Profiling of Potential Anti-Diabetic Active Compounds in White Tea: An Integrated Study of Polyphenol-Targeted Metabolomics, Network Pharmacology, and Computer Simulation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Tea Samples and Chemicals
2.2. Determination of Antioxidant Activity and α-Glucosidase Inhibition of WT
2.2.1. DPPH Radical Scavenging Activity
2.2.2. ABTS Radical Scavenging Activity
2.2.3. HRSA Radical Scavenging Activity
2.2.4. FRAP Radical Scavenging Activity
2.2.5. α-Glucosidase Inhibition Activity
2.3. Targeted Polyphenol Metabolomics Analysis
2.4. Screening of WT Active Components’ Targets and Construction of WT-Component-Target Network
2.5. Identification of Differentially Expressed Genes (DEGs) in DM
2.6. Weighted Gene Co-Expression Network Analysis (WGCNA)
2.7. Screening of Key Targets and Functional Enrichment Analysis
2.8. Molecular Docking Verification
2.9. Molecular Dynamics Simulation
2.10. Statistical Analysis
3. Results and Discussion
3.1. Antioxidant Activity and α-Glucosidase Inhibition of WT
3.2. Screening of Key Active Components and Relevant Targets of WT
3.3. Screening of Key Genes in DM
3.4. Functional Enrichment Analysis of Key Targets
3.5. Screening of Core Targets
3.6. Molecular Docking
3.7. Molecular Simulation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, C.; Zhou, C.; Xu, K.; Tian, C.; Zhang, M.; Lu, L.; Zhu, C.; Lai, Z.; Guo, Y. A Comprehensive Investigation of Macro-Composition and Volatile Compounds in Spring-Picked and Autumn-Picked White Tea. Foods 2022, 11, 3628. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Dai, H.; Zhang, J.; Zheng, Z.; Song, B.; Chen, J.; Lin, G.; Chen, L.; Sun, W.; Huang, Y. A Study on Origin Traceability of White Tea (White Peony) Based on Near-Infrared Spectroscopy and Machine Learning Algorithms. Foods 2023, 12, 499. [Google Scholar] [CrossRef]
- Zhou, S.; Zhang, J.; Ma, S.; Ou, C.; Feng, X.; Pan, Y.; Gong, S.; Fan, F.; Chen, P.; Chu, Q. Recent Advances on White Tea: Manufacturing, Compositions, Aging Characteristics and Bioactivities. Trends Food Sci. Technol. 2023, 134, 41–55. [Google Scholar] [CrossRef]
- Essaouiba, A.; Jellali, R.; Gilard, F.; Gakière, B.; Okitsu, T.; Legallais, C.; Sakai, Y.; Leclerc, E. Investigation of the Exometabolomic Profiles of Rat Islets of Langerhans Cultured in Microfluidic Biochip. Metabolites 2022, 12, 1270. [Google Scholar] [CrossRef]
- Teja, C.; Babu, S.N.; Noor, A.; Daniel, J.A.; Devi, S.A.; Khan, F.R. Cu/TEMPO Catalyzed Dehydrogenative 1,3-Dipolar Cycloaddition in the Synthesis of Spirooxindoles as Potential Antidiabetic Agents. RSC Adv. 2020, 10, 12262–12271. [Google Scholar] [CrossRef]
- Hogan, J.P.; Peercy, B.E. Flipping the Switch on the Hub Cell: Islet Desynchronization through Cell Silencing. PLoS ONE 2021, 16, e0248974. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, E.; Hoyer, A.; Brinks, R.; Icks, A.; Kuß, O.; Rathmann, W. Healthcare Costs of Type 2 Diabetes in Germany. Diabet. Med. 2017, 34, 855–861. [Google Scholar] [CrossRef]
- Esposito, F.; Pala, N.; Carcelli, M.; Boateng, S.T.; D’Aquila, P.S.; Mariani, A.; Satta, S.; Chamcheu, J.C.; Sechi, M.; Sanna, V. α-Glucosidase Inhibition by Green, White and Oolong Teas: In Vitro Activity and Computational Studies. J. Enzyme Inhib. Med. Chem. 2023, 38, 2236802. [Google Scholar] [CrossRef]
- Zhang, X.; Huo, Z.; Jia, X.; Xiong, Y.; Li, B.; Zhang, L.; Li, X.; Li, X.; Fang, Y.; Dong, X.; et al. (+)-Catechin Ameliorates Diabetic Nephropathy Injury by Inhibiting Endoplasmic Reticulum Stress-Related NLRP3-Mediated Inflammation. Food Funct. 2024, 15, 5450–5465. [Google Scholar] [CrossRef]
- Ni, Y.; Zhu, D.; Chen, C.; Wang, F.; Miu, Y.; Zhang, W. (+)-Catechins Play a Protective Role in Diabetic Kidney Disease by Alleviating EMT through Multiple Pathways. Mol. Nutr. Food Res. 2024, 68, e2400387. [Google Scholar] [CrossRef]
- Cai, J.; Qiu, Z.; Liao, J.; Li, A.; Chen, J.; Wu, Z.; Khan, W.; Sun, B.; Liu, S.; Zheng, P. Comprehensive Analysis of the Yield and Leaf Quality of Fresh Tea (Camellia sinensis cv. Jin Xuan) under Different Nitrogen Fertilization Levels. Foods 2024, 13, 2091. [Google Scholar] [CrossRef] [PubMed]
- Wen, X.; Lv, C.; Zhou, R.; Wang, Y.; Zhou, X.; Qin, S. The Molecular Mechanism Underlying the Therapeutic Effect of Dihydromyricetin on Type 2 Diabetes Mellitus Based on Network Pharmacology, Molecular Docking, and Transcriptomics. Foods 2024, 13, 344. [Google Scholar] [CrossRef] [PubMed]
- Tuo, Y.; Lu, X.; Tao, F.; Tukhvatshin, M.; Xiang, F.; Wang, X.; Shi, Y.; Lin, J.; Hu, Y. The Potential Mechanisms of Catechins in Tea for Anti-Hypertension: An Integration of Network Pharmacology, Molecular Docking, and Molecular Dynamics Simulation. Foods 2024, 13, 2685. [Google Scholar] [CrossRef] [PubMed]
- Peng, M.; Gao, Z.; Liao, Y.; Guo, J.; Shan, Y. Development of Citrus-Based Functional Jelly and an Investigation of Its Anti-Obesity and Antioxidant Properties. Antioxidants 2022, 11, 2418. [Google Scholar] [CrossRef]
- Yan, Z.; Zhou, Z.; Jiao, Y.; Huang, J.; Yu, Z.; Zhang, D.; Chen, Y.; Ni, D. Hot-Air Drying Significantly Improves the Quality and Functional Activity of Orange Black Tea Compared with Traditional Sunlight Drying. Foods 2023, 12, 1913. [Google Scholar] [CrossRef]
- Chen, B.; Ma, Y.; Li, H.; Chen, X.; Zhang, C.; Wang, H.; Deng, Z. The Antioxidant Activity and Active Sites of Delphinidin and Petunidin Measured by DFT, in Vitro Chemical-Based and Cell-Based Assays. J. Food Biochem. 2019, 43, e12968. [Google Scholar] [CrossRef]
- Jiao, Y.; Song, Y.; Yan, Z.; Wu, Z.; Yu, Z.; Zhang, D.; Ni, D.; Chen, Y. The New Insight into the Effects of Different Fixing Technology on Flavor and Bioactivities of Orange Dark Tea. Molecules 2023, 28, 1079. [Google Scholar] [CrossRef]
- Yu, L.; Bian, C.; Zhu, N.; Shen, Y.; Yuan, H. Enhancement of Methane Production from Anaerobic Digestion of Waste Activated Sludge with Choline Supplement. Energy 2019, 173, 1021–1029. [Google Scholar] [CrossRef]
- Chen, Y.-H.; Zhang, Y.-H.; Chen, G.-S.; Yin, J.-F.; Chen, J.-X.; Wang, F.; Xu, Y.-Q. Effects of Phenolic Acids and Quercetin-3-O-Rutinoside on the Bitterness and Astringency of Green Tea Infusion. NPJ Sci. Food 2022, 6, 8. [Google Scholar] [CrossRef]
- Okubo, H.; Syddall, H.E.; Phillips, D.I.W.; Sayer, A.A.; Dennison, E.M.; Cooper, C.; Robinson, S.M. Dietary Total Antioxidant Capacity Is Related to Glucose Tolerance in Older People: The Hertfordshire Cohort Study. Nutr. Metab. Cardiovasc. Dis. 2013, 24, 301–308. [Google Scholar] [CrossRef]
- Sun, H.; Wang, D.; Song, X.; Zhang, Y.; Ding, W.; Peng, X.; Zhang, X.; Li, Y.; Ma, Y.; Wang, R.; et al. Natural Prenylchalconaringenins and Prenylnaringenins as Antidiabetic Agents: α-Glucosidase and α-Amylase Inhibition and in Vivo Antihyperglycemic and Antihyperlipidemic Effects. J. Agric. Food Chem. 2017, 65, 1574–1581. [Google Scholar] [CrossRef]
- Zhou, B.; Wang, Z.; Yin, P.; Ma, B.; Ma, C.; Xu, C.; Wang, J.; Wang, Z.; Yin, D.; Xia, T. Impact of Prolonged Withering on Phenolic Compounds and Antioxidant Capability in White Tea Using LC-MS-Based Metabolomics and HPLC Analysis: Comparison with Green Tea. Food Chem. 2021, 368, 130855. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Zhang, S.; Fan, A.; Li, Y.; Xu, P.; Huang, J.; He, M.; Wang, H. An Immune-related Gene Signature for the Prognosis of Human Bladder Cancer Based on WGCNA. Comput. Biol. Med. 2022, 151, 106186. [Google Scholar] [CrossRef] [PubMed]
- Prakash, O.; Bettadiah, B.K.; Kudachikar, V.B. Chemical Composition and in Vitro Antihyperglycemic Potential of Kainth Fruit (Pyrus pashia Buch.-Ham Ex D. Don). Food Biosci. 2021, 42, 101119. [Google Scholar] [CrossRef]
- Rivers, S.L.; Klip, A.; Giacca, A. NOD1: An Interface Between Innate Immunity and Insulin Resistance. Endocrinology 2019, 160, 1021–1030. [Google Scholar] [CrossRef]
- Gulzar, F.; Ahmad, S.; Singh, S.; Kumar, P.; Sharma, A.; Tamrakar, A.K. NOD1 Activation in 3T3-L1 Adipocytes Confers Lipid Accumulation in HepG2 Cells. Life Sci. 2023, 316, 121400. [Google Scholar] [CrossRef]
- Qiu, J.; Wu, J.; Chen, W.; Ruan, Y.; Mao, J.; Li, S.; Tang, X.; Zhao, L.; Li, S.; Li, K.; et al. NOD1 Deficiency Ameliorates the Progression of Diabetic Retinopathy by Modulating Bone Marrow–Retina Crosstalk. Stem Cell Res. Ther. 2024, 15, 1–17. [Google Scholar] [CrossRef]
- Gureeva, T.A.; Timoshenko, O.S.; Kugaevskaya, E.V.; Solovyova, N.I. Cysteine Cathepsins: Structure, Physiological Functions, and the Role in Carcinogenesis. Biochem. Mosc. Suppl. B Biomed. Chem. 2022, 16, 91–103. [Google Scholar] [CrossRef]
- Yang, L.; Zeng, Q.; Deng, Y.; Qiu, Y.; Yao, W.; Liao, Y. Glycosylated Cathepsin V Serves as a Prognostic Marker in Lung Cancer. Front. Oncol. 2022, 12, 876245. [Google Scholar] [CrossRef]
- Zhou, X.; Ni, J.; Ge, W.; Wang, X.; Li, Y.; Wang, H.; Ma, C. Machine Learning-Based Virtual Screening of Multi-Target Anti-Obesity Compounds from Medicinal and Edible Plants: A Combined in Silico and in Vitro Study. Food Biosci. 2024, 59, 104077. [Google Scholar] [CrossRef]
- Wei, D.; Wu, S.; Liu, J.; Zhang, X.; Guan, X.; Gao, L.; Xu, Z. Theobromine Ameliorates Nonalcoholic Fatty Liver Disease by Regulating Hepatic Lipid Metabolism via MTOR Signaling Pathway in Vivo and in Vitro. Can. J. Physiol. Pharmacol. 2020, 99, 775–785. [Google Scholar] [CrossRef] [PubMed]
- Indrianingsih, A.W.; Wulanjati, M.P.; Windarsih, A.; Bhattacharjya, D.K.; Suzuki, T.; Katayama, T. In Vitro Studies of Antioxidant, Antidiabetic, and Antibacterial Activities of Theobroma cacao, Anonna muricata and Clitoria ternatea. Biocatal. Agric. Biotechnol. 2021, 33, 101995. [Google Scholar] [CrossRef]
- de Galan, B.E.; Tack, C.J.; Lenders, J.W.; Pasman, J.W.; Elving, L.D.; Russel, F.G.; Lutterman, J.A.; Smits, P. Theophylline Improves Hypoglycemia Unawareness in Type 1 Diabetes. Diabetes 2002, 51, 790–796. [Google Scholar] [CrossRef]
- Rabinovitch, A.; Sumoski, W.L. Theophylline Protects against Diabetes in BB Rats and Potentiates Cyclosporine Protection. Diabetologia 1990, 33, 506–508. [Google Scholar] [CrossRef]
- Yamauchi, R.; Kobayashi, M.; Matsuda, Y.; Ojika, M.; Shigeoka, S.; Yamamoto, Y.; Tou, Y.; Inoue, T.; Katagiri, T.; Murai, A.; et al. Coffee and Caffeine Ameliorate Hyperglycemia, Fatty Liver, and Inflammatory Adipocytokine Expression in Spontaneously Diabetic KK-Ay Mice. J. Agric. Food Chem. 2010, 58, 5597–5603. [Google Scholar] [CrossRef]
- Alshabi, A.M.; Alkahtani, S.A.; Shaikh, I.A.; Habeeb, M.S. Caffeine Modulates Pharmacokinetic and Pharmacodynamic Profiles of Pioglitazone in Diabetic Rats. Saudi Med. J. 2021, 42, 151–160. [Google Scholar] [CrossRef]
- Wu, X.; Ding, H.; Hu, X.; Pan, J.; Liao, Y.; Gong, D.; Zhang, G. Exploring Inhibitory Mechanism of Gallocatechin Gallate on A-Amylase and a-Glucosidase Relevant to Postprandial Hyperglycemia. J. Funct. Foods 2018, 48, 200–209. [Google Scholar] [CrossRef]
- Nazir, N.; Zahoor, M.; Ullah, R.; Ezzeldin, E.; Mostafa, G.A.E. Curative Effect of Catechin Isolated from Elaeagnus Umbellata Thunb. Berries for Diabetes and Related Complications in Streptozotocin-Induced Diabetic Rats Model. Molecules 2020, 26, 137. [Google Scholar] [CrossRef]
- Mrabti, H.N.; Jaradat, N.; Fichtali, I.; Ouedrhiri, W.; Jodeh, S.; Ayesh, S.; Cherrah, Y.; Faouzi, M.E.A. Separation, Identification, and Antidiabetic Activity of Catechin Isolated from Arbutus unedo L. Plant Roots. Plants 2018, 7, 31. [Google Scholar] [CrossRef]
- Ihm, S.-H.; Lee, J.-O.; Kim, S.-J.; Seung, K.-B.; Schini-Kerth, V.B.; Chang, K.; Oak, M.-H. Catechin Prevents Endothelial Dysfunction in the Prediabetic Stage of OLETF Rats by Reducing Vascular NADPH Oxidase Activity and Expression. Atherosclerosis 2009, 206, 47–53. [Google Scholar] [CrossRef]
- Zhang, Z.F.; Li, Q.; Liang, J.; Dai, X.Q.; Ding, Y.; Wang, J.B.; Li, Y. Epigallocatechin-3-O-Gallate (EGCG) Protects the Insulin Sensitivity in Rat L6 Muscle Cells Exposed to Dexamethasone Condition. Phytomedicine 2009, 17, 14–18. [Google Scholar] [CrossRef]
- Waltner-Law, M.E.; Wang, X.L.; Law, B.K.; Hall, R.K.; Nawano, M.; Granner, D.K. Epigallocatechin Gallate, a Constituent of Green Tea, Represses Hepatic Glucose Production. J. Biol. Chem. 2002, 277, 34933–34940. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Liu, J.; Zhang, X.; Ji, G. Antidiabetic Activity of Lipophilic (-)-Epigallocatechin-3-Gallate Derivative under Its Role of Alpha-Glucosidase Inhibition. Biomed. Pharmacother. 2007, 61, 91–96. [Google Scholar] [CrossRef]
- Ma, H.; Liu, W.; Frost, L.; Kirschenbaum, L.J.; Dain, J.A.; Seeram, N.P. Glucitol-Core Containing Gallotannins Inhibit the Formation of Advanced Glycation End-Products Mediated by Their Antioxidant Potential. Food Funct. 2016, 7, 2213–2222. [Google Scholar] [CrossRef]
- Wu, X.; Zhang, G.; Hu, X.; Pan, J.; Liao, Y.; Ding, H. Inhibitory Effect of Epicatechin Gallate on Protein Glycation. Food Res. Int. 2019, 122, 230–240. [Google Scholar] [CrossRef]
- Huang, D.-W.; Chang, W.-C.; Wu, J.S.-B.; Shih, R.-W.; Shen, S.-C. Gallic Acid Ameliorates Hyperglycemia and Improves Hepatic Carbohydrate Metabolism in Rats Fed a High-Fructose Diet. Nutr. Res. 2016, 36, 150–160. [Google Scholar] [CrossRef]
- Punithavathi, V.R.; Prince, P.S.M.; Kumar, R.; Selvakumari, J. Antihyperglycaemic, Antilipid Peroxidative and Antioxidant Effects of Gallic Acid on Streptozotocin Induced Diabetic Wistar Rats. Eur. J. Pharmacol. 2010, 650, 465–471. [Google Scholar] [CrossRef]
- Oboh, G.; Ogunbadejo, M.D.; Ogunsuyi, O.B.; Oyeleye, S.I. Can Gallic Acid Potentiate the Antihyperglycemic Effect of Acarbose and Metformin? Evidence from Streptozotocin-Induced Diabetic Rat Model. Arch. Physiol. Biochem. 2020, 128, 619–627. [Google Scholar] [CrossRef] [PubMed]
- Baell, J.B.; Holloway, G.A. New Substructure Filters for Removal of Pan Assay Interference Compounds (PAINS) from Screening Libraries and for Their Exclusion in Bioassays. J. Med. Chem. 2010, 53, 2719–2740. [Google Scholar] [CrossRef]
- Wu, Q.; Xu, C.; Tian, Y.; Han, A.; Liu, Y. Simulation Screening of Umami Peptides in the Microbiota of Soy Sauce Based on Molecular Docking and Molecular Dynamics. Food Biosci. 2024, 61, 104722. [Google Scholar] [CrossRef]
- Jin, M.; Sun, K.; Guo, S.; Wang, Y.; Jin, J.; Qi, H. Novel Stabilization of Chlorophyll by Sea Cucumber (Apostichopus japonicas) Protein: Multi-Spectral and Molecular Dynamics Analysis. Food Biosci. 2024, 61, 104861. [Google Scholar] [CrossRef]
- Li, B.; Jiang, G.; Li, S.; Zhu, J.; Ding, X.; Song, Y.; Ding, Z. Integrating Label-Free Proteomics and Molecular Dynamics to Investigate the Interactions between Proteins and Bioactive Compounds in Rosa Roxburghii Tratt Fermented by Lactobacillus acidophilus GIM1.208. Food Biosci. 2024, 58, 103748. [Google Scholar] [CrossRef]
- Dong, Y.; Chang, R.; Ji, Z.; Xu, Y.; Ren, Q.; Zhou, Z.; Mao, J. Unraveling Umami Complexity: From Exploring Umami Peptides in Fermented Soybean Curd to Molecular Elucidation of Taste Mechanisms. Food Biosci. 2024, 59, 103951. [Google Scholar] [CrossRef]
Samples | DPPH | ABTS | FRAP | HRSA | α-Glucosidase Activity |
---|---|---|---|---|---|
Control | 1.31 ± 0.19 b | 1.27 ± 0.31 c | 0.13 ± 0.03 c | 0.63 ± 0.08 c | 163.13 ± 4.82 a |
acarbose | 74.50 ± 0.93 a | 94.92 ± 0.44 a | 28.49 ± 0.15 a | 15.99 ± 0.02 a | 8.74 ± 0.12 b |
WT | 71.50 ± 0.39 a | 85.43 ± 0.10 b | 9.46 ± 0.14 b | 6.57 ± 0.45 b | 14.09 ± 1.48 b |
Parameters | EGCG-CTSV | ECG-CTSV | C-NOD1 |
---|---|---|---|
Delta Van Der Waals Energy | −44.67 ± 0.66 | −40.04 ± 2.58 | −36.84 ± 0.14 |
Delta Electrostatic Energy | −4.80 ± 2.41 | −7.56 ± 1.55 | −7.13 ± 2.04 |
Delta Generalized Born Energy | 28.78 ± 0.21 | 24.78 ± 0.30 | 20.62 ± 0.53 |
Delta Solvent Accessible Surface Area Energy | −4.78 ± 0.02 | −4.71 ± 0.23 | −4.17 ± 0.15 |
Total Binding Energy | −25.48 ± 2.51 | −27.52 ± 3.03 | −27.52 ± 2.11 |
Parameters | EGCG-CTSV | ECG-CTSV | C-NOD1 |
---|---|---|---|
Delta Van Der Waals Energy | −44.67 ± 0.66 | −40.04 ± 2.58 | −36.84 ± 0.14 |
Delta Electrostatic Energy | −4.80 ± 2.41 | −7.56 ± 1.55 | −7.13 ± 2.04 |
Delta Polar Solvation Energy | 29.67 ± 0.72 | 24.08 ± 1.35 | 21.34 ± 0.63 |
Delta Non-Polar Solvation Energy | −3.51 ± 0.02 | −3.42 ± 0.16 | −2.76 ± 0.03 |
Total Binding Energy | −23.29 ± 2.60 | −26.93 ± 3.30 | −25.39 ± 2.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, W.; Zheng, Z.; Wang, Z.; Gao, C.; Liang, Y.; Zeng, W.; Sun, W. Profiling of Potential Anti-Diabetic Active Compounds in White Tea: An Integrated Study of Polyphenol-Targeted Metabolomics, Network Pharmacology, and Computer Simulation. Foods 2024, 13, 3354. https://doi.org/10.3390/foods13213354
Wu W, Zheng Z, Wang Z, Gao C, Liang Y, Zeng W, Sun W. Profiling of Potential Anti-Diabetic Active Compounds in White Tea: An Integrated Study of Polyphenol-Targeted Metabolomics, Network Pharmacology, and Computer Simulation. Foods. 2024; 13(21):3354. https://doi.org/10.3390/foods13213354
Chicago/Turabian StyleWu, Weiwei, Zhiqiang Zheng, Zhihui Wang, Chenxi Gao, Yilin Liang, Wen Zeng, and Weijiang Sun. 2024. "Profiling of Potential Anti-Diabetic Active Compounds in White Tea: An Integrated Study of Polyphenol-Targeted Metabolomics, Network Pharmacology, and Computer Simulation" Foods 13, no. 21: 3354. https://doi.org/10.3390/foods13213354
APA StyleWu, W., Zheng, Z., Wang, Z., Gao, C., Liang, Y., Zeng, W., & Sun, W. (2024). Profiling of Potential Anti-Diabetic Active Compounds in White Tea: An Integrated Study of Polyphenol-Targeted Metabolomics, Network Pharmacology, and Computer Simulation. Foods, 13(21), 3354. https://doi.org/10.3390/foods13213354