 19.11 | 123.79 ± 8.93 | 201.55 ± 3.70 | 0.083 | 0.083 | 0.308 | 0.308 |
Total a P + Ca + Mg + Fe + Zn | 235.58 ± 19.96 | 511.62 ± 17.89 | 224.70 ± 9.83 | 447.87 ± 40.61 | 0.070 | 0.179 | 0.734 | 0.411 |
Macronutrients | ||||||||
Carbohydrates (mg/100 g dry bread) | ||||||||
Nonresistant starch | 49.19 ± 5.70 | 47.62 ± 1.53 | 53.00 ± 1.46 | 49.90 ± 0.95 | 0.343 | 0.365 | 0.343 | 0.343 |
Free glucose | 0.15 ± 0.06 | 0.25 ± 0.02 | 0.24 ± 0.10 | 0.35 ± 0.09 | 0.226 | 0.308 | 0.226 | 0.308 |
Free maltose | 0.11 ± 0.19 | n.d. | 2.49 ± 0.34 | 1.25 ± 0.10 | – | 0.014 | 0.178 | – |
Free fructose | n.d. | 0.95 ± 0.25 | 1.06 ± 0.11 | 1.54 ± 0.23 | – | 0.051 | 0.074 | – |
Free galactose | n.d. | 0.05 ± 0.04 | n.d. | 0.05 ± 0.04 | – | 1.000 | – | – |
Free glucose + maltose + fructose + galactose | 0.26 ± 0.13 | 1.25 ± 0.25 | 3.80 ± 0.25 | 3.19 ± 0.38 | 0.411 | 0.428 | 0.013 | 0.411 |
Bread Recipe | Comparison p-Values | |||||||
---|---|---|---|---|---|---|---|---|
BR1 vs. BR2 | BR3 vs. BR4 | BR1 vs. BR3 | BR2 vs. BR4 | |||||
BR1 | BR2 | BR3 | BR4 | adj | adj | adj | adj | |
AA category (mg/100 g digested bread) | ||||||||
Free BCAA | 6.84 ± 0.29 | 9.59 ± 0.66 | 47.14 ± 7.56 | 5.42 ± 0.73 | 0.31 | 0.009 | 0.055 | 0.055 |
Free EAA | 15.13 ± 0.76 | 21.52 ± 1.63 | 107.87 ± 18.15 | 13.09 ± 1.57 | 0.26 | 0.013 | 0.063 | 0.072 |
Total free AA | 34.27 ± 1.75 | 49.07 ± 3.85 | 240.35 ± 42.28 | 28.56 ± 3.53 | 0.74 | 0.44 | 0.74 | 0.44 |
Phytate content | 75.29 ± 10.68 | 277.97 ± 38.34 | 112.89 ± 58.69 | 661.66 ± 202.2 | 0.197 | 0.077 | 0.582 | 0.357 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martinez Tuppia, C.; Rezaei, M.N.; Machuron, F.; Duysburgh, C.; Ghyselinck, J.; Marzorati, M.; Koper, J.E.B.; Monnet, C.; Bosco, N. In Vitro Human Gastrointestinal Digestibility and Colonic Fermentation of Wheat Sourdough and Yeast Breads. Foods 2024, 13, 3014. https://doi.org/10.3390/foods13183014
Martinez Tuppia C, Rezaei MN, Machuron F, Duysburgh C, Ghyselinck J, Marzorati M, Koper JEB, Monnet C, Bosco N. In Vitro Human Gastrointestinal Digestibility and Colonic Fermentation of Wheat Sourdough and Yeast Breads. Foods. 2024; 13(18):3014. https://doi.org/10.3390/foods13183014
Chicago/Turabian StyleMartinez Tuppia, Ccori, Mohammad N. Rezaei, François Machuron, Cindy Duysburgh, Jonas Ghyselinck, Massimo Marzorati, Jonna E. B. Koper, Céline Monnet, and Nabil Bosco. 2024. "In Vitro Human Gastrointestinal Digestibility and Colonic Fermentation of Wheat Sourdough and Yeast Breads" Foods 13, no. 18: 3014. https://doi.org/10.3390/foods13183014
APA StyleMartinez Tuppia, C., Rezaei, M. N., Machuron, F., Duysburgh, C., Ghyselinck, J., Marzorati, M., Koper, J. E. B., Monnet, C., & Bosco, N. (2024). In Vitro Human Gastrointestinal Digestibility and Colonic Fermentation of Wheat Sourdough and Yeast Breads. Foods, 13(18), 3014. https://doi.org/10.3390/foods13183014