Conventional vs. Organically Produced Honey—Are There Differences in Physicochemical, Nutritional and Sensory Characteristics?
Abstract
:1. Introduction
2. Material and Methods
2.1. Sample Collection
2.2. Analytical Methods
2.3. Sensory Analysis
2.4. Statistical Analysis
3. Results and Discussion
3.1. Physicochemical Parameters
3.2. Content of Phenolic Compounds
3.3. UHPLC Profile of Phenolic Components
3.4. Antioxidant Properties
3.5. Mineral Composition
3.6. Raman Spectroscopy Analysis with PCA Analysis
3.7. Sensory Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Codex Alimentarius. Internation Food Standards, Standard for Honey CXS 12-19811, Adopted in 1981. Revised in 1987, 2001. Amended in 2019, 2022. Available online: https://www.fao.org/fao-who-codexalimentarius/codex-texts/list-standards/en/ (accessed on 28 July 2024).
- Cartwright, M. Medicine in the Ancient World. 2019. Available online: https://www.worldhistory.org/collection/59/medicine-in-the-ancient-world/ (accessed on 17 July 2024).
- Biswajit, P.; Surya, N.P. Contamination of honey: A human health perspective. In Health Risks of Food Additives-Recent Developments and Trends in Food Sector; IntechOpen: London, UK, 2023. [Google Scholar] [CrossRef]
- Bogdanov, S.; Jurendić, T.; Sieber, R.; Gallmann, P. Honey for nutrition and health, A review. Am. J. Coll. Nutr. 2008, 27, 677–689. [Google Scholar] [CrossRef] [PubMed]
- Official Gazette of the RS. Rulebook on Control and Certification in Organic Production and Organic Production Methods No: 95. 2021. Available online: https://www.pravno-informacioni-sistem.rs/SlGlasnikPortal/eli/rep/sgrs/ministarstva/pravilnik/2020/95/1/reg/ (accessed on 1 October 2024). (In Serbian).
- Regulation EC (European Commission Regulation). Regulation No 396/2005 of the European Parliament and of the Council on Maximum Residue Levels of Pesticides in or on Food and Feed of Plant and Animal Origin and Amending Council Directive 91/414/EEC. 2005. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=celex%3A32005R0396 (accessed on 30 July 2024).
- Regulation EC (European Union Regulation). Commission regulation No 37/2010 on pharmacologically active substances and their classification regarding maximum residue limits in foodstuffs of animal origin. Off. J. Eur. Union 2010, L15/1–L15/72. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2010:015:0001:0072:en:PDF (accessed on 30 July 2024).
- Castroa, E.; Quicaz, M.; Mojicab, A.; Zuluaga-Domínguez, C. Bioactive and physicochemical profile of honey collected from Colombian organic and conventional coffee growing areas. J. Apic. Res. 2023, 62, 518–529. [Google Scholar] [CrossRef]
- Halagarda, M.; Groth, S.; Popek, S.; Rohn, S.; Pedan, V. Antioxidant activity and phenolic profile of selected organic and conventional honeys from Poland. Antioxidants 2020, 9, 44. [Google Scholar] [CrossRef]
- Polak-Śliwińska, M.; Tańska, M. Conventional and organic honeys as a source of water-and ethanol-soluble molecules with nutritional and antioxidant characteristics. Molecules 2021, 26, 3746. [Google Scholar] [CrossRef]
- USS. United States Standards for Grades of Extracted Honey. 1985. Available online: https://www.ams.usda.gov/sites/default/files/media/Extracted_Honey_Standard%5B1%5D.pdf (accessed on 19 July 2024).
- IHC (International Honey Commission). Harmonised Methods of the International Honey Commission. 2009. Available online: https://www.ihc-platform.net/ihcmethods2009.pdf (accessed on 29 July 2024).
- Bogdanov, S. Honey Composition. In The Honey Book, Chapter 5. Bee Product Science; Hastings House: London, UK, 2011; pp. 1–10. Available online: https://www.academia.edu/5616849/Composition_of_honey (accessed on 22 July 2024).
- Kostić, A.Ž.; Milinčić, D.D.; Špirović Trifunović, B.; Nedić, N.; Gašić, U.M.; Tešić, Ž.L.; Stanojević, S.P.; Pešić, M.B. Monofloral corn poppy bee-collected pollen-a detailed insight into its phytochemical composition and antioxidant properties. Antioxidants 2023, 12, 1424. [Google Scholar] [CrossRef]
- Kostić, A.Ž.; Milinčić, D.D.; Nedić, N.; Gašić, U.M.; Špirović Trifunović, B.; Vojt, D.; Tešić, Ž.L.; Pešić, M.B. Phytochemical profile and antioxidant properties of bee-collected artichoke (Cynara scolymus) Pollen. Antioxidants 2021, 10, 1091. [Google Scholar] [CrossRef]
- Kostić, Ž.A.; Pešić, B.M.; Mosić, D.M.; Dojčinović, P.B.; Natić, N.M.; Trifković, Ð.J. Mineral content of some bee-collected pollen from Serbia. Arch. Ind. Hyg. Toxicol. 2015, 66, 251–258. [Google Scholar] [CrossRef]
- Marcazzan, G.L.; Mucignat-Caretta, C.; Marchese, C.M.; Pianad, M.L. A review of methods for honey sensory analysis. J. Apic. Res. 2018, 57, 175–187. [Google Scholar] [CrossRef]
- Stanojevic, P.S.; Barać, B.M.; Pešić, B.M.; Vucelic-Radovic, V.B. Protein composition and textural properties of inulin-enriched tofu produced by hydrothermal process. LWT Food Sci. Technol. 2020, 126, 109309. [Google Scholar] [CrossRef]
- SUBg (Senate of the University of Belgrade). The Code of Professional Ethics of the University of Belgrade. Off. Gaz. Repub. Serb. 2016, 189, 16. [Google Scholar]
- Gangwar, S.K.; Gebremariam, H.; Ebrahim, A.; Tajebe, S. Characteristics of honey produced by different plant species in Ethiopia. Adv. Biores. 2010, 1, 101–105. Available online: https://www.researchgate.net/publication/308095735 (accessed on 1 July 2024).
- Sanchez, M.P.; Huidobro, J.F.; Mato, I.; Muniategui, S.; Sancho, T. Correlation between proline content of honeys and botanical origin. Dtsch. Lebensm. Rundsch. 2001, 97, 171175. [Google Scholar]
- Codex Alimentarius Commission. Revised Codex Standard for Honey, Codex Standard 12-1981, Rev. 2. 2001. Available online: https://www.fao.org/3/w0076e/w0076e30.htm (accessed on 11 July 2024).
- Kulinčević, J. Beekeeping; National Library of Serbia: Belgrade, Serbia, 2016; pp. 141–154. (In Serbian) [Google Scholar]
- Bogdanov, S.; Ruoff, K.; Persano Oddo, L. Physico-chemical methods for the characterisation of unifloral honeys: A review. Apidologie 2004, 35, S4–S17. [Google Scholar] [CrossRef]
- Persano Oddo, L.; Piazza, M.G.; Sabatini, A.G.; Accorti, M. Characterization of unifloral honeys. Apidologie 1995, 26, 453–465. [Google Scholar] [CrossRef]
- Bogdanov, S.; Lullmann, C.; Martin, P.; Ohe, W.; Russmann, H.; Vorwohl, G.; Oddo, L.; Sabatini, A.; Marcazzan, G.; Piro, R.; et al. Honey quality and international regulatory standards, review by the International honey commission. Bee World 2015, 80, 61–69. [Google Scholar] [CrossRef]
- Persano Oddo, L.; Piro, R. Main European unifloral honeys: Descriptive sheets. Apidologie 2004, 35, S38–S81. [Google Scholar] [CrossRef]
- Bogdanov, S.; Haldimann, M.; Luginbuhl, W.; Gallmann, P. Minerals in honey: Environmental, geographical and botanical aspects. J. Apic. Res. 2007, 46, 269–275. [Google Scholar] [CrossRef]
- Solayman, M.; Islam, M.A.; Paul, S.; Ali, Y.; Khalil, M.I.; Alam, N.; Gan, S.H. Physicochemical properties, minerals, trace elements, and heavy metals in honey of different origins, A Comprehensive Review. Compr. Rev. Food Sci. Food Saf. 2016, 15, 219–233. [Google Scholar] [CrossRef]
- Regulation EC (European Commission Regulation). Health and Consumer Protection Directorate-General. Opinion of the Scientific Committee on Veterinary Measures Relating to Public Health on Honey and Microbiological Hazards. 2002. Available online: https://food.ec.europa.eu/document/download/7488a863-4179-444a-8eff-72b137ae0240_en?filename=sci-com_scv_out53_en.pdf (accessed on 19 July 2024).
- Živkov Baloš, M.; Popov, N.; Vidaković, S.; Ljubojević Pelić, D.; Pelić, M.; Mihaljev, Ž.; Jakšić, S. Selectrical conductivity and acidity of honey. Arch. Vet. Med. 2018, 11, 91–101. [Google Scholar] [CrossRef]
- Official Gazette of the RS. Rulebook on the Quality of Honey and Other Bee Products: 101/2015-114. 2015. Available online: https://pravno-informacioni-sistem.rs/eli/rep/sgrs/ministarstva/pravilnik/2015/101/2 (accessed on 25 July 2024). (In Serbian).
- Codex Alimentarius. Draft Revised for Honey at Step 6 of the Codex Procedure. CX 5/10.2, CL1998/12-S 1998. Available online: https://www.fao.org/3/X4616E/x4616e07.htm (accessed on 15 July 2024).
- Regulation EC (European Commission Regulation). Council Directive 2001/110/EC of 20 December 2001 Relating to Honey. 2021. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2002:010:0047:0052:EN:PDF (accessed on 2 July 2024).
- Chirifie, J.; Zamora, M.C.; Motto, A. The correlation between water activity and % moisture in honey: Fundamental aspects and application to Argentine honeys. J. Food Eng. 2006, 72, 287–292. [Google Scholar] [CrossRef]
- Escuredo, O.; Míguez, M.; Fernández-González, M.; Seijo, M.C. Nutritional value and antioxidant activity of honeys produced in a European Atlantic area. Food Chem. 2013, 138, 851–856. [Google Scholar] [CrossRef] [PubMed]
- Machado, M.A.; Tomas, A.; Russo-Almeida, P.; Duarte, A.; Antunes, M.; Vilas-Boas, M.; Graça, M.M.; Figueiredo, A.C. Quality assessment of Portuguese monofloral honeys. Physicochemical parameters as tools in botanical source differentiation. Food Res. Int. 2022, 157, 111362. [Google Scholar] [CrossRef] [PubMed]
- Ojeda, G.; Sulbaran, B.; Ferrer, A.; Rodriguez, B. Characterization of honey produced in Venezuela. Food Chem. 2004, 84, 499–502. [Google Scholar] [CrossRef]
- Persano Oddo, L.; Piazza, M.G.; Pulcini, P. Invertase activity in honey. Apidologie 1999, 30, 57–65. [Google Scholar] [CrossRef]
- White, J.W., Jr. Composition of honey. In Honey: A Comprehensive Survey; Crane, E., Ed.; Heinemann: London, UK, 1975; pp. 180–194. [Google Scholar]
- Persano Oddo, L.; Baidi, E.; Accorti, M. Diastatic activity in some unifloral honeys. Apidologie 1990, 21, 17–24. [Google Scholar] [CrossRef]
- Missio da Silva, P.; Gonzaga, L.V.; Biluca, F.C.; Schulz, M.; Vitali, L.; Micke, G.A.; Oliveira Costa, A.C.; Fett, R. Stability of Brazilian Apis mellifera L. honey during prolonged storage: Physicochemical parameters and bioactive compounds. LWT Food Sci. Technol. 2020, 129, 109521. [Google Scholar] [CrossRef]
- Missio da Silva, P.M.; Gauche, C.; Gonzaga, L.V.; Costa, A.C.O.; Fett, R. Honey: Chemical composition, stability and authenticity. Food Chem. 2016, 196, 309–323. [Google Scholar] [CrossRef]
- Alqarni, A.S.; Owayss, A.A.; Mahmoud, A.A. Physicochemical characteristics, total phenols and pigments of national and international honeys in Saudi Arabia. Arab. J. Chem. 2016, 9, 114–120. [Google Scholar] [CrossRef]
- Mohammed, S.A.; Babiker, E.E. Protein structure, physicochemical properties and mineral composition of Apis mellifera Honey samples of different floral origin. Aust. J. Basic Appl. Sci. 2009, 3, 2477–2483. [Google Scholar]
- Halliwell, B.; Gutteridge, J.M.C. Free Radicals in Biology and Medicine, 5th ed.; Oxford University Press: New York, NY, USA, 2015. [Google Scholar] [CrossRef]
- Šarić, G.; Matković, D.; Hruškar, M.; Vahčić, N. Characterisation and classification of Croatian honey by physicochemical parameters. Food Technol. Biotechnol. 2008, 46, 355–367. [Google Scholar]
- Perez-Arquillué, C.; Conchello, P.; Arino, A.; Juan, T.; Herrera, A. Quality evaluation of Spanish rosemary (Rosmarinus officinalis) honey. Food Chem. 1994, 51, 207–210. [Google Scholar] [CrossRef]
- Rysha, A.; Kastrati, G.; Biber, L.; Sadiku, V.; Rysha, A.; Zogaj, F.; Kabashi-Kastrati, E. Evaluating the physicochemical properties of some Kosovo’s and imported honey samples. Appl. Sci. 2022, 12, 629. [Google Scholar] [CrossRef]
- Fell, R.D. The color grading of honey. Am. Bee J. 1978, 118, 782–789. [Google Scholar]
- Bertoncelj, J.; Doberšek, U.; Jamnik, M. Evaluationof the phenolic content, antioxidant activity and colour of Slovenian honey. Food Chem. 2007, 105, 822–828. [Google Scholar] [CrossRef]
- Ramalhosa, E.E.; Gomes, T.T.; Pereira, A.P.; Dias, T.T.; Estevinho, L.M. Mead production tradition versus modernity. Adv. Food Nutr. Res. 2011, 63, 101–118. [Google Scholar] [CrossRef]
- Brudzynski, K.; Kim, L. Storage-induced chemical changes in active components of honey de-regulate its antibacterial activity. Food Chem. 2011, 126, 1155–1163. [Google Scholar] [CrossRef]
- Moniruzzaman, M.; Khalil, M.I.; Sulaiman, S.A.; Gan, S.H. Physicochemical and antioxidant properties of Malaysian honeys produced by Apis cerana, Apis dorsata and Apis mellifera. BMC Complement. Altern. Med. 2013, 13, 1–12. Available online: http://www.biomedcentral.com/1472-6882/13/43 (accessed on 10 July 2024). [CrossRef]
- Amiot, M.J.; Aubert, S.; Gonnet, M.; Tacchini, M. Phenolic composition of honeys: Preliminary study on identification and group quantification. Apidologie 1989, 20, 115–125. [Google Scholar] [CrossRef]
- Gómez-Caravaca, A.M.; G ómez-Romero, M.; Arráez-Román, D.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Advances in the analysis of phenolic compounds in products derived from bees. J. Pharm. Biomed. Anal. 2006, 41, 1220–1234. [Google Scholar] [CrossRef]
- AL-Mamary, M.; AL-Meeri, A.; AL-Habori, M. Antioxidant activities and total phenolics of different types of honey. Nutr. Res. 2002, 22, 1041–1047. [Google Scholar] [CrossRef]
- Gheldof, N.; Engeseth, N.J. Antioxidant capacity of honeys from various floral sources based on the determination of oxygen radical absorbance capacity and inhibition of in vitro lipoprotein oxidation in human serum samples. J. Agric. Food Chem. 2002, 50, 3050–3055. [Google Scholar] [CrossRef] [PubMed]
- Baek, Y.; Kim, Y.J.; Baik, M.-Y.; Kim, D.-O. Total phenolic contents and antioxidant activities of Korean domestic honey from different floral sources. Food Sci. Biotechnol. 2015, 24, 1453–1457. Available online: https://www.researchgate.net/publication/282303853 (accessed on 12 July 2024). [CrossRef]
- Moniruzzaman, M.; Sulaiman, S.A.; Mohd AS, A.; Hua Gan, S. Two-year variations of phenolics, flavonoids and antioxidant contents in acacia honey. Molecules 2013, 18, 14694–14710. [Google Scholar] [CrossRef] [PubMed]
- Azad MA, K.; Tong, Q.; Al-Faruq, A. Antioxidant activity of some monofloral honeys: Different contributions of the raw honey and phenolic extract. Int. Res. J. Biol. Sci. 2016, 5, 45–50. [Google Scholar]
- Akgün, N.; Çelik, Ö.F.; Kelebekli, L. Physicochemical properties, total phenolic content, and antioxidant activity of chestnut, rhododendron, acacia and multifloral honey. J. Food Meas. Charact. 2021, 15, 3501–3508. [Google Scholar] [CrossRef]
- Karabagias, I.K.; Maia, M.; Karabagias, V.K.; Gatzias, I.; Badeka, A.V. Quality and origin characterisation of Portuguese, Greek, Oceanian, and Asian honey, based on poly-parametric analysis hand in hand with dimension reduction and classification techniques. Eur. Food Res. Technol. 2020, 246, 987–1006. [Google Scholar] [CrossRef]
- Marić, A.; Jovanov, P.; Sakač, M.; Novaković, A.; Hadnadev, M.; Pezo, L.; Mandić, A.; Milićević, N.; Ðurović, A.; Gadžurić, S.A. Comprehensive study of parameters correlated with honey health benefits. RSC Adv. 2021, 11, 12434–12441. [Google Scholar] [CrossRef]
- Gorjanović, S.; Suarez, J.; Novaković, M.; Pastor, F.; Pezo, L.; Battino, M.; Sužnjević, D. Comparative analysis of antioxidant activity of honey of different floral sources using recently developed polarographic and various spectrophotometric assays. J. Food Compos. Anal. 2013, 30, 13–18. [Google Scholar] [CrossRef]
- Ferreres, F.; Ortiz, A.; Silva, C.; García-Viguera, C.; Tomás-Barberán, F.A.; Tomás-Lorente, F. Flavonoids of “La Alcarria” honey: A study of their botanical origin. Z. Lebensm. Unters. Forsch. 1992, 194, 139–143. [Google Scholar] [CrossRef]
- Dong, R.; Zheng, Y.; Xu, B. Phenolic profiles and antioxidant capacities of chinese unifloral honeys from different botanical and geographical sources. Food Bioprocess Technol. 2013, 6, 762–770. [Google Scholar] [CrossRef]
- Živković, J.; Sunarić, S.; Stanković, N.; Mihajilov-Krstev, T.; Spasić, A. Total phenolic and flavonoid contents, antioxidant and antibacterial activities of selected honeys against human pathogenic bacteria. Acta Pol. Pharm. Drug Res. 2019, 76, 671–681. [Google Scholar] [CrossRef] [PubMed]
- Becerril-Sánchez, A.L.; Quintero-Salazar, B.; Dublán-García, O.; Escalona-Buendía, H.B. Phenolic compounds in honey and their relationship with antioxidant activity, botanical origin, and color. Antioxidants 2021, 10, 1700. [Google Scholar] [CrossRef]
- Saral, Ö. An investigation into chestnut honeys from artvin province in Turkiye: Their physicochemical properties, phenolic profiles and antioxidant activities. Chem. Biodivers. 2023, 20, e202201162. [Google Scholar] [CrossRef]
- Contardi, M.; Lenzuni, M.; Fiorentini, F.; Summa, M.; Bertorelli, R.; Suarato, G.; Athanassiou, A. Hydroxycinnamic acids and derivatives formulations for skin damages and disorders: A review. Pharmaceutics 2021, 13, 999. [Google Scholar] [CrossRef]
- Ruwizhi, N.; Aderibigbe, B.A. Cinnamic acid derivatives and their biological efficacy. Int. J. Mol. Sci. 2020, 21, 5712. [Google Scholar] [CrossRef]
- Gardana, C.; Scaglianti, M.; Pietta, P.; Simonetti, P. Analysis of the polyphenolic fraction of propolis from different sources by liquid chromatography-tandem mass spectrometry. J. Pharm. Biomed. Anal. 2007, 45, 390–399. [Google Scholar] [CrossRef]
- Bertoncelj, J.; Polak, T.; Kropf, U.; Korošec, M.; Golob, T. LC-DAD-ESI/MS analysis of flavonoids and abscisic acid with chemometric approach for the classification of Slovenian honey. Food Chem. 2011, 127, 296–302. [Google Scholar] [CrossRef]
- Gašić, U.; Kečkeš, S.; Dabić, D.; Trifković, J.; Milojković-Opsenica, D.; Natić, M.; Tešić, Z. Phenolic profile and antioxidant activity of Serbian polyfloral honeys. Food Chem. 2014, 145, 599–607. [Google Scholar] [CrossRef]
- Kečkeš, S.; Gašić, U.; Veličković, T.Ć.; Milojković-Opsenica, D.; Natić, M.; Tešić, Ž. The determination of phenolic profiles of Serbian unifloral honeys using ultra-high-performance liquid chromatography/high resolution accurate mass spectrometry. Food Chem. 2013, 138, 32–40. [Google Scholar] [CrossRef]
- Tomás-Barberán, F.; Martos, I.; Ferreres, F.; Radovic, B.; Anklam, E. HPLC flavonoid profile as markers for the botanical origin of European honey. J. Sci. Food Agric. 2001, 81, 485–496. [Google Scholar] [CrossRef]
- Medana, C.; Carbone, F.; Aigotti, R.; Appendino, G.; Baiocchi, C. Selective analysis of phenolic compounds in propolis by HPLC-MS/MS. Phytochem. Anal. 2008, 19, 32–39. [Google Scholar] [CrossRef]
- Pellati, F.; Orlandini, G.; Pinetti, D.; Benvenuti, S. HPLC-DAD and HPLC-ESI-MS/MS methods for metabolite profiling of propolis extracts. J. Pharm. Biomed. Anal. 2011, 55, 934–948. [Google Scholar] [CrossRef]
- Ristivojević, P.; Trifković, J.; Gašić, U.; Andrić, F.; Nedić, N.; Tešić, Ž.; Milojković-Opsenica, D. Ultrahigh-performance liquid chromatography and mass spectrometry (UHPLC-LTQ/Orbitrap/MS/MS) study of phenolic profile of Serbian poplar type propolis. Phytochem. Anal 2015, 26, 127–136. [Google Scholar] [CrossRef]
- Glavnik, V.; Bensa, M.; Vovk, I.; Guzelmeric, E. High-performance thin-layer chromatography–multi-stage mass spectrometry methods for analyses of bee pollen botanically originating from sweet chestnut (Castanea sativa Mill.). JPC J. Planar Chromatogr. Mod. TLC 2023, 36, 471–482. [Google Scholar] [CrossRef]
- Rodríguez-Flores, M.S.; Escuredo, O.; Seijo, M.C.; Rojo, S.; Vilas-Boas, M.; Falcão, S.I. Phenolic profile of castanea bee pollen from the Northwest of the Iberian Peninsula. Separations 2023, 10, 270. [Google Scholar] [CrossRef]
- Truchado, P.; Ferreres, F.; Bortolotti, L.; Sabatini, A.G.; Tomás-Barberán, F.A. Nectar Flavonol rhamnosides are floral markers of acacia (Robinia pseudacacia) honey. J. Agric. Food. Chem. 2008, 56, 8815–8824. [Google Scholar] [CrossRef]
- Ferreira, I.C.F.R.; Aires, E.; Barreira, J.C.M.; Estevinho, L.M. Antioxidant activity of Portuguese honey samples: Different contributions of the entire honey and phenolic extract. Food Chem. 2009, 144, 1438–1443. [Google Scholar] [CrossRef]
- Savatović, S.; Dimitrijević, D.; Đilas, S.; Čanadanović-Bruneta, J.; Ćetković, G.; Tumbas, V.; Štajner, D. Antioxidant activity of three different serbian floral honeys. Acta Period. Technol. 2011, 42, 145–155. [Google Scholar] [CrossRef]
- Blasa, M.; Candiracci, M.; Accorsi, A.; Piacentini, M.P.; Albertini, M.C.; Piatti, E. Raw Millefiori honey is packed full of antioxidants. Food Chem. 2006, 97, 217–222. [Google Scholar] [CrossRef]
- Buratti, S.; Benedetti, S.; Cosio, M.S. Evaluation of the antioxidant power of ho-ney, propolis and royal jelly by amperometric flow injection analysis. Talanta 2007, 71, 1387–1392. [Google Scholar] [CrossRef] [PubMed]
- Beretta, G.; Granata, P.; Ferrero, M.; Orioli, M.; Facino, R.M. Standardization of antioxidant properties of honey by a combination of spectrophotometric/fluorimetric assays and chemometrics. Anal. Chim. Acta 2005, 533, 185–191. [Google Scholar] [CrossRef]
- Larsen, P.; Ahmed, M. Evaluation of antioxidant potential of honey drops and honey lozenges. Food Chem. Adv. 2022, 1, 100013. [Google Scholar] [CrossRef]
- Meda, A.; Lamien, C.E.; Romito, M.; Millogo, J.; Nacoulma, O.G. Determination of the total phenolic, flavonoid and proline contents in Burkina Fasan honey, as well as their radical scavenging activity. Food Chem. 2005, 91, 571–577. [Google Scholar] [CrossRef]
- Pešić, M.B.; Pešić, M.M.; Bezbradica, J.; Stanojević, A.B.; Ivković, P.; Milinčić, D.D.; Demin, M.; Kostić, A.Ž.; Dojčinović, B.; Stanojević, S.P. Okara-enriched gluten-free bread: Nutritional, antioxidant and sensory properties. Molecules 2023, 28, 4098. [Google Scholar] [CrossRef]
- Wilczyńska, A. Phenolic Content and Antioxidant Activity of Different Types of Polish Honey—A Short Report. Pol. J. Food Nutr. Sci. 2010, 60, 309–313. Available online: http://journal.pan.olsztyn.pl (accessed on 1 July 2024).
- Gülçin, I. Antioxidant activity of food constituents: An overview. Arch. Toxicol. 2012, 86, 345–391. [Google Scholar] [CrossRef]
- Predescu, C.; Papuc, C.; Nicorescu, V. Antioxidant activity of sunflower and meadow honey. Sci. Work. Ser. C Vet. Med. 2015, LXI, 45–50. Available online: https://www.cabidigitallibrary.org/doi/pdf/10.5555/20163206566 (accessed on 16 July 2024).
- Ulusoy, E.; Kolayli, S.; Sarikaya, A.O. Antioxidant and antimicrobial activity of different floral origin honeys from Turkiye. J. Food Biochem. 2010, 34, 321–335. [Google Scholar] [CrossRef]
- Karaçelik, A.A.; Sahin, H. Determination of enzyme inhibition and antioxidant activity in some chestnut honeys. Foods Raw Mater. 2018, 6, 210–218. [Google Scholar] [CrossRef]
- Felsner, M.L.; Cano, C.B.; Matos, J.R.; Almeida-Muradian, L.B.; Bruns, R.E. Optimization of thermogravimetric analysis of ash content in honey. J. Braz. Chem. Soc. 2004, 15, 797–802. [Google Scholar] [CrossRef]
- Doner, L.W. Honey. In Encyclopedia of Food Sciences and Nutrition, 2nd ed.; Caballero, B., Finglas, P.M., Trugo, L.C., Eds.; Academic Press: London, UK, 2020; pp. 3125–3130. [Google Scholar] [CrossRef]
- Popa, M.; Bostan, R.; Popa, D. Honey-marker of environmental pollution. Case study-the Transylvania Region, Romania. J. Environ. Prot. Ecol. 2013, 14, 273–280. [Google Scholar]
- Maté, A.P. Characterization of Artisanal Honeys from Castilla Y León (Spain). Ph.D. Thesis, Department of Biotechnology and Food Science, Faculty of Sciences, University of Burgos, Burgos, Spain, 2016; pp. 23–78. [Google Scholar]
- Oroian, M.; Ropciuc, S. Botanical authentication of honeys based on Raman spectra. Food Meas. 2017, 12, 545–554. [Google Scholar] [CrossRef]
- Anjos, O.; Santos, A.J.A.; Paixão, V.; Estevinho, L.M. Physicochemical characterization of Lavandula spp. honey with FT-Raman spectroscopy. Talanta 2018, 178, 43–48. [Google Scholar] [CrossRef]
- de Oliveira, L.F.C.; Colombara, R.; Edwards, H.G.M. Fourier transform Raman spectroscopy of honey. Appl. Spectrosc. 2002, 56, 306–311. [Google Scholar] [CrossRef]
- Tahir, H.E.; Xiaobo, Z.; Zhihua, L.; Jiyong, S.; Zhai, X.; Wang, S.; Mariod, A.A. Rapid prediction of phenolic compounds and antioxidant activity of Sudanese honey using Raman and Fourier transform infrared (FT-IR) spectroscopy. Food Chem. 2017, 226, 202–211. [Google Scholar] [CrossRef]
- Corvucci, F.; Nobili, L.; Melucci, D.; Grillenzoni, F.V. The discrimination of honey origin using melissopalynology and Raman spectroscopy techniques coupled with multivariate analysis. Food Chem. 2015, 169, 297–304. [Google Scholar] [CrossRef]
- Kizil, R.; Irudayaraj, J.; Seetharaman, K. Characterization of irradiated starches by using FT-Raman and FTIR spectroscopy. J. Agric. Food Chem. 2002, 50, 3912–3918. [Google Scholar] [CrossRef]
- Pierna JA, F.; Abbas, O.; Dardenne, P.; Baeten, V. Discrimination of Corsican honey by FT-Raman spectroscopy and chemometrics. Biotechnol. Agron. Soc. Environ. 2011, 15, 75–84. [Google Scholar]
- Madgas, D.A.; Guyon, F.; Berghian-Grosan, C.; Molnar, M.C. Challenges and a step forward in honey classification based on Raman spectroscopy. Food Control 2021, 123, 107769. [Google Scholar] [CrossRef]
- Ferreira, E.L.; Lencioni, C.; Benassi, M.T.; Barth, M.O.; Bastos, D.H.M. Descriptive sensory analysis and acceptance of stingless bee honey. Food Sci. Technol. Int. 2009, 15, 251–258. [Google Scholar] [CrossRef]
Physicocheical Characteristics | ||||||||
---|---|---|---|---|---|---|---|---|
Honey Samples | Specific Optical Rotation [α]D20 | Electrical Conductivity (mS/cm) | Moisture (%) | pH | Free Acidity (mmol/kg) | Diastasis (DN) | Soluble Solids (°Brix) | |
organic produced | linden | −1.35 d | 0.80 c | 18.39 a | 3.68 e | 7.0 c | 29.50 a | 77.50 e |
acacia | −1.83 c | 0.16 h | 14.43 e | 3.41 f | 4.0 e | 8.40 e | 84.25 a | |
chestnut | −0.81 f | 0.95 b | 16.00 d | 4.34 b | 6.5 cd | 16.20 d | 82.66 b | |
meadow | −1.00 e | 0.98 a | 17.50 c | 4.11 c | 9.0 a | 16.30 d | 81.00 c | |
conventionally produced | linden | −1.00 e | 0.72 d | 18.29 a | 3.83 d | 6.0 d | 17.20 c | 77.16 e |
acacia | −2.60 a | 0.19 f | 18.00 b | 3.30 g | 4.0 e | 18.30 c | 78.83 d | |
chestnut | −1.25 d | 0.81 c | 18.11 b | 4.95 a | 4.0 e | 29.20 a | 78.50 d | |
meadow | −2.10 b | 0.43 e | 17.60 c | 3.23 h | 8.0 b | 25.90 b | 81.00 c | |
Pooled std | 0.06 | 0.003 | 0.07 | 0.02 | 0.25 | 0.44 | 0.20 | |
Classification by colour and overall sensory acceptability | ||||||||
honey samples | mm Pfund * | colour name | optical density | overall acceptability ** | ||||
organic produced | linden | 29.64 e | white | 0.378 | 6.2 a | |||
acacia | 1.04 h | water white | 0.0945 | 7.7 b | ||||
chestnut | 126.57 a | dark amber | - | 7.0 c | ||||
meadow | 76.06 d | light amber | 1.389 | 7.2 d | ||||
conventionally produced | linden | 17.00 f | extra white | 0.189 | 6.5 af | |||
acacia | −8.62 g | water white | 0.0945 | 7.2 d | ||||
chestnut | 112.08 b | amber | 3.008 | 4.1 e | ||||
meadow | 84.60 c | light amber | 1.389 | 6.7 f | ||||
Pooled std | 0.56 | / | / | 0.03 |
No. | RT | Compound Name | Formula | Calculated Mass | m/z Exact Mass | mDa | MS Fragments |
---|---|---|---|---|---|---|---|
Phenolic acid and derivatives | |||||||
1 | 6.25 | Benzoic acid | C7H5O2− | 121.029 | 121.0281 | −0.85 | / |
2 | 7.41 | Coumaric acid | C9H7O3− | 163.0395 | 163.0385 | −1.02 | 119.0489(100), 120.052(11), 117.0328(8) |
3 | 6.50 | Esculetin | C9H5O4− | 177.0188 | 177.0176 | −1.18 | 135.043(100), 134.0352(77), 105.033(16), 133.0277(12), 117.0327(9), 121.0276(5), 149.0223(4) |
4 | 6.58 | Caffeic acid | C9H7O4− | 179.0344 | 179.0341 | −0.33 | 135.0425(100), 134.034(80), 107.0486(12), 117.0318(11) |
5 | 9.87 | Ethyl caffeate | C11H11O4− | 207.0657 | 207.0654 | −0.33 | 133.0273(100), 135.0429(76), 134.0342(40), 161.0222(21), 179.0365(2) |
6 | 12.00 | Caffeic acid prenyl ester (Prenyl caffeate) | C14H15O4− | 247.097 | 247.0961 | −0.93 | 135.0437(100), 133.028(47), 134.0349(31), 161.0225(26), 179.0331(8) |
7 | 12.11 | Caffeic acid benzyl ester | C16H13O4− | 269.0814 | 269.0803 | −1.08 | 134.035(100), 133.0272(79), 161.0232(20), 135.0378(4), 106.0403(4) |
8 | 12.51 | Caffeic acid phenethyl ester (CAPE) | C17H15O4− | 283.097 | 283.0962 | −0.83 | 135.0431(100), 161.0229(34), 133.0279(29), 134.0354(23), 179.0331(14) |
9 | 13.04 | Caffeic acid cinnamyl ester | C18H15O4− | 295.097 | 295.0961 | −0.93 | 134.0354(100), 133.0278(44), 135.0386(11), 106.0413(5), 161.0218(3) |
10 | 5.80 | Caffeic acid hexoside is. I | C15H17O9− | 341.0873 | 341.087 | −0.26 | 161.0229(100), 135.043(87), 179.0333(41), 133.0274(15), 134.0354(9) |
11 | 6.37 | Caffeic acid hexoside is. II | C15H17O9− | 341.0873 | 341.087 | −0.26 | 135.0434(100), 179.033(72), 161.0227(54), 134.0352(7) |
Non-phenolic compounds | |||||||
12 | 9.47 | Abscisic acid | C15H19O4− | 263.1283 | 263.1277 | −0.63 | 203.1064(100), 204.1124(60), 122.035(58), 153.0901(43), 136.0512(41), 189.0899(40), 137.0577(29), 164.0811(20), 138.0666(38), 219.1368(14) |
Phenolic acid amides (Phenylamides) | |||||||
13 | 7.74 | Di-coumaroyl spermidine | C25H32N3O4+ | 438.2393 | 438.2393 | 0.02 | 204.101(100), 147.0435(99), 292.2015(31), 205.1047(15), 275.175(11), 218.117(11), 293.2039(7), 438.2371(6), 119.0491(5) |
14 | 9.91 | Tri-coumaroyl spermidine | C34H38N3O6+ | 584.2761 | 584.2763 | 0.24 | 438.2382(100), 204.1017(42), 439.2411(35), 147.0439(35), 292.2014(31), 275.1753(16), 420.2271(15), 4212235(9), 293.204(7), 205.1046(7), 119.0494(3) |
15 | 9.75 | Dicoumaroyl caffeoyl spermidine | C34H38N3O7+ | 600.271 | 600.2715 | 0.52 | 438.2382(100), 204.1011(44), 439.2407(35), 454.2333(26), 292.2005(25), 147.043(16), 420.2272(11), 455.2364(11), 275.1767(9), 163.0393(7), 293.205(6) |
16 | 10.42 | Tetra-coumaroyl spermidine | C46H51N4O8+ | 787.3707 | 787.3693 | −1.39 | 641.3327(100), 642.3369(57), 643.339(15), 275.1745(13), 623.3225(8), 204.1021(9), 147.0435(5), 478.2727(4), 494.3009(4) |
Flavonoids and derivatives | |||||||
Flavonol aglycones and glycosides | |||||||
17 | 12.37 | Galangin | C15H9O5− | 269.045 | 269.045 | 0 | 269.0439(100), 169.0647(19), 171.0438(17), 213.0539(14), 143.0489(13), 223.0384(11), 195.0438(10), 197.0591(9), 211.0386(9), 227.0336(7), 269.0436(8) |
18 | 12.25 | Galangin-methyl-ether | C16H11O5− | 283.0606 | 283.0605 | −0.15 | 268.0356(100), 269.0372(23), 240.0404(9), 151.0017(7), 239.0333(7), 117.0332(7), 164.0091(4), 211.0392(4) |
19 | 11.37 | Kaempferide | C16H11O6− | 299.0556 | 299.0551 | −0.46 | 284.0306(100), 285.0333(21), 256.0355(9), 133.0277(5), 299.0501(5), 255.0296(2), 257.0433(2), 151.0015(4), 107.0141(4) |
20 | 9.68 | Quercetin | C15H9O7− | 301.0348 | 301.0352 | 0.37 | 151.0016(100), 121.0273(45), 107.0114(39), 152.0041(12), 178.9955(9), 149.0223(9), 285.0398(7), 257.0645(5), 243.0235(5) |
21 | 10.49 | Isorhamnetin | C16H11O7− | 315.0505 | 315.0497 | −0.78 | 300.0245(100), 109.9994(52), 165.989(49), 255.0283(33), 243.0272(26), 271.0222(22), 301.0296(20) |
22 | 11.39 | Rhamnetin | C16H11O7− | 315.0505 | 315.0497 | −0.78 | 165.0176(100), 121.0278(62), 300.0261(22), 151.0022(11), 272.0313(5), 271.0263(5) |
23 | 10.95 | Quercetin-dimethyl-ether is. I | C17H13O7− | 329.0661 | 329.0654 | −0.73 | 271.0224(100), 299.017(97), 243.0281(82), 257.0448(24), 300.0202(22) |
24 | 11.73 | Quercetin-dimethyl-ether is. II | C17H13O7− | 329.0661 | 329.0659 | −0.23 | 299.0168(100), 271.0234(42), 300.0212(19), 314.0415(12), 301.0235(3), 227.0336(2), 243.0289 (3) |
25 | 9.60 | Kaempferol-3-O-rhamnoside | C21H19O10− | 431.0978 | 431.0968 | −1.02 | 285.0374(100), 284.0306(61), 151.0012(45), 257.0426(34), 431.0957(13), 229.0459(2), 213.0526(3) |
26 | 7.64 | Kaempferol 3-O-(6″-rhamnosyl)-hexoside-7-O-rhamnoside | C33H39O19− | 739.2086 | 739.2065 | −2.05 | 593.1479(100), 594.1509(38), 739.2064(13), 285.038(12), 284.0294(10) |
Flavanonol aglycones and derivatives | |||||||
27 | 10.41 | Pinobanksin | C15H11O5− | 271.0606 | 271.0612 | 0.55 | 197.059(100), 125.0232(74), 253.0493(67), 161.0595(61), 107.0126(50),151.0032(32), 271.0596(31), 124.0151(29), 181.0643(16), 225.0541(22), 209.0587(14), 254.052(15) |
28 | 9.80 | Pinobanksin-5-methyl-ether | C16H13O5− | 285.0763 | 285.0763 | 0.00 | 252.0411(100), 138.0306(57), 224.0459(55), 241.0493(32), 253.0447(24), 195.0443(18), 213.054(17), 165.0168(14) |
29 | 13.30 | Pinobanksin-3-O-propionate | C18H15O6− | 327.0869 | 327.0858 | −1.06 | 253.0487(100), 254.0516(21), 209.0589(6), 197.0582(6), 107.012(4), 271.0579(3), 255.054(3), 185.0578(2), 225.0533(2) |
30 | 13.78 | Pinobanksin derivative | C19H15O6− | 339.0869 | 339.0866 | −0.26 | 253.0480(100), 254.0506(19), 197.0587(7), 209.0585(6), 143.0481(5), 107.0119(4), 255.0552(2) |
31 | 14.16 | Pinobanksin-3-O-butyrate | C19H17O6− | 341.1025 | 341.1017 | −0.81 | 253.0486(100), 254.0523(19), 197.059(5), 209.0592(4), 143.0485(3), 107.0121(3), 255.0549(3), 271.0594(2) |
32 | 14.19 | Pinobanksin-3-O-pentanoate is. I | C20H17O6− | 353.1025 | 353.1009 | −1.61 | 253.0491(100), 254.0517(22), 197.0592(5), 209.0589(5), 143.0487(4), 255.0536(3), 107.0126(3), 185.0587(2) |
33 | 14.90 | Pinobanksin-3-O-pentanoate is. II | C20H19O6− | 355.1182 | 355.1175 | −0.66 | 253.0487(100), 254.0524(19), 197.0593(5), 209.059(49, 143.0483(3), 255.0541(3), 107.0123(2), 185.0587(1) |
34 | 15.61 | Pinobanksin-3-O-hexanoate | C21H21O6− | 369.1338 | 369.1324 | −1.41 | 253.0484(100), 254.0514(18), 197.0579(5), 271.0605(3), 209.0601(3), 143.0464(2) |
Flavone aglycones | |||||||
35 | 12.10 | Chrysin | C15H9O4− | 253.0501 | 253.0502 | 0.12 | 253.049(100), 143.0486(68), 107.0127(47), 145.0285(24), 151.0024(24), 119.0488(23), 209.0593(20), 171.0439(16), 185.0594(14), 213.0541(12) |
36 | 10.32 | Apigenin | C15H9O5− | 269.045 | 269.0446 | −0.4 | 117.0324(100), 151.0013(41), 107.0117(37), 269.0435(28), 149.0229(23), 197.0584(15), 225.0526(13) |
37 | 11.18 | Genkwanin | C16H11O5− | 283.0606 | 283.0609 | 0.25 | 211.0383(100), 239.0329(59), 212.0414(16), 240.0375(14), 167.048(3), 268.0345(3), 283.0589(3) |
38 | 12.71 | Acacetin | C16H11O5− | 283.0606 | 283.0605 | −0.15 | 211.0384(100), 239.0331(66), 212.0421(17), 240.0382(15), 268.0358(5), 167.0485(3), 241.0404(2), 213.0444(2) |
39 | 10.78 | Luteolin-methyl-ether | C16H11O6− | 299.0556 | 299.0547 | −0.86 | 255.0281(100), 227.0331(79), 284.0303(24), 257.0339(3), 211.0373(3), 132.0194(2), 107.0116(1) |
Flvanone aglycones | |||||||
40 | 12.27 | Pinocembrin | C15H11O4− | 255.0657 | 255.0666 | 0.87 | 107.0132(100), 171.0445(93), 151.0028(88), 145.065(76), 213.055(62), 255.0652(43), 185.0596(38), 211.0748(18) |
41 | 13.11 | Pinostrobin | C16H13O4− | 269.0814 | 269.0807 | −0.68 | 121.0275(100), 165.0177(76), 269.0785(58), 227.0688(57), 183.0791(37), 171.0434(45), 150.0311(30) |
42 | 12.18 | Sakuranetin | C16H13O5− | 285.0763 | 285.0763 | 0.00 | 164.0098(100), 136.0146(75),108.0201(41), 151.0021(30), 107.0122(25),243.0643(16), 285.0743(15), 270.0441(12), 165.0141(11), 201.0532(7), 227.0322(5) |
No. | Compound Name | Honey (µg/g honey) | |||||||
---|---|---|---|---|---|---|---|---|---|
Organic Produced | Conventional Produced | ||||||||
Linden | Acacia | Chestnut | Meadow | Linden | Acacia | Chestnut | Meadow | ||
Phenolic acid and derivatives | |||||||||
1 | Benzoic acid b | - | - | - | - | - | <LOQ | - | - |
2 | Coumaric acid b | - | 2.33 | - | <LOQ | - | - | <LOQ | 1.48 |
3 | Esculetin b | - | <LOQ | <LOQ | <LOQ | - | 1.37 | - | 1.95 |
4 | Caffeic acid a | - | <LOQ | - | - | - | - | - | - |
5 | Ethyl caffeate b | <LOQ | - | - | - | 2.66 | - | - | - |
6 | Caffeic acid prenyl ester (Prenyl caffeate) b | - | 5.01 | - | - | - | 2.47 | - | 1.72 |
7 | Caffeic acid benzyl ester b | - | <LOQ | - | - | - | 1.43 | - | - |
8 | Caffeic acid phenethyl ester (CAPE)b | - | 6.28 | - | - | - | <LOQ | - | 8.35 |
9 | Caffeic acid cinnamyl ester b | - | 1.98 | - | - | - | <LOQ | - | 12.03 |
10 | Caffeic acid hexoside is. I b | - | <LOQ | - | - | - | <LOQ | - | <LOQ |
11 | Caffeic acid hexoside is. II b | - | 2.17 | <LOQ | - | - | <LOQ | - | <LOQ |
Non-phenolic compounds | |||||||||
12 | Abscisic acid b | 3.06 | 7.98 | 13.03 | <LOQ | 1.85 | 6.36 | - | - |
∑ phenolic acid derivatives + abscisic acid | 3.06 | 25.75 | 13.03 | - | 4.51 | 11.63 | - | 25.54 | |
Phenolic acid amides (Phenylamides) | |||||||||
13 | Di-coumaroyl spermidine b | - | - | - | 5.41 | - | - | - | 7.41 |
14 | Tri-coumaroyl spermidine b | - | <LOQ | 3.88 | 2.02 | - | <LOQ | 5.54 | 9.09 |
15 | Dicoumaroyl caffeoyl spermidine b | - | - | <LOQ | - | - | - | <LOQ | - |
16 | Tetra-coumaroyl spermidine b | - | - | - | - | - | - | - | 1.66 |
∑ | - | - | 3.88 | 7.43 | - | - | 5.54 | 18.16 | |
Flavonoids and derivatives | |||||||||
Flavonol aglycones and glycosides | |||||||||
17 | Galangin c | 80.27 | 119.72 | 9.10 | 15.34 | 23.47 | 47.68 | - | 107.30 |
18 | Galangin-methyl-ether c | 5.59 | 5.20 | <LOQ | - | - | - | - | - |
19 | Kaempferide c | 3.21 | - | <LOQ | - | - | <LOQ | - | - |
20 | Quercetin a | - | - | - | - | - | - | - | 3.64 |
21 | Isorhamnetin c | - | 6.38 | 9.85 | - | - | 3.95 | 9.09 | 6.97 |
22 | Rhamnetin c | - | 4.21 | - | - | - | 1.19 | - | 1.14 |
23 | Quercetin-dimethyl-ether is. I c | - | 2.33 | - | - | - | 1.21 | - | 6.69 |
24 | Quercetin-dimethyl-ether is. II c | 21.37 | 25.02 | 8.59 | - | - | - | - | - |
25 | Kaempferol-3-O-rhamnoside c | - | 4.56 | - | - | - | - | - | - |
26 | Kaempferol-3-O-(6″-rhamnosyl)hexoside-7-O-rhamnoside c | - | 6.66 | - | - | - | - | - | - |
∑ | 110.45 | 174.06 | 27.54 | 15.34 | 23.47 | 54.03 | 9.09 | 125.74 | |
Flavanonol aglycones and derivatives | |||||||||
27 | Pinobanksin c | 102.75 | 124.18 | 14.04 | 38.06 | 40.91 | 86.17 | 1.53 | 160.69 |
28 | Pinobanksin-5-methyl-ether c | 16.89 | 53.33 | 5.68 | 3.63 | 9.96 | 27.76 | - | 86.76 |
29 | Pinobanksin-3-O-propionate c | - | - | - | - | - | - | - | 5.15 |
30 | Pinobanksin derivative c | - | - | - | - | - | - | - | 1.96 |
31 | Pinobanksin-3-O-butyrate c | - | - | - | - | - | - | - | 18.40 |
32 | Pinobanksin-3-O-pentanoate is. I c | 2.75 | - | - | - | - | - | - | 15.16 |
33 | Pinobanksin-3-O-pentanoate is. II c | 15.40 | 3.36 | - | - | - | - | - | 11.99 |
34 | Pinobanksin-3-O-hexanoate c | - | - | - | - | - | - | - | 5.34 |
∑ | 137.79 | 180.87 | 19.72 | 41.70 | 50.87 | 113.92 | 1.53 | 305.45 | |
Flavone aglycones | |||||||||
35 | Chrysin a | 163.17 | 144.74 | 38.64 | 69.48 | 78.60 | 100.80 | 16.52 | 157.10 |
36 | Apigenin a | - | 12.29 | - | 3.43 | - | 5.52 | - | 4.13 |
37 | Genkwanin d | - | 9.84 | - | - | - | 4.87 | - | 30.67 |
38 | Acacetin d | 50.67 | 37.43 | 5.00 | 13.65 | 17.28 | 22.47 | - | 75.98 |
39 | Luteolin-methyl-ether d | - | 14.09 | - | 3.03 | - | 4.75 | - | 15.71 |
∑ | 213.84 | 218.38 | 43.64 | 89.59 | 95.88 | 138.41 | 16.52 | 283.59 | |
Flvanone aglycones | |||||||||
40 | Pinocembrin a | 404.47 | 428.49 | 69.30 | 167.91 | 174.27 | 289.59 | 22.95 | 458.45 |
41 | Pinostrobin e | - | - | 10.44 | - | - | - | - | - |
42 | Sakuranetin e | 16.80 | - | - | 17.29 | - | - | - | - |
∑ | 421.27 | 428.49 | 79.74 | 185.20 | 174.27 | 289.59 | 22.95 | 458.44 | |
∑∑ | 886.40 | 1027.57 | 187.55 | 339.25 | 349.00 | 607.58 | 55.62 | 1216.91 |
Element | Organic Produced | Conventionally Produced | Pooled Std | ||||||
---|---|---|---|---|---|---|---|---|---|
Linden | Acacia | Chestnut | Meadow | Linden | Acacia | Chestnut | Meadow | ||
macroelements (μg/g) | |||||||||
Ca | 169.46 a | 15.70 b | 78.48 c | 25.49 d | 147.25 e | 15.29 f | 240.60 g | 121.36 h | 0.02 |
K | 1248.81 a | 191.41 b | 1305.66 c | 1346.82 d | 1281.12 e | 183.91 f | 2225.56 g | 366.32 h | 2.04 |
Mg | 23.73 a | 6.86 b | 52.31 c | 98.00 d | 22.56 a | 5.93 e | 51.39 c | 28.89 f | 0.54 |
Na | 13.28 a | 12.99 a | 46.82 b | 13.13 a | 12.57 a | 12.84 a | 16.93 c | 14.28 d | 0.54 |
P | 807.18 a | 895.24 b | 853.64 c | 923.92 d | 840.57 e | 795.40 f | 922.59 d | 874.92 g | 2.02 |
S | 27.58 a | 15.65 b | 56.37 c | 95.36 d | 25.34 e | 17.61 f | 40.31 g | 33.07 h | 0.82 |
microelements (μg/g) | |||||||||
Co | 0.08 a | n.d | n.d | 0.02 b | n.d | 0.01 b | n.d | n.d | 0.008 |
Cr | 0.05 a | 0.05 a | 0.06 a | 0.10 b | 0.06 a | 0.03 a | 0.10 b | 0.05 a | 0.02 |
Cu | 0.11 a | 0.10 a | 0.41 b | 0.84 c | 0.09 ad | 0.07 d | 0.28 be | 0.18 e | 0.04 |
Fe | 5.44 a | 1.10 b | 3.63 c | 3.59 c | 1.00 bd | 0.91 d | 1.52 e | 0.91 d | 0.09 |
Mn | 2.22 a | 0.30 b | 6.60 c | 5.42 d | 0.67 e | 0.09 f | 3.48 g | 0.20 h | 0.05 |
Ni | 0.05 ab | 0.08 b | 0.30 c | 0.47 d | 0.04 a | 0.08 ab | 0.12 e | 0.17 f | 0.04 |
Sr | 0.59 a | 0.03 b | 0.19 c | 0.04 b | 0.11 d | 0.03 b | 0.22 c | 0.05 e | 0.03 |
Zn | 1.19 a | 0.58 b | 0.74 c | 3.75 d | 0.38 e | 0.22 f | 1.23 a | 1.86 g | 0.04 |
toxic elements (μg/g) | |||||||||
Al | 1.39 a | 1.19 bc | 4.31 d | 2.75 e | 0.99 b | 1.16 c | 1.59 a | 1.21 bc | 0.05 |
As | n.d | n.d | n.d | n.d | n.d | n.d | n.d | n.d | - |
B | 2.24 a | 2.43 b | 1.71 c | 3.81 d | 2.90 e | 3.09 f | 2.27 a | 7.54 g | 0.04 |
Ba | 0.27 a | 0.01 b | 0.23 a | 0.05 c | 0.05 c | 0.01 b | 1.11 d | 0.02 e | 0.02 |
Cd | n.d | n.d | n.d | 0.01 | n.d | n.d | n.d | n.d | 0.002 |
Li | 0.01 a | 0.009 a | 0.017 b | 0.008 a | 0.009 a | 0.007 c | 0.011 b | 0.010 b | 0.001 |
Pb | n.d | n.d | n.d | n.d | n.d | n.d | n.d | n.d | - |
TMMEC (μg/g) | 2299.77 | 1140.09 | 2405.21 | 2516.95 | 2331.76 | 1032.42 | 3504.33 | 1442.26 | - |
TTEC (μg/g) | 3.91 | 3.64 | 6.27 | 6.63 | 3.95 | 4.27 | 4.98 | 7.57 | - |
TMEC (μg/g) | 2303.68 | 2411.48 | 2411.477 | 2523.588 | 2335.71 | 1036.69 | 3509.31 | 1449.83 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stanojević, S.P.; Milinčić, D.D.; Smiljanić, N.; Pešić, M.B.; Nedić, N.M.; Kolašinac, S.; Dojčinović, B.; Dajić-Stevanović, Z.; Kostić, A.Ž. Conventional vs. Organically Produced Honey—Are There Differences in Physicochemical, Nutritional and Sensory Characteristics? Foods 2024, 13, 3573. https://doi.org/10.3390/foods13223573
Stanojević SP, Milinčić DD, Smiljanić N, Pešić MB, Nedić NM, Kolašinac S, Dojčinović B, Dajić-Stevanović Z, Kostić AŽ. Conventional vs. Organically Produced Honey—Are There Differences in Physicochemical, Nutritional and Sensory Characteristics? Foods. 2024; 13(22):3573. https://doi.org/10.3390/foods13223573
Chicago/Turabian StyleStanojević, Sladjana P., Danijel D. Milinčić, Nataša Smiljanić, Mirjana B. Pešić, Nebojša M. Nedić, Stefan Kolašinac, Biljana Dojčinović, Zora Dajić-Stevanović, and Aleksandar Ž. Kostić. 2024. "Conventional vs. Organically Produced Honey—Are There Differences in Physicochemical, Nutritional and Sensory Characteristics?" Foods 13, no. 22: 3573. https://doi.org/10.3390/foods13223573
APA StyleStanojević, S. P., Milinčić, D. D., Smiljanić, N., Pešić, M. B., Nedić, N. M., Kolašinac, S., Dojčinović, B., Dajić-Stevanović, Z., & Kostić, A. Ž. (2024). Conventional vs. Organically Produced Honey—Are There Differences in Physicochemical, Nutritional and Sensory Characteristics? Foods, 13(22), 3573. https://doi.org/10.3390/foods13223573