Recent Advances in Purple Sweet Potato Anthocyanins: Extraction, Isolation, Functional Properties and Applications in Biopolymer-Based Smart Packaging
Abstract
:1. Introduction
2. Extraction of PSPAs
2.1. Solvent Extraction
2.2. Ultrasound-Assisted Extraction
2.3. Enzyme-Assisted Extraction
2.4. Microwave-Assisted Extraction
2.5. Pulsed Electric Field Extraction
2.6. Pressurized Liquid Extraction
2.7. High-Pressure Carbon Dioxide Extraction
3. Isolation, Characterization and Purification of PSPAs
3.1. Isolation of PSPAs
3.1.1. ATPS
3.1.2. Membrane Separation
3.1.3. Column Chromatography
3.2. Characterization of PSPAs
3.3. Purification of PSPAs
4. Functional Properties of PSPAs
4.1. Antioxidant and Antimicrobial Activity
4.2. Color-Changing Ability
5. Biopolymer-Based Smart Packaging Films Containing PSPAs
5.1. Preparation Methods
5.2. Physical Properties
5.3. Antioxidant and Antibacterial Activity
5.4. pH Sensitivity
5.5. Color Stability
5.6. Applications
5.7. Limitations and Challenges
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ghoshal, G. Recent trends in active, smart, and intelligent packaging for food products. Food Preserv. Packag. 2018, 9, 343–374. [Google Scholar]
- Ibarra, V.G.; De Quirós, A.R.B.; Losada, P.P.; Sendón, R. Non-target analysis of intentionally and non intentionally added substances from plastic packaging materials and their migration into food simulants. Food Packag. Shelf Life 2019, 21, 100325. [Google Scholar] [CrossRef]
- Juikar, S.K.; Warkar, S.G. Biopolymers for packaging applications: An overview. Packag. Technol. Sci. 2023, 36, 229–251. [Google Scholar] [CrossRef]
- Sani, M.A.; Azizi-Lalabadi, M.; Tavassoli, M.; Mohammadi, K.; McClements, D.J. Recent advances in the development of smart and active biodegradable packaging materials. Nanomaterials 2021, 11, 1331. [Google Scholar] [CrossRef]
- Amin, U.; Khan, M.K.I.; Maan, A.A.; Nazir, A.; Riaz, S.; Khan, M.U.; Muhammad Sultan, M.; Munekata, P.E.S.; Lorenzo, J.M. Biodegradable active, intelligent, and smart packaging materials for food applications. Food Packag. Shelf Life 2022, 33, 100903. [Google Scholar] [CrossRef]
- Vasuki, M.T.; Kadirvel, V.; Narayana, G.P. Smart packaging–An overview of concepts and applications in various food industries. Food Bioeng. 2023, 2, 25–41. [Google Scholar] [CrossRef]
- Yong, H.; Liu, J. Active packaging films and edible coatings based on polyphenol-rich propolis extract: A review. Compr. Rev. Food Sci. Food Saf. 2021, 20, 2106–2145. [Google Scholar] [CrossRef]
- Kuswandi, B.; Moradi, M.; Ezati, P. Food sensors: Off-package and on-package approaches. Packag. Technol. Sci. 2022, 35, 847–862. [Google Scholar] [CrossRef]
- Liu, Y.; Li, L.; Yu, Z.; Ye, C.; Pan, L.; Song, Y. Principle, development and application of time-temperature indicators for packaging. Packag. Technol. Sci. 2023, 36, 833–853. [Google Scholar] [CrossRef]
- Alizadeh-Sani, M.; Mohammadian, E.; Rhim, J.W.; Jafari, S.M. pH-sensitive (halochromic) smart packaging films based on natural food colorants for the monitoring of food quality and safety. Trends Food Sci. Technol. 2020, 105, 93–144. [Google Scholar] [CrossRef]
- Priyadarshi, R.; Rhim, J.W. Shikonin: Extraction, properties and applications in active and intelligent packaging. Packag. Technol. Sci. 2022, 35, 863–877. [Google Scholar] [CrossRef]
- Yao, X.; Liu, J.; Hu, H.; Yun, D.; Liu, J. Development and comparison of different polysaccharide/PVA-based active/intelligent packaging films containing red pitaya betacyanins. Food Hydrocoll. 2022, 124, 107305. [Google Scholar] [CrossRef]
- de Oliveira Filho, J.G.; Braga, A.R.C.; de Oliveira, B.R.; Gomes, F.P.; Moreira, V.L.; Pereira, V.A.C.; Egea, M.B. The potential of anthocyanins in smart, active, and bioactive eco-friendly polymer-based films: A review. Food Res. Int. 2021, 142, 110202. [Google Scholar] [CrossRef]
- Oladzadabbasabadi, N.; Nafchi, A.M.; Ghasemlou, M.; Ariffin, F.; Singh, Z.; Al-Hassan, A.A. Natural anthocyanins: Sources, extraction, characterization, and suitability for smart packaging. Food Packag. Shelf Life 2022, 33, 100872. [Google Scholar] [CrossRef]
- Khoo, H.E.; Azlan, A.; Tang, S.T.; Lim, S.M. Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr. Res. 2017, 61, 1361779. [Google Scholar] [CrossRef]
- Mattioli, R.; Francioso, A.; Mosca, L.; Silva, P. Anthocyanins: A comprehensive review of their chemical properties and health effects on cardiovascular and neurodegenerative diseases. Molecules 2020, 25, 3809. [Google Scholar] [CrossRef]
- Kan, J.; Liu, J.; Xu, F.; Yun, D.; Yong, H.; Liu, J. Development of pork and shrimp freshness monitoring labels based on starch/polyvinyl alcohol matrices and anthocyanins from 14 plants: A comparative study. Food Hydrocoll. 2022, 124, 107293. [Google Scholar] [CrossRef]
- de Albuquerque, T.M.R.; Sampaio, K.B.; de Souza, E.L. Sweet potato roots: Unrevealing an old food as a source of health promoting bioactive compounds–A review. Trends Food Sci. Technol. 2019, 85, 277–286. [Google Scholar] [CrossRef]
- Tang, C.; Sun, J.; Zhou, B.; Jin, C.; Liu, J.; Kan, J.; Qian, C.; Zhang, N. Effects of polysaccharides from purple sweet potatoes on immune response and gut microbiota composition in normal and cyclophosphamide treated mice. Food Funct. 2018, 9, 937–950. [Google Scholar] [CrossRef]
- Tang, C.; Han, J.; Chen, D.; Zong, S.; Liu, J.; Kan, J.; Qian, C.; Jin, C. Recent advances on the biological activities of purple sweet potato anthocyanins. Food Biosci. 2023, 53, 102670. [Google Scholar] [CrossRef]
- Li, A.; Xiao, R.; He, S.; An, X.; He, Y.; Wang, C.; Yin, S.; Wang, B.; Shi, X.; He, J. Research advances of purple sweet potato anthocyanins: Extraction, identification, stability, bioactivity, application, and biotransformation. Molecules 2019, 24, 3816. [Google Scholar] [CrossRef]
- Choi, I.; Lee, J.Y.; Lacroix, M.; Han, J. Intelligent pH indicator film composed of agar/potato starch and anthocyanin extracts from purple sweet potato. Food Chem. 2017, 218, 122–128. [Google Scholar] [CrossRef]
- Wei, Y.C.; Cheng, C.H.; Ho, Y.C.; Tsai, M.L.; Mi, F.L. Active gellan gum/purple sweet potato composite films capable of monitoring pH variations. Food Hydrocoll. 2017, 69, 491–502. [Google Scholar] [CrossRef]
- de Aguiar Cipriano, P.; Ekici, L.; Barnes, R.C.; Gomes, C.; Talcott, S.T. Pre-heating and polyphenol oxidase inhibition impact on extraction of purple sweet potato anthocyanins. Food Chem. 2015, 180, 227–234. [Google Scholar] [CrossRef]
- Hong, K.H.; Koh, E. Effects of cooking methods on anthocyanins and total phenolics in purple-fleshed sweet potato. J. Food Process. Pres. 2016, 40, 1054–1063. [Google Scholar] [CrossRef]
- Kim, H.W.; Kim, J.B.; Cho, S.M.; Chung, M.N.; Lee, Y.M.; Chu, S.M.; Che, J.H.; Kim, S.N.; Cho, Y.S.; Kim, J.H.; et al. Anthocyanin changes in the Korean purple-fleshed sweet potato, Shinzami, as affected by steaming and baking. Food Chem. 2012, 130, 966–972. [Google Scholar] [CrossRef]
- Truong, V.D.; Deighton, N.; Thompson, R.T.; McFeeters, R.F.; Dean, L.O.; Pecota, K.V.; Yencho, G.C. Characterization of anthocyanins and anthocyanidins in purple-fleshed sweetpotatoes by HPLC-DAD/ESI-MS/MS. J. Agric. Food Chem. 2010, 58, 404–410. [Google Scholar] [CrossRef]
- Xu, J.; Su, X.; Lim, S.; Griffin, J.; Carey, E.; Katz, B.; Tomich, J.; Smith, J.S.; Wang, W. Characterisation and stability of anthocyanins in purple-fleshed sweet potato P40. Food Chem. 2015, 186, 90–96. [Google Scholar] [CrossRef]
- Cai, Z.; Qu, Z.; Lan, Y.; Zhao, S.; Ma, X.; Wan, Q.; Jing, P.; Li, P. Conventional, ultrasound-assisted, and accelerated-solvent extractions of anthocyanins from purple sweet potatoes. Food Chem. 2016, 197, 266–272. [Google Scholar] [CrossRef]
- Farooq, S.; Shah, M.A.; Siddiqui, M.W.; Dar, B.N.; Mir, S.A.; Ali, A. Recent trends in extraction techniques of anthocyanins from plant materials. J. Food Meas. Charact. 2020, 14, 3508–3519. [Google Scholar] [CrossRef]
- Vishnu, V.R.; Renjith, R.S.; Mukherjee, A.; Anil, S.R.; Sreekumar, J.; Jyothi, A.N. Comparative study on the chemical structure and in vitro antiproliferative activity of anthocyanins in purple root tubers and leaves of sweet potato (Ipomoea batatas). J. Agric. Food Chem. 2019, 67, 2467–2475. [Google Scholar] [CrossRef]
- Liu, X.; Mu, T.; Sun, H.; Zhang, M.; Chen, J. Optimisation of aqueous two-phase extraction of anthocyanins from purple sweet potatoes by response surface methodology. Food Chem. 2013, 141, 3034–3041. [Google Scholar] [CrossRef]
- Zuleta-Correa, A.; Chinn, M.S.; Alfaro-Córdoba, M.; Truong, V.D.; Yencho, G.C.; Bruno-Bárcena, J.M. Use of unconventional mixed Acetone-Butanol-Ethanol solvents for anthocyanin extraction from Purple-Fleshed sweetpotatoes. Food Chem. 2020, 314, 125959. [Google Scholar] [CrossRef]
- Lu, L.Z.; Zhou, Y.Z.; Zhang, Y.Q.; Ma, Y.L.; Zhou, L.X.; Li, L.; Zhou, Z.Z.; He, T.Z. Anthocyanin extracts from purple sweet potato by means of microwave baking and acidified electrolysed water and their antioxidation in vitro. Int. J. Food Sci. Tech. 2010, 45, 1378–1385. [Google Scholar] [CrossRef]
- Huang, H.; Xu, Q.; Belwal, T.; Li, L.; Aalim, H.; Wu, Q.; Duan, Z.; Zhang, X.; Luo, Z. Ultrasonic impact on viscosity and extraction efficiency of polyethylene glycol: A greener approach for anthocyanins recovery from purple sweet potato. Food Chem. 2019, 283, 59–67. [Google Scholar] [CrossRef]
- Chen, C.C.; Lin, C.; Chen, M.H.; Chiang, P.Y. Stability and quality of anthocyanin in purple sweet potato extracts. Foods 2019, 8, 393. [Google Scholar] [CrossRef]
- Lien, C.Y.; Lee, A.Y.F.; Chan, C.F.; Lai, Y.C.; Huang, C.L.; Liao, W.C. Extraction parameter studies for anthocyanin extraction from purple sweet potato variety TNG73, Ipomoea batatas, L. Appl. Eng. Agric. 2010, 26, 441–446. [Google Scholar] [CrossRef]
- Bridgers, E.N.; Chinn, M.S.; Truong, V.D. Extraction of anthocyanins from industrial purple-fleshed sweetpotatoes and enzymatic hydrolysis of residues for fermentable sugars. Ind. Crop. Prod 2010, 32, 613–620. [Google Scholar] [CrossRef]
- Pagulayan, J.M.D.; Mendoza, A.S.V.; Gascon, F.S.; Aningat, J.C.C.; Rustia, A.S.; Villarino, C.B.J. Effects of process parameters on the color quality of anthocyanin-based colorants from conventional and microwave-assisted aqueous extraction of sweet potato (Ipomoea batatas L.) leaf varieties. Proceedings 2020, 70, 103. [Google Scholar] [CrossRef]
- Fan, G.; Han, Y.; Gu, Z.; Chen, D. Optimizing conditions for anthocyanins extraction from purple sweet potato using response surface methodology (RSM). LWT 2008, 41, 155–160. [Google Scholar] [CrossRef]
- Li, J.; Zhang, L.; Liu, Y. Optimization of extraction of natural pigment from purple sweet potato by response surface methodology and its stability. J. Chem. 2013, 2013, 590512. [Google Scholar] [CrossRef]
- Ahmed, M.; Akter, M.S.; Eun, J.B. Optimization conditions for anthocyanin and phenolic content extraction form purple sweet potato using response surface methodology. Int. J. Food Sci. Nutr. 2011, 62, 91–96. [Google Scholar] [CrossRef]
- Meenu, M.; Bansal, V.; Rana, S.; Sharma, N.; Kumar, V.; Arora, V.; Garg, M. Deep eutectic solvents (DESs) and natural deep eutectic solvents (NADESs): Designer solvents for green extraction of anthocyanin. Sustain. Chem. Pharm. 2023, 34, 101168. [Google Scholar] [CrossRef]
- Zhu, Z.; Guan, Q.; Koubaa, M.; Barba, F.J.; Roohinejad, S.; Cravotto, G.; Yang, X.; Li, S.; He, J. HPLC-DAD-ESI-MS2 analytical profile of extracts obtained from purple sweet potato after green ultrasound-assisted extraction. Food Chem. 2017, 215, 391–400. [Google Scholar] [CrossRef]
- Xu, Y.; Fan, F.; Yin, P.; Dong, M. Study on ultrasonic-enzyme combined cxtraction and antioxidant activity of anthocyanins from purple sweet potato by response surface methodology. Food Mach. 2017, 33, 150–154. [Google Scholar]
- Lien, C.Y.; Chan, C.F.; Lai, Y.C.; Huang, C.L.; Liao, W.C. Ultrasound-assisted anthocyanin extraction of purple sweet potato variety TNG73, Ipomoea batatas, L. Sep. Sci. Technol. 2012, 47, 1241–1247. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, S.; Deng, G.; Xu, K.; Xu, H.; Liu, J. Extracting total anthocyanin from purple sweet potato using an effective ultrasound-assisted compound enzymatic extraction technology. Molecules 2022, 27, 4344. [Google Scholar] [CrossRef]
- Liu, W.; Yang, C.; Zhou, C.; Wen, Z.; Dong, X. An improved microwave-assisted extraction of anthocyanins from purple sweet potato in favor of subsequent comprehensive utilization of pomace. Food Bioprod. Process. 2019, 115, 1–9. [Google Scholar] [CrossRef]
- Truong, V.D.; Hu, Z.; Thompson, R.L.; Yencho, G.C.; Pecota, K.V. Pressurized liquid extraction and quantification of anthocyanins in purple-fleshed sweet potato genotypes. J. Food Compos. Anal. 2012, 26, 96–103. [Google Scholar] [CrossRef]
- Quan, W.; He, W.; Lu, M.; Yuan, B.; Zeng, M.; Gao, D.; Qin, F.; Chen, J.; He, Z. Anthocyanin composition and storage degradation kinetics of anthocyanins-based natural food colourant from purple-fleshed sweet potato. Int. J. Food Sci. Techn. 2019, 54, 2529–2539. [Google Scholar] [CrossRef]
- Yin, Y.; Jia, J.; Wang, T.; Wang, C. Optimization of natural anthocyanin efficient extracting from purple sweet potato for silk fabric dyeing. J. Clean. Prod, 2017; 149, 673–679. [Google Scholar]
- Chemat, F.; Rombaut, N.; Sicaire, A.G.; Meullemiestre, A.; Fabiano-Tixier, A.S.; Abert-Vian, M. Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrason. Sonochem. 2017, 34, 540–560. [Google Scholar] [CrossRef]
- Chan, C.H.; Yusoff, R.; Ngoh, G.C.; Kung, F.W.L. Microwave-assisted extractions of active ingredients from plants. J. Chromatogr. A 2011, 1218, 6213–6225. [Google Scholar] [CrossRef]
- Bocker, R.; Silva, E.K. Pulsed electric field assisted extraction of natural food pigments and colorings from plant matrices. Food Chem. X 2022, 15, 100398. [Google Scholar] [CrossRef]
- Bernabeu, M.; Salgado-Ramos, M.; Barba, F.J.; Collado, M.C.; Castagnini, J.M. Impact of sweet potato peels extracts obtained by pulsed electric fields on the growth of probiotic strains from Lactobacillus genus. Innov. Food Sci. Emerg. 2024, 92, 103590. [Google Scholar] [CrossRef]
- Andreu, V.; Picó, Y. Pressurized liquid extraction of organic contaminants in environmental and food samples. TrAC Trend. Anal. Chem. 2019, 118, 709–721. [Google Scholar] [CrossRef]
- Khan, S.A.; Aslam, R.; Makroo, H.A. High pressure extraction and its application in the extraction of bio-active compounds: A review. J. Food Process Eng. 2019, 42, e12896. [Google Scholar] [CrossRef]
- Lao, F.; Cheng, H.; Wang, Q.; Wang, X.; Liao, X.; Xu, Z. Enhanced water extraction with high-pressure carbon dioxide on purple sweet potato pigments: Comparison to traditional aqueous and ethanolic extraction. J. CO2 Util. 2020, 40, 101188. [Google Scholar] [CrossRef]
- Arumugham, T.; Rambabu, K.; Hasan, S.W.; Show, P.L.; Rinklebe, J.; Banat, F. Supercritical carbon dioxide extraction of plant phytochemicals for biological and environmental applications–A review. Chemosphere 2021, 271, 129525. [Google Scholar] [CrossRef]
- Gras, C.C.; Nemetz, N.; Carle, R.; Schweiggert, R.M. Anthocyanins from purple sweet potato (Ipomoea batatas (L.) Lam.) and their color modulation by the addition of phenolic acids and food-grade phenolic plant extracts. Food Chem. 2017, 235, 265–274. [Google Scholar]
- Hu, Y.; Deng, L.; Chen, J.; Zhou, S.; Liu, S.; Fu, Y.; Yang, C.; Liao, Z.; Chen, M. An analytical pipeline to compare and characterise the anthocyanin antioxidant activities of purple sweet potato cultivars. Food Chem. 2016, 194, 46–54. [Google Scholar] [CrossRef]
- Lee, M.J.; Park, J.S.; Choi, D.S.; Jung, M.Y. Characterization and quantitation of anthocyanins in purple-fleshed sweet potatoes cultivated in Korea by HPLC-DAD and HPLC-ESI-QTOF-MS/MS. J. Agric. Food Chem. 2013, 61, 3148–3158. [Google Scholar] [CrossRef]
- Li, G.; Lin, Z.; Zhang, H.; Liu, Z.; Xu, Y.; Xu, G.; Li, H.; Ji, R.; Luo, W.; Qiu, Y.; et al. Anthocyanin accumulation in the leaves of the purple sweet potato (Ipomoea batatas L.) cultivars. Molecules 2019, 24, 3743. [Google Scholar] [CrossRef]
- Im, Y.R.; Kim, I.; Lee, J. Phenolic composition and antioxidant activity of purple sweet potato (Ipomoea batatas (L.) Lam.): Varietal comparisons and physical distribution. Antioxidants 2021, 10, 462. [Google Scholar] [CrossRef]
- Su, X.; Griffin, J.; Xu, J.; Ouyang, P.; Zhao, Z.; Wang, W. Identification and quantification of anthocyanins in purple-fleshed sweet potato leaves. Heliyon 2019, 5, e01964. [Google Scholar] [CrossRef]
- Phong, W.N.; Show, P.L.; Chow, Y.H.; Ling, T.C. Recovery of biotechnological products using aqueous two phase systems. J. Biosci. Bioeng. 2018, 126, 273–281. [Google Scholar] [CrossRef]
- Martín, J.; Díaz-Montaña, E.J.; Asuero, A.G. Recovery of anthocyanins using membrane technologies: A review. Crit. Rev. Anal. Chem. 2018, 48, 143–175. [Google Scholar] [CrossRef]
- Castro-Muñoz, R.; Fíla, V. Membrane-based technologies as an emerging tool for separating high-added-value compounds from natural products. Trends Food Sci. Technol. 2018, 82, 8–20. [Google Scholar] [CrossRef]
- Zhu, Z.; Guan, Q.; Koubaa, M.; Barba, F.J.; He, J. Preparation of highly clarified anthocyanin-enriched purple sweet potato juices by membrane filtration and optimization of their sensorial properties. J. Food Process. Pres. 2017, 41, e12929. [Google Scholar] [CrossRef]
- Tan, J.; Han, Y.; Han, B.; Qi, X.; Cai, X.; Ge, S.; Xue, H. Extraction and purification of anthocyanins: A review. J. Agric. Food Res. 2022, 8, 100306. [Google Scholar] [CrossRef]
- Luo, C.L.; Zhou, Q.; Yang, Z.W.; Wang, R.D.; Zhang, J.L. Evaluation of structure and bioprotective activity of key high molecular weight acylated anthocyanin compounds isolated from the purple sweet potato (Ipomoea batatas L. cultivar Eshu No. 8). Food Chem. 2018, 241, 23–31. [Google Scholar] [CrossRef]
- Zhang, J.L.; Luo, C.L.; Zhou, Q.; Zhang, Z.C. Isolation and identification of two major acylated anthocyanins from purple sweet potato (Ipomoea batatas L. cultivar Eshu No. 8) by UPLC-QTOF-MS/MS and NMR. Int. J. Food Sci. Tech. 2018, 53, 1932–1941. [Google Scholar] [CrossRef]
- Zhao, J.G.; Yan, Q.Q.; Xue, R.Y.; Zhang, J.; Zhang, Y.Q. Isolation and identification of colourless caffeoyl compounds in purple sweet potato by HPLC-DAD–ESI/MS and their antioxidant activities. Food Chem. 2014, 161, 22–26. [Google Scholar] [CrossRef]
- Montilla, E.C.; Hillebrand, S.; Butschbach, D.; Baldermann, S.; Watanabe, N.; Winterhalter, P. Preparative isolation of anthocyanins from Japanese purple sweet potato (Ipomoea batatas L.) varieties by high-speed countercurrent chromatography. J. Agric. Food Chem. 2010, 58, 9899–9904. [Google Scholar] [CrossRef]
- Sun, H.; Zhang, P.; Zhu, Y.; Lou, Q.; He, S. Antioxidant and prebiotic activity of five peonidin-based anthocyanins extracted from purple sweet potato (Ipomoea batatas (L.) Lam.). Sci. Rep. 2018, 8, 5018. [Google Scholar] [CrossRef]
- Terahara, N.; Shimizu, T.; Kato, Y.; Nakamura, M.; Maitani, T.; Yamaguchi, M.A.; Goda, Y. Six diacylated anthocyanins from the storage roots of purple sweet potato, Ipomoea batatas. Biosci. Biotech. Bioch. 1999, 63, 1420–1424. [Google Scholar] [CrossRef]
- Ying, L.; Jia-Ying, L.I.; Jing, L.U.O.; Mi-Lu, L.I.; Zhong-Hua, L.I.U. Preparative separation of anthocyanins from purple sweet potatoes by high-speed counter-current chromatography. Chin. J. Anal. Chem. 2011, 39, 851–856. [Google Scholar]
- Huang, Y.; Zhou, S.; Zhao, G.; Ye, F. Destabilisation and stabilisation of anthocyanins in purple-fleshed sweet potatoes: A review. Trends Food Sci. Technol. 2021, 116, 1141–1154. [Google Scholar] [CrossRef]
- Qiu, F.; Luo, J.; Yao, S.; Ma, L.; Kong, L. Preparative isolation and purification of anthocyanins from purple sweet potato by high-speed counter-current chromatography. J. Sep. Sci. 2009, 32, 2146–2151. [Google Scholar] [CrossRef]
- Li, L.; Zhao, J.; Yang, T.; Sun, B. High-speed countercurrent chromatography as an efficient technique for large separation of plant polyphenols: A review. Food Res. Int. 2022, 153, 110956. [Google Scholar] [CrossRef]
- Sampaio, S.L.; Lonchamp, J.; Dias, M.I.; Liddle, C.; Petropoulos, S.A.; Glamočlija, J.; Alexopoulos, A.; Santos-Buelga, C.; Ferreira, I.C.F.R.; Barros, L. Anthocyanin-rich extracts from purple and red potatoes as natural colourants: Bioactive properties, application in a soft drink formulation and sensory analysis. Food Chem. 2021, 342, 128526. [Google Scholar] [CrossRef] [PubMed]
- Velmurugan, P.; Kim, J.I.; Kim, K.; Park, J.H.; Lee, K.J.; Chang, W.S.; Park, Y.J.; Cho, M.; Oh, B.T. Extraction of natural colorant from purple sweet potato and dyeing of fabrics with silver nanoparticles for augmented antibacterial activity against skin pathogens. J. Photoch. Photobiol. B 2017, 173, 571–579. [Google Scholar] [CrossRef] [PubMed]
- Zhai, X.; Sun, Y.; Cen, S.; Wang, X.; Zhang, J.; Yang, Z.; Li, Y.; Wang, X.; Zhou, C.; Arslan, M.; et al. Anthocyanins-encapsulated 3D-printable bigels: A colorimetric and leaching-resistant volatile amines sensor for intelligent food packaging. Food Hydrocoll. 2022, 133, 107989. [Google Scholar] [CrossRef]
- Chen, H.Z.; Zhang, M.; Bhandari, B.; Yang, C.H. Novel pH-sensitive films containing curcumin and anthocyanins to monitor fish freshness. Food Hydrocoll. 2020, 100, 105438. [Google Scholar] [CrossRef]
- Gao, L.; Liu, P.; Liu, L.; Li, S.; Zhao, Y.; Xie, J.; Xu, H. κ-carrageenan-based pH-sensing films incorporated with anthocyanins or/and betacyanins extracted from purple sweet potatoes and peels of dragon fruits. Process Biochem. 2022, 121, 463–480. [Google Scholar] [CrossRef]
- He, Y.; Chen, S.; Xu, D.; Ren, D.; Wu, X. Fabrication of antimicrobial colorimetric pad for meat packaging based on polyvinyl alcohol aerogel with the incorporation of anthocyanins and silver nanoparticles. Packag. Technol. Sci. 2023, 36, 745–755. [Google Scholar] [CrossRef]
- Jayakumar, A.; Radoor, S.; Shin, G.H.; Siengchin, S.; Kim, J.T. Active and intelligent packaging films based on PVA/Chitosan/Zinc oxide nanoparticles/Sweet purple potato extract as pH sensing and antibacterial wraps. Food Biosci. 2023, 56, 103432. [Google Scholar] [CrossRef]
- Li, R.; Feng, H.; Wang, S.; Zhuang, D.; Wen, Y.; Zhu, J. A double-layer film based on the strategy of tannic acid-anthocyanin co-pigmentation and tannic-crosslinked-gelatin/-reduced Ag nanoparticles for beef preservation and monitoring. Food Chem. 2024, 460, 140642. [Google Scholar] [CrossRef]
- Li, C.; Sun, J.; Yun, D.; Wang, Z.; Tang, C.; Liu, J. A new method to prepare color-changeable smart packaging films based on the cooked purple sweet potato. Food Hydrocoll. 2023, 137, 108397. [Google Scholar] [CrossRef]
- Pang, H.; Wu, Y.; Tao, Q.; Xiao, Y.; Ji, W.; Li, L.; Wang, H. Active cellulose acetate/purple sweet potato anthocyanins@ cyclodextrin metal-organic framework/eugenol colorimetric film for pork preservation. Int. J. Biol. Macromol. 2024, 263, 130523. [Google Scholar] [CrossRef]
- Wen, P.; Wu, J.; Wu, J.; Wang, H.; Wu, H. A colorimetric nanofiber film based on ethyl cellulose/gelatin/purple sweet potato anthocyanins for monitoring pork freshness. Foods 2024, 13, 717. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Huang, J.; Jiang, L.; Lin, J.; Ge, Y.; Hu, Y. Chitosan/polyvinyl alcohol food packaging incorporated with purple potato anthocyanins and nano-ZnO: Application on the preservation of hairtail (Trichiurus haumela) during chilled storage. Int. J. Biol. Macromol. 2024, 277, 134435. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.T.D.C.; Cunha Júnior, P.C.D.; Miranda, C.G.; Sato, A.C.K.; Machado, M.T.D.C.; Ferreira, E.H.D.R. Development and application of pH-indicator film based on freeze-dried purple-fleshed sweet potato, starch, and CMC. Int. J. Food Sci. Tech. 2023, 58, 6689–6697. [Google Scholar] [CrossRef]
- Yue, R.; Zhang, Y.; Liu, J.; Sun, J. Preparation of steamed purple sweet potato-based films containing mandarin essential oil for smart packaging. Molecules 2024, 29, 2314. [Google Scholar] [CrossRef]
- Yun, D.; Li, C.; Sun, J.; Xu, F.; Tang, C.; Liu, J. A comparative study on the structure, physical property and halochromic ability of shrimp freshness indicators produced from nine varieties of steamed purple sweet potato. Food Chem. 2024, 449, 139222. [Google Scholar] [CrossRef]
- Ding, F.; Wu, R.; Huang, X.; Shi, J.; Zou, X. Anthocyanin loaded composite gelatin films crosslinked with oxidized alginate for monitoring spoilage of flesh foods. Food Packag. Shelf Life 2024, 42, 101255. [Google Scholar] [CrossRef]
- Jiang, G.; Hou, X.; Zeng, X.; Zhang, C.; Wu, H.; Shen, G.; Li, S.; Luo, Q.; Li, M.; Liu, X.; et al. Preparation and characterization of indicator films from carboxymethyl-cellulose/starch and purple sweet potato (Ipomoea batatas (L.) lam) anthocyanins for monitoring fish freshness. Int. J. Biol. Macromol. 2020, 143, 359–372. [Google Scholar] [CrossRef]
- Li, W.; Zhao, M.; Xia, X.; Zhu, Y. Improving structural, physical, and sensitive properties of sodium alginate-purple sweet potato peel extracts indicator films by varying drying temperature. Foods 2024, 13, 2477. [Google Scholar] [CrossRef]
- Tang, Q.; Hu, J.; Liu, F.; Gui, X.; Tu, Y. Preparation of a colorimetric hydrogel indicator reinforced with modified aramid nanofiber employing natural anthocyanin to monitor shrimp freshness. J. Food Sci. 2024, 89, 5461–5472. [Google Scholar] [CrossRef]
- Zhao, M.; Nuerjiang, M.; Bai, X.; Feng, J.; Kong, B.; Sun, F.; Li, Y.; Xia, X. Monitoring dynamic changes in chicken freshness at 4 °C and 25 °C using pH-sensitive intelligent films based on sodium alginate and purple sweet potato peel extracts. Int. J. Biol. Macromol. 2022, 216, 361–373. [Google Scholar] [CrossRef]
- Huang, S.; Wang, G.; Lin, H.; Xiong, Y.; Liu, X.; Li, H. Preparation and dynamic response properties of colorimetric indicator films containing pH-sensitive anthocyanins. Sens. Actuators Rep. 2021, 3, 100049. [Google Scholar] [CrossRef]
- Miao, Y.; Chen, Z.; Zhang, J.; Li, N.; Wei, Z.; Zhang, Y.; Wu, X.; Liu, J.; Gao, Q.; Sun, X.; et al. Exopolysaccharide riclin and anthocyanin-based composite colorimetric indicator film for food freshness monitoring. Carbohydr. Polym. 2023, 314, 120882. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Zhang, M.; Zhao, Z.; Zhu, J.; Wan, X.; Lv, Y.; Tang, C.; Xu, B. Preparation and characterization of intelligent and active bi-layer film based on carrageenan/pectin for monitoring freshness of salmon. Int. J. Biol. Macromol. 2024, 276, 133769. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Li, B.; Du, J.; Cao, S.; Liu, M.; Li, X.; Ren, D.; Wu, X.; Xu, D. Development of pH-responsive absorbent pad based on polyvinyl alcohol/agarose/anthocyanins for meat packaging and freshness indication. Int. J. Biol. Macromol. 2022, 201, 203–215. [Google Scholar] [CrossRef] [PubMed]
- Guo, M.; Wang, H.; Wang, Q.; Chen, M.; Li, L.; Li, X.; Jiang, S. Intelligent double-layer fiber mats with high colorimetric response sensitivity for food freshness monitoring and preservation. Food Hydrocoll. 2020, 101, 105468. [Google Scholar] [CrossRef]
- Wu, J.H.; Liao, J.H.; Hu, T.G.; Zong, M.H.; Wen, P.; Wu, H. Fabrication of multifunctional ethyl cellulose/gelatin-based composite nanofilm for the pork preservation and freshness monitoring. Int. J. Biol. Macromol. 2024, 265, 130813. [Google Scholar] [CrossRef]
- Sohany, M.; Tawakkal, I.S.M.A.; Ariffin, S.H.; Shah, N.N.A.K.; Yusof, Y.A. Characterization of anthocyanin associated purple sweet potato starch and peel-based pH indicator films. Foods 2021, 10, 2005. [Google Scholar] [CrossRef]
- Yong, H.; Wang, X.; Bai, R.; Miao, Z.; Zhang, X.; Liu, J. Development of antioxidant and intelligent pH-sensing packaging films by incorporating purple-fleshed sweet potato extract into chitosan matrix. Food Hydrocoll. 2019, 90, 216–224. [Google Scholar] [CrossRef]
- Yong, H.; Liu, J.; Kan, J.; Liu, J. Active/intelligent packaging films developed by immobilizing anthocyanins from purple sweetpotato and purple cabbage in locust bean gum, chitosan and κ-carrageenan-based matrices. Int. J. Biol. Macromol. 2022, 211, 238–248. [Google Scholar] [CrossRef]
- Zong, Z.; Liu, M.; Chen, H.; Farag, M.A.; Wu, W.; Fang, X.; Niu, B.; Gao, H. Preparation and characterization of a novel intelligent starch/gelatin binary film containing purple sweet potato anthocyanins for Flammulina velutipes mushroom freshness monitoring. Food Chem. 2023, 405, 134839. [Google Scholar] [CrossRef]
- Ke, F.; Liu, D.; Qin, J.; Yang, M. Functional pH-sensitive film containing purple sweet potato anthocyanins for pork freshness monitoring and cherry preservation. Foods 2024, 13, 736. [Google Scholar] [CrossRef]
- Chen, S.; Wu, M.; Lu, P.; Gao, L.; Yan, S.; Wang, S. Development of pH indicator and antimicrobial cellulose nanofibre packaging film based on purple sweet potato anthocyanin and oregano essential oil. Int. J. Biol. Macromol. 2020, 149, 271–280. [Google Scholar] [CrossRef]
- Dong, S.; Zhang, Y.; Lu, D.; Gao, W.; Zhao, Q.; Shi, X. Multifunctional intelligent film integrated with purple sweet potato anthocyanin and quercetin-loaded chitosan nanoparticles for monitoring and maintaining freshness of shrimp. Food Packag. Shelf Life 2023, 35, 101022. [Google Scholar] [CrossRef]
- Pang, G.; Zhou, C.; Zhu, X.; Chen, L.; Guo, X.; Kang, T. Colorimetric indicator films developed by incorporating anthocyanins into chitosan-based matrices. J. Food Saf. 2023, 43, e13045. [Google Scholar] [CrossRef]
- Yan, M.; Wang, W.; Xu, Q.; Zou, Q.; Chen, W.; Lan, D.; Wang, Y. Novel oxidation indicator films based on natural pigments and corn starch/carboxymethyl cellulose. Int. J. Biol. Macromol. 2023, 253, 126630. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Huang, T.S.; Yan, H.; Hu, X.; Ren, T. Novel pH-sensitive films based on starch/polyvinyl alcohol and food anthocyanins as a visual indicator of shrimp deterioration. Int. J. Biol. Macromol. 2020, 145, 768–776. [Google Scholar] [CrossRef] [PubMed]
- Capello, C.; Trevisol, T.C.; Pelicioli, J.; Terrazas, M.B.; Monteiro, A.R.; Valencia, G.A. Preparation and characterization of colorimetric indicator films based on chitosan/polyvinyl alcohol and anthocyanins from agri-food wastes. J. Polym. Environ. 2021, 29, 1616–1629. [Google Scholar] [CrossRef]
- Kuswandi, B.; Seftyani, M.; Pratoko, D.K. Edible colorimetric label based on immobilized purple sweet potato anthocyanins onto edible film for packaged mushrooms freshness monitoring. J. Food Sci. Tech. 2024, 61, 1811–1812. [Google Scholar] [CrossRef]
Part of PSP | Extraction Method | Experimental Design Method | Optimal Extraction Condition | Maximum Extraction Yield | References |
---|---|---|---|---|---|
Flesh | Solvent extraction | Taguchi orthogonal design | Solid–liquid ratio: 1:10 (w/v) Solvent composition: 80% ethanol containing 0.1% HCl Extraction temperature: 60 °C Extraction time: 90 min | 217.58 mg/100 g DW | [29] |
Flesh | Ultrasound-assisted extraction | Taguchi orthogonal design | Solid–liquid ratio: 1:10 (w/v) Solvent composition: 90% ethanol containing 0.1% HCl Ultrasound temperature: 50 °C Ultrasound time: 45 min Ultrasonic power: 200 W | 229.41 mg/100 g DW | [29] |
Flesh | Pressurized liquid extraction | Taguchi orthogonal design | Solvent composition: 80% ethanol containing 0.1% HCl Extraction temperature: 90 °C Static time: 15 min Static cycle: 2 | 244.07 mg/100 g DW | [29] |
Flesh | Ultrasound-assisted extraction | Box–Behnken design | Solid–liquid ratio: 1:42 (w/v) Solvent composition: 83% polyethylene glycol 200 Ultrasound temperature: 64 °C Ultrasound time: 80 min Ultrasonic power: 100 W Ultrasonic frequency: 40 KHz | 83.78 mg/100 g DW | [35] |
Flesh | Solvent extraction | Full factorial experimental design | Solid–liquid ratio: 1:30 (w/v) Solvent composition: 70% methanol containing 7% acetic acid Extraction temperature: 80 °C | 186.10 mg/100 g FW | [38] |
Flesh | Solvent extraction | Box–Behnken design | Solid–liquid ratio: 1:32 (w/v) Solvent composition: ethanol containing 1.5 mol/L HCl Extraction temperature: 80 °C Extraction time: 60 min | 158.00 mg/100 g DW | [40] |
Flesh | Solvent extraction | Box–Behnken design | Solid–liquid ratio: 1:30 (w/v) Solvent composition: 80% acidified ethanol Extraction temperature: 60 °C Extraction time: 60 min | 1163.55 mg/100 g DW | [41] |
Flesh | Solvent extraction | Face-centered cube design | Solvent composition: 1.38% citric acid Extraction temperature: 62.91 °C Extraction time: 2.53 min | 19.78 mg/100 g FW | [42] |
Flesh | Ultrasound-assisted extraction | Box–Behnken design | Solid–liquid ratio: 1:10 (w/v) Solvent composition: 58% ethanol pH: 2.5 Extraction temperature: 80 °C Extraction time: 120 min Ultrasound time: 40 min Ultrasonic power: 178 W Ultrasonic frequency: 45 KHz | 29.30 mg/100 g FW | [44] |
Flesh | Ultrasound-assisted enzymatic extraction | Box–Behnken design | Solid–liquid ratio: 1:36 (w/v) Solvent composition: 95% ethanol containing and 0.1% HCl (40:60, v/v) Extraction temperature: 60 °C Ultrasound time: 35 min Enzyme dosage: 2.35 mg/g solid | 200.30 mg/100 g DW | [45] |
Flesh | Ultrasound-assisted extraction | Central composite design | Solid–liquid ratio: 1:10 (w/v) Solvent composition: ethanol containing 1.0 mol/L HCl Ultrasound temperature: 25 °C Ultrasound time: 22 min Ultrasonic power: 150 W Ultrasonic frequency: 43 KHz | 35.32 mg/100 g DW | [46] |
Flesh | Ultrasound-assisted enzymatic extraction | Box–Behnken design | Solid–liquid ratio: 1:15 (w/v) Solvent composition: 78% ethanol solution Enzyme dosage: 1.0%, cellulase/pectinase/papain = 2:2:1 pH: 4.5 Enzymatic hydrolysis time: 41 °C Enzymatic hydrolysis temperature: 90 min Ultrasound temperature: 48 °C Ultrasound time: 20 min Ultrasound cycle: 2 | 227.00 mg/100 g DW | [47] |
Flesh | Microwave-assisted extraction | Box–Behnken design | Solid–liquid ratio: 1:3 (w/v) Solvent composition: 30% ethanol containing 2 mL of 10% critic acid pH: 2 Microwave time: 3 min Microwave power: 320 W | 31.16 mg/100 g FW | [48] |
Flesh | Pressurized liquid extraction | Face-centered cube design | Solvent composition: acetic acid/methanol/water = 7:75:18 (v/v) Extraction temperature: 80–100 °C Extraction pressure: 1500 psi | 663.00 mg/100 g DW | [49] |
Cultivar of PSP | Film Matrix | Reinforcing Agents | Film Preparation Methods | Impacts of PSPAs on the Physical Properties of the Films | Functional Properties of the Films | Factors Affecting the Properties of the Films | Application of the Films | Cultivar of PSP |
---|---|---|---|---|---|---|---|---|
Unknown | Starch/PVA blend | Solvent casting | LT↓, TS↔, EB↑ | Antioxidant activity (DPPH radical scavenging activity) pH sensitivity | Monitoring pork and shrimp freshness | [17] | ||
Unknown | Agar/potato starch blend | LT↓ | pH sensitivity | Monitoring pork freshness | [22] | |||
Tainung 73 | Gellan gum/PSP powder blend | Solvent casting | SR↓, WCA↑, WVP↑, TS↑, EB↑ | Antioxidant activity (DPPH and ABTS radical scavenging activity) pH sensitivity | The content of anthocyanins | Monitoring E. coli growth | [23] | |
Unknown | Ethyl cellulose | Castor oil | Solvent casting | TS↓, EB↑ | pH sensitivity Ammonia sensitivity | The presence of castor oil | Monitoring pork freshness | [47] |
Unknown | Agar | 3D-printing | Ammonia sensitivity | Monitoring beef and fish freshness | [83] | |||
Unknown | Starch/PVA blend | Curcumin | Solvent casting | MC↔, WS↔, WVP↔ | Ammonia sensitivity | The presence of curcumin | Monitoring fish freshness | [84] |
Unknown | κ-Carrageenan | Betacyanins | Solvent casting | WS↑, WVP↔, WCA↓, LT↓, TS↔, EB↔ | Antioxidant activity (DPPH and ABTS radical scavenging activity) | The ratio of anthocyanins and the presence of betacyanins | Monitoring pork freshness | [85] |
Unknown | PVA/paper fiber blend | Silver nanoparticles | Freezing and thawing treatment and freeze-drying | Antioxidant activity (DPPH radical scavenging activity) Antimicrobial activity against Salmonella pH sensitivity | The presence of the biogenic silver nanoparticles | Monitoring pork freshness and extending pork shelf life | [86] | |
Unknown | PVA/chitosan blend | Zinc oxide nanoparticles | Solvent casting | Antioxidant activity (ABTS radical scavenging activity) Antimicrobial activity against S. aureus pH sensitivity | The presence of zinc oxide nanoparticles | Monitoring chicken freshness and extending chicken shelf life | [87] | |
Unknown | Indicator layer: agar Antibacterial layer: carrageenan | Tannic acid, oregano essential oil and silver nanoparticles | Solvent casting | Antioxidant activity (DPPH radical scavenging activity) Antimicrobial activity against E. coli and S. aureus pH sensitivity | The content of oregano essential oil Pickering emulsion and the presence of silver nanoparticles | Extending shelf life of beef | [88] | |
Guizishu 03 | Cooked PSP powder/sodium alginate blend | Solvent casting | Antioxidant activity (DPPH radical scavenging activity) pH sensitivity | The type of cooking treatment | Monitoring shrimp freshness | [89] | ||
Unknown | Cellulose acetate | Cyclodextrin metal-organic framework and eugenol | Solvent casting | WCA↓, WVP↓, OP↓, LT↓, TS↑, EB↓ | Antioxidant activity (DPPH radical scavenging activity) Antimicrobial activity against E. coli and S. aureus Ammonia sensitivity | The encapsulation of PSPAs and the presence of eugenol | Monitoring pork freshness and extending pork shelf life | [90] |
Unknown | Ethyl cellulose/gelatin blend | Electrospinning | WCA↑, WVP↓ | Antioxidant activity (DPPH radical scavenging activity) pH sensitivity Ammonia sensitivity | The content of anthocyanins and film preparation method | Monitoring pork freshness | [91] | |
Unknown | Chitosan/PVA blend | Zinc oxide nanoparticles | Solvent casting | The presence of zinc oxide nanoparticles | Extending fish shelf life | [92] | ||
Unknown | Starch or starch/ carboxymethyl cellulose blend | Solvent casting | WS↔, MC↓, LT↓, TS↓, EB↑ | pH sensitivity | The content of anthocyanins | Monitoring beef freshness | [93] | |
Guizi 3 | Steamed PSP powder/sodium alginate blend | Mandarin essential oil | Solvent casting | WVP↓, OP↑, TS↓, EB↓ | Antioxidant activity (DPPH radical scavenging activity) Antimicrobial activity against E. coli and S. aureus pH sensitivity | The content of mandarin essential oil | Monitoring shrimp and pork freshness | [94] |
Fuzi 1, Ganzi 6, Jizi 3, Ningzi 2, Ningzi 4, Qining 2, Qining 18, Xiangzi 910, Xuzi 8 | Steamed PSP powder/sodium alginate blend | Mandarin essential oil | Solvent casting | pH sensitivity Ammonia sensitivity | The cultivar of PSP | Monitoring shrimp freshness | [95] | |
Unknown | Gelatin | Oxidized alginate | Solvent casting | SR↓, WCA↔, WVP↔, LT↓, TS↑, EB↑ | Antioxidant activity (DPPH radical scavenging activity) pH sensitivity Ammonia sensitivity Biodegradability | The content of oxidized alginate | Monitoring fish, chicken and pork freshness | [96] |
Unknown | Carboxymethyl cellulose/starch blend | Solvent casting | MC↓, LT↓, TS↑, EB↓ | pH sensitivity Ammonia sensitivity | The content of anthocyanins | Monitoring fish freshness | [97] | |
Unknown | Sodium alginate | Solvent casting | pH sensitivity Ammonia sensitivity | The drying temperature of the films | [98] | |||
Unknown | PVA/sodium alginate blend | Modified aramid nanofiber and CaCl2 | Freezing–thawing treatment and immersing | Ammonia sensitivity | The presence of modified aramid nanofiber | Monitoring shrimp freshness | [99] | |
Unknown | Sodium alginate | CaCl2 (cross-linking agent) | Solvent casting | WVP↓, LT↓, TS↓, EB↓ | pH sensitivity Ammonia sensitivity | The content of anthocyanins | Monitoring chicken freshness | [100] |
Unknown | Agarose | Solvent casting | pH sensitivity Ammonia sensitivity | The content of anthocyanins, the pH of film-forming solution and relative humidity | [101] | |||
Unknown | PVA/riclin blend | Solvent casting | WCA↔, WVP↑, OP↓, LT↓, TS↓, EB↑ | Antioxidant activity (OH, DPPH and ABTS radical scavenging activity) pH sensitivity Ammonia sensitivity Biodegradability | The presence of riclin and the content of anthocyanins | Monitoring shrimp freshness | [102] | |
Unknown | Indicator layer: carrageenan/pectin blend Antibacterial layer: carrageenan | Magnolol | Solvent casting | WVP↑, TS↓, EB↓ | Antioxidant activity (DPPH radical scavenging activity) Antimicrobial activity against E. coli and S. aureus pH sensitivity Ammonia sensitivity | The presence of magnolol | Monitoring fish freshness | [103] |
Unknown | PVA/agarose blend | Solvent casting | WS↑, SR↑, WCA↓, TS↓ | Antioxidant activity (DPPH radical scavenging activity) pH sensitivity | The content of anthocyanins | Monitoring pork freshness | [104] | |
Unknown | Indicator layer: pullulan Antibacterial layer: zein | Carvacrol | Electrospinning | Antimicrobial activity against E. coli and S. aureus Antioxidant activity (DPPH radical scavenging activity) Ammonia and acetic acid sensitivity | The content of anthocyanins and the presence of carvacrol | Monitoring pork freshness | [105] | |
Unknown | Ethyl cellulose/gelatin blend | ε-Polylysine | Electrospinning | Antioxidant activity (DPPH radical scavenging activity) Antimicrobial activity against E. coli and S. aureus pH sensitivity Ammonia sensitivity | The ratio of film matrix, the film preparation method and the presence of ε-polylysine | Monitoring pork freshness and extending pork shelf life | [106] | |
Anggun 1 | PSP starch, PSP starch/PSP powder blend | Solvent casting | MC↔, WS↑, SR↑, WVP↓, TS↓, EB↑ | pH sensitivity | The nature of the film matrix and the content of anthocyanins | Monitoring chicken freshness | [107] | |
Xuzi 8 | Chitosan | Solvent casting | MC↓, WS↑, WVP↑, LT↓, TS↓, EB↓ | Antioxidant activity (DPPH radical scavenging activity) pH sensitivity | The content of anthocyanins | [108] | ||
Unknown | Locust bean gum/PVA blend, chitosan/PVA blend, κ-carrageenan/PVA blend | Solvent casting | WVP↔, TS↔, EB↓ | Antioxidant activity (DPPH radical scavenging activity) pH sensitivity Ammonia sensitivity | The type of film matrix | Monitoring shrimp freshness | [109] | |
Unknown | Starch/gelatin blend | Solvent casting | The ratio of starch and gelatin | Monitoring Flammulina velutipes mushroom freshness | [110] | |||
Unknown | PVA/sodium alginate/sodium carboxymethyl cellulose blend | Solvent casting | MC↔, WCA↓, WVP↑, LT↓, TS↔, EB↓ | Antioxidant activity (DPPH and ABTS radical scavenging activity) pH sensitivity | The content of anthocyanins | Monitoring pork freshness and extending cherry shelf life | [111] | |
Unknown | Cellulose nanofiber | Oregano essential oil | Solvent casting | WCA↓, LT↓, TS↓, EB↑ | Antimicrobial activity against E. coli and L. monocytogenes pH sensitivity | The presence of oregano essential oil | [112] | |
Unknown | Agar/sodium alginate blend | Quercetin-loaded chitosan nanoparticles | Solvent casting | WS↔, WVP↔, OP↔, LT↓, TS↑, EB↑ | Antioxidant activity (DPPH radical scavenging activity) Antimicrobial activity against E. coli and S. aureus pH sensitivity Ammonia sensitivity | The presence of quercetin-loaded chitosan nanoparticles | Monitoring shrimp freshness and extending shrimp shelf life | [113] |
Unknown | Chitosan/hydroxypropyl methylcellulose blend | ε-Polylysine | Solvent casting | MC↓, WVP↔, LT↓, TS↑, EB↑ | Antimicrobial activity against E. coli and S. aureus pH sensitivity | The presence of ε-polylysine | Monitoring fish freshness | [114] |
Unknown | Corn starch/carboxymethyl cellulose blend | Solvent casting | MC↓, LT↓, TS↑, EB↑ | Hydrogen peroxide sensitivity | The content of anthocyanins | Monitoring the oxidation degree of sunflower seed oil | [115] | |
Unknown | Corn starch/PVA blend | Solvent casting | WS↑, WVP↑, LT↓, TS↑, EB↑ | pH sensitivity | The content of anthocyanins | Monitoring shrimp freshness | [116] | |
Unknown | Chitosan/PVA blend | Solvent casting | MC↔, WS↔, WCA↓, LT↓ | pH sensitivity | Monitoring beef freshness | [117] | ||
Unknown | Chitosan/corn starch blend | Solvent casting and immersing | MC↓, WS↓, SR↓, TS↑ | pH sensitivity | Monitoring mushroom freshness | [118] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yun, D.; Wu, Y.; Yong, H.; Tang, C.; Chen, D.; Kan, J.; Liu, J. Recent Advances in Purple Sweet Potato Anthocyanins: Extraction, Isolation, Functional Properties and Applications in Biopolymer-Based Smart Packaging. Foods 2024, 13, 3485. https://doi.org/10.3390/foods13213485
Yun D, Wu Y, Yong H, Tang C, Chen D, Kan J, Liu J. Recent Advances in Purple Sweet Potato Anthocyanins: Extraction, Isolation, Functional Properties and Applications in Biopolymer-Based Smart Packaging. Foods. 2024; 13(21):3485. https://doi.org/10.3390/foods13213485
Chicago/Turabian StyleYun, Dawei, Yunlei Wu, Huimin Yong, Chao Tang, Dan Chen, Juan Kan, and Jun Liu. 2024. "Recent Advances in Purple Sweet Potato Anthocyanins: Extraction, Isolation, Functional Properties and Applications in Biopolymer-Based Smart Packaging" Foods 13, no. 21: 3485. https://doi.org/10.3390/foods13213485
APA StyleYun, D., Wu, Y., Yong, H., Tang, C., Chen, D., Kan, J., & Liu, J. (2024). Recent Advances in Purple Sweet Potato Anthocyanins: Extraction, Isolation, Functional Properties and Applications in Biopolymer-Based Smart Packaging. Foods, 13(21), 3485. https://doi.org/10.3390/foods13213485