Multi-Elemental Analysis and Geographical Discrimination of Greek “Gigantes Elefantes” Beans Utilizing Inductively Coupled Plasma Mass Spectrometry and Machine Learning Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling and Harvesting Area
2.2. Instrumentation
2.3. Reagents, Standards, and Quality Assurance
2.4. Sample Preparation and Microwave Digestion
2.5. Machine Learning Analysis Process
2.5.1. Dataset Description
2.5.2. Data Preprocessing and Model Training
2.5.3. Model Selection and Training
2.5.4. Model Evaluation
2.5.5. Feature Importance Analysis
3. Results and Discussion
3.1. Multi-Elemental Analysis
3.2. Decision Tree Model Training
3.3. Model Prediction and Evaluation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mullins, A.P.; Arjmandi, B.H. Health Benefits of Plant-Based Nutrition: Focus on Beans in Cardiometabolic Diseases. Nutrients 2021, 13, 519. [Google Scholar] [CrossRef] [PubMed]
- White Beans: Nutrition, Benefits, and More. Healthline. Available online: https://www.healthline.com/nutrition/white-beans-nutrition (accessed on 17 May 2023).
- eAmbrosia. Available online: https://ec.europa.eu/info/food-farming-fisheries/food-safety-and-quality/certification/quality-labels/geographical-indications-register/details/EUGI00000013574 (accessed on 17 May 2023).
- Tsirogiannis, G.; Zotos, A.; Mazarakioti, E.C.; Kokkotos, E.; Kontogeorgos, A.; Patakas, A.; Ladavos, A. A Statistical Approach to Identify Appropriate Sampling Scheme Capable of Geographical Identification Analysis of the Protected Origin Pulse Crops in Greece. Appl. Sci. 2023, 13, 3623. [Google Scholar] [CrossRef]
- Profile. Region of Western Macedonia. Available online: https://en.pdm.gov.gr/the-region/profile/ (accessed on 17 May 2023).
- Hao, X.; Gao, F.; Wu, H.; Song, Y.; Zhang, L.; Li, H.; Wang, H. From Soil to Grape and Wine: Geographical Variations in Elemental Profiles in Different Chinese Regions. Foods 2021, 10, 3108. [Google Scholar] [CrossRef] [PubMed]
- Carini, F.; Bengtsson, G. Post-Deposition Transport of Radionuclides in Fruit. J. Environ. Radioact. 2001, 52, 215–236. [Google Scholar] [CrossRef] [PubMed]
- Meharg, A.A.; Meharg, C.; Carey, M.; Williams, P.; Shi, Z.; Campbell, K.; Elliott, C.; Marwa, E.; Jiujin, X.; Farias, J.G.; et al. Global Geographical Variation in Elemental and Arsenic Species Concentration in Paddy Rice Grain Identifies a Close Association of Essential Elements Copper, Selenium and Molybdenum with Cadmium. Expo Health 2023, 15, 505–518. [Google Scholar] [CrossRef]
- Gupta, N.; Yadav, K.K.; Kumar, V.; Kumar, S.; Chadd, R.P.; Kumar, A. Trace Elements in Soil-Vegetables Interface: Translocation, Bioaccumulation, Toxicity and Amelioration—A Review. Sci. Total Environ. 2019, 651, 2927–2942. [Google Scholar] [CrossRef]
- Antoniadis, V.; Levizou, E.; Shaheen, S.M.; Ok, Y.S.; Sebastian, A.; Baum, C.; Prasad, M.N.V.; Wenzel, W.W.; Rinklebe, J. Trace Elements in the Soil-Plant Interface: Phytoavailability, Translocation, and Phytoremediation—A Review. Earth-Sci. Rev. 2017, 171, 621–645. [Google Scholar] [CrossRef]
- Mazarakioti, E.C.; Zotos, A.; Thomatou, A.-A.; Kontogeorgos, A.; Patakas, A.; Ladavos, A. Inductively Coupled Plasma-Mass Spectrometry (ICP-MS), a Useful Tool in Authenticity of Agricultural Products’ and Foods’ Origin. Foods 2022, 11, 3705. [Google Scholar] [CrossRef]
- Meemken, E.-M.; Barrett, C.B.; Michelson, H.C.; Qaim, M.; Reardon, T.; Sellare, J. Sustainability Standards in Global Agrifood Supply Chains. Nat. Food 2021, 2, 758–765. [Google Scholar] [CrossRef]
- Yiannaka, A. Food Fraud: A Persistent Problem That Demands a Comprehensive Approach. J. Consum. Prot. Food Saf. 2023, 18, 359–360. [Google Scholar] [CrossRef]
- Pasvanka, K.; Kostakis, M.; Tarapoulouzi, M.; Nisianakis, P.; Thomaidis, N.S.; Proestos, C. ICP–MS Analysis of Multi-Elemental Profile of Greek Wines and Their Classification According to Variety, Area and Year of Production. Separations 2021, 8, 119. [Google Scholar] [CrossRef]
- Qian, L.; Zuo, F.; Zhang, C.; Zhang, D. Geographical Origin Traceability of Rice: A Study on the Effect of Processing Precision on Index Elements. Food Sci. Technol. Res. 2019, 25, 619–624. [Google Scholar] [CrossRef]
- Laursen, K.H.; Hansen, T.H.; Persson, D.P.; Schjoerring, J.K.; Husted, S. Multi-Elemental Fingerprinting of Plant Tissue by Semi-Quantitative ICP-MS and Chemometrics. J. Anal. At. Spectrom. 2009, 24, 1198–1207. [Google Scholar] [CrossRef]
- Nasr, E.G.; Epova, E.N.; Sebilo, M.; Larivière, D.; Hammami, M.; Souissi, R.; Abderrazak, H.; Donard, O.F.X. Olive Oil Traceability Studies Using Inorganic and Isotopic Signatures: A Review. Molecules 2022, 27, 2014. [Google Scholar] [CrossRef] [PubMed]
- Drivelos, S.A.; Danezis, G.P.; Haroutounian, S.A.; Georgiou, C.A. Rare Earth Elements Minimal Harvest Year Variation Facilitates Robust Geographical Origin Discrimination: The Case of PDO “Fava Santorinis. Food Chem. 2016, 213, 238–245. [Google Scholar] [CrossRef]
- Drivelos, S.A.; Higgins, K.; Kalivas, J.H.; Haroutounian, S.A.; Georgiou, C.A. Data Fusion for Food Authentication. Combining Rare Earth Elements and Trace Metals to Discriminate “Fava Santorinis” from Other Yellow Split Peas Using Chemometric Tools. Food Chem. 2014, 165, 316–322. [Google Scholar] [CrossRef]
- Pipan, B.; Sinkovič, L.; Pipan, B. Multi-Elemental Composition, Nutrients and Total Phenolics in Seeds of Phaseolus vulgaris L. Breeding Material. J. Elem. 2021, 26, 613–623. [Google Scholar] [CrossRef]
- Koplík, R.; Pavelková, H.; Cincibuchová, J.; Mestek, O.; Kvasnička, F.; Suchánek, M. Fractionation of Phosphorus and Trace Elements Species in Soybean Flour and Common White Bean Seeds by Size Exclusion Chromatography–Inductively Coupled Plasma Mass Spectrometry. J. Chromatogr. B 2002, 770, 261–273. [Google Scholar] [CrossRef]
- Talavera, J.M.; Tobón, L.E.; Gómez, J.A.; Culman, M.A.; Aranda, J.M.; Parra, D.T.; Quiroz, L.A.; Hoyos, A.; Garreta, L.E. Review of IoT Applications in Agro-Industrial and Environmental Fields. Comput. Electron. Agric. 2017, 142, 283–297. [Google Scholar] [CrossRef]
- Liakos, K.G.; Busato, P.; Moshou, D.; Pearson, S.; Bochtis, D. Machine Learning in Agriculture: A Review. Sensors 2018, 18, 2674. [Google Scholar] [CrossRef]
- Provost, F.; Fawcett, T. Data Science for Business, 1st ed.; Loukides, M., Blanchette, M., Eds.; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2013. [Google Scholar]
- Condran, S.; Bewong, M.; Islam, M.Z.; Maphosa, L.; Zheng, L. Machine Learning in Precision Agriculture: A Survey on Trends, Applications and Evaluations over Two Decades. IEEE Access 2022, 10, 73786–73803. [Google Scholar] [CrossRef]
- Agilent ICP-MS IntelliQuant Software. For Greater Sample Insight and Confidence in Results (Flyer). Available online: https://www.agilent.com/en/product/atomic-spectroscopy/inductively-coupled-plasma-mass-spectrometry-icp-ms/icp-ms-instruments/7850-icp-ms?gad_source=1&gclid=CjwKCAjw_4S3BhAAEiwA_64YhvwcPUv1JLDeiBJJL_b6AcsjS3ugj4ZcpF_94aQ_ZdZ9RNk8NpRamxoCnhQQAvD_BwE&gclsrc=aw.ds (accessed on 11 September 2024).
- Al-Hakkani, M.F. Guideline of Inductively Coupled Plasma Mass Spectrometry “ICP–MS”: Fundamentals, Practices, Determination of the Limits, Quality Control, and Method Validation Parameters. SN Appl. Sci. 2019, 1, 791. [Google Scholar] [CrossRef]
- Sinkovič, L.; Nečemer, M.; Pipan, B.; Meglič, V. Determination of Some Elements in Legumes Using ICP-MS and EDXRF Methodology Applications. ACSi 2021, 68, 913–920. [Google Scholar] [CrossRef] [PubMed]
Element [mg/kg] | KASTORIA 2021–2022 | PRESPES 2021–2022 | REF [20] | REF [28] |
---|---|---|---|---|
Min–Max Values | Min–Max Values | Measured Values | Min–Max Values | |
7 Li | 0–0.0297 | 0.0000–0.0188 | ||
9 Be | 0–0.0029 | 0.0000–0.0024 | ||
11 B | 16.2022–26.7011 | 16.6426–26.9029 | ||
23 Na | 0.6359–4.3197 | 0.4578–3.9156 | 9.0 | 1.7–38.3 |
24 Mg | 2983.4903–4147.5156 | 2921.4996–4775.9513 | 1900 | 1400–1700 |
27 Al | 0.34–5.139 | 0.1536–7.6771 | ||
31 P | 8083.4798–10,601.294 | 4034.3960–18,617.0031 | 7150 | 4200–5900 |
39 K | 27,852.927–44,876.294 | 29,251.2092–49,898.9900 | 185,000 | 13,500–19,100 |
44 Ca | 299.271–730.1933 | 340.4705–978.6075 | 1900 | 900–1300 |
47 Ti | 0.5422–1.1998 | 0.5330–1.1649 | 1.6–3.8 | |
51 V | 0.0001–0.0026 | 0.0000–0.0016 | 0.000–0.045 | |
52 Cr | 0.0044–0.0272 | 0.0024–0.0833 | 0.28 | 0.1–0.3 |
55 Mn | 24.1273–42.5852 | 24.9287–59.3893 | 15.3 | 9.4–13.6 |
56 Fe | 62.4751–121.2127 | 64.2678–135.1724 | 86.5 | 56.9–77.3 |
59 Co | 0.0753–1.1478 | 0.1176–0.9983 | 0.12 | 0.04–0.15 |
60 Ni | 2.0494–21.791 | 0.3340–6.7266 | ||
63 Cu | 7.9588–18.252 | 7.2041 | 11.6 | 5.2–9.5 |
66 Zn | 34.7405–63.3961 | 27.8167–57.9961 | 42.4 | 20.3–28.9 |
69 Ga | 0.0655–0.6873 | 0.0089–0.6946 | ||
72 Ge | 0.0027–0.0058 | 0.0019–0.0059 | ||
75 As | 0.0007–0.0101 | 0.0013–0.0067 | ||
78 Se | 0.0078–0.3765 | 0.0069–0.0847 | ||
85 Rb | 1.3169–38.2707 | 2.9828–43.7599 | 2.4–9.0 | |
88 Sr | 1.5592–9.9054 | 1.5193–12.8573 | 0.8–4.6 | |
90 Zr | 0.0002–0.0038 | 0.0001–0.0067 | ||
93 Nb | 0–0.0018 | 0.0000–0.0005 | ||
95 Mo | 0.2807–20.4391 | 0.2868–8.4436 | 2.92 | 0.6–8.5 |
107 Ag | 0–0.0045 | 0.0000–0.0657 | ||
111 Cd | 0.0046–0.0558 | 0.0042–0.0841 | ||
133 Cs | 0.001–0.0367 | 0.0005–0.0608 | ||
137 Ba | 0.3525–4.0112 | 0.0516–4.2295 | ||
181 Ta | 0–0.0032 | 0.0000–0.0007 | ||
182 W | 0.0007–0.0557 | 0.0003–0.0763 | ||
185 Re | 0–0.0017 | 0.0000–0.0003 | ||
205 Tl | 0–0.0021 | 0.0000–0.0009 | ||
208 Pb | 0–0.0814 | 0.0000–0.0198 | ||
238 U | 0–0.0019 | 0.0000–0.0071 |
Predicted Class | |||
---|---|---|---|
Prespes | Kastoria | ||
Actual Class | Prespes | 93 | 3 |
Kastoria | 9 | 63 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mazarakioti, E.C.; Zotos, A.; Verykios, V.S.; Kokkotos, E.; Thomatou, A.-A.; Kontogeorgos, A.; Patakas, A.; Ladavos, A. Multi-Elemental Analysis and Geographical Discrimination of Greek “Gigantes Elefantes” Beans Utilizing Inductively Coupled Plasma Mass Spectrometry and Machine Learning Models. Foods 2024, 13, 3015. https://doi.org/10.3390/foods13183015
Mazarakioti EC, Zotos A, Verykios VS, Kokkotos E, Thomatou A-A, Kontogeorgos A, Patakas A, Ladavos A. Multi-Elemental Analysis and Geographical Discrimination of Greek “Gigantes Elefantes” Beans Utilizing Inductively Coupled Plasma Mass Spectrometry and Machine Learning Models. Foods. 2024; 13(18):3015. https://doi.org/10.3390/foods13183015
Chicago/Turabian StyleMazarakioti, Eleni C., Anastasios Zotos, Vassilios S. Verykios, Efthymios Kokkotos, Anna-Akrivi Thomatou, Achilleas Kontogeorgos, Angelos Patakas, and Athanasios Ladavos. 2024. "Multi-Elemental Analysis and Geographical Discrimination of Greek “Gigantes Elefantes” Beans Utilizing Inductively Coupled Plasma Mass Spectrometry and Machine Learning Models" Foods 13, no. 18: 3015. https://doi.org/10.3390/foods13183015
APA StyleMazarakioti, E. C., Zotos, A., Verykios, V. S., Kokkotos, E., Thomatou, A. -A., Kontogeorgos, A., Patakas, A., & Ladavos, A. (2024). Multi-Elemental Analysis and Geographical Discrimination of Greek “Gigantes Elefantes” Beans Utilizing Inductively Coupled Plasma Mass Spectrometry and Machine Learning Models. Foods, 13(18), 3015. https://doi.org/10.3390/foods13183015