From Beer to Cheese: Characterization of Caseinolytic and Milk-Clotting Activities of Proteases Derived from Brewer’s Spent Grain (BSG)
Abstract
:1. Introduction
2. Materials and Methods
2.1. BSGs Source
2.2. Experimental Design
2.3. Statistical Analysis
2.4. BSG Protein Extracts
2.5. Protein Determination
2.6. SDS-PAGE (Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis)
2.7. Milk-Clotting Activity of BSG1 Extract
2.8. Caseinolytic Activity of BSGs Extracts
2.9. Influence of pH and Temperature on CA
2.10. Endopeptidases Inhibition Profile
2.11. Hydrolysis of the Bovine Casein Subunits
3. Results and Discussion
3.1. Finding Significant Variables That Affect Extraction of Endopeptidases with Caseinolytic Activity from BSG
3.2. Characterization of CA of BSG1 Extract
3.3. Comparative Analysis of BSGs Derived from Different Beer Styles: Impact on CA and MCA
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BSG | brewer’s spent grain |
BBD | Box–Behnken design |
RSM | response surface methodology |
CA | caseinolytic activity |
MCA | milk-clotting activity |
BCA | bicinchoninic acid |
BSA | bovine serum albumin |
MWM | molecular weight markers |
PMSF | phenylmethylsulfonyl fluoride |
EDTA | ethylenediaminetetraacetic acid |
DMSO | dimethyl sulfoxide |
SCA | specific caseinolytic activity |
References
- Jackowski, M.; Niedźwiecki, Ł.; Jagiełło, K.; Uchańska, O.; Trusek, A. Brewer’s Spent Grains-Valuable Beer Industry By-Product. Biomolecules 2020, 10, 1669. [Google Scholar] [CrossRef] [PubMed]
- Mainardis, M.; Hickey, M.; Dereli, R.K. Lifting Craft Breweries Sustainability through Spent Grain and Renewable Energy Integration: A Critical review in the Circular Economy Framework. J. Clean. Prod. 2024, 447, 141527. [Google Scholar] [CrossRef]
- Chetrariu, A.; Dabija, A. Spent Grain: A Functional Ingredient for Food Applications. Foods 2023, 12, 1533. [Google Scholar] [CrossRef]
- Pabbathi, N.P.P.; Velidandi, A.; Pogula, S.; Gandam, P.K.; Baadhe, R.R.; Sharma, M.; Sirohi, R.; Thakur, V.K.; Gupta, V.K. Brewer’s Spent Grains-Based Biorefineries: A Critical Review. Fuel 2022, 317, 123435. [Google Scholar] [CrossRef]
- dos Santos Gomes, M.M.O.; Nicodemos, I.S.; da Costa Silva, M.; dos Santos Martins, T.V.; de FreitasGonçalves, J.M.D.M.S.; Meneghetti, S.M.P.; Franco, M.; Gomes, F.S.; Pereira, H.J.V. Re-Recycling Agro-Industrial Waste: Exploiting Activated Carbon from Cocoa Shells after Solid-State Fermentation as a Support for Endoglucanase Immobilization. In Biomass Conversion and Biorefinery; Springer: Berlin/Heidelberg, Germany, 2024. [Google Scholar]
- Potokina, E.; Caspers, M.; Prasad, M.; Kota, R.; Zhang, H.; Sreenivasulu, N.; Wang, M.; Graner, A. Functional Association between Malting Quality Trait components and CDNA Array Based Expression Patterns in Barley (Hordeum L.). Mol. Breed. 2004, 14, 153–170. [Google Scholar] [CrossRef]
- Jones, B.L. Endoproteases of Barley and Malt. J. Cereal Sci. 2005, 42, 139–156. [Google Scholar] [CrossRef]
- Osman, A.M.; Coverdale, S.M.; Cole, N.; Hamilton, S.E.; Jersey, J.; Inkerman, P.A. Characterisation and Assessment of the Role of Barley Malt during Malting and Mashing1. J. Inst. Brew. 2002, 108, 62–67. [Google Scholar] [CrossRef]
- Rizvi, S.M.H.; Beattie, A.D.; Rossnagel, B.; Scoles, G. Thermostability of Barley Malt Proteases in Western Canadian-Row Malting Barley. Cereal Chem. 2011, 88, 609–613. [Google Scholar] [CrossRef]
- Devnani, B.; Moran, G.C.; Grossmann, L. Extraction, Composition, Functionality, and Utilization of Brewer’s Spent Grain Protein in Food Formulations. Foods 2023, 12, 1543. [Google Scholar] [CrossRef]
- Shah, M.A.; Mir, S.A.; Paray, M.A. Plant Proteases as Milk-Clotting Enzymes in Cheesemaking: A Review. Dairy Sci. Technol. 2014, 94, 5–16. [Google Scholar] [CrossRef]
- Ben Amira, A.; Besbes, S.; Attia, H.; Blecker, C. Milk-Clotting Properties of Plant Rennets and Their Enzymatic, Rheological, and Sensory Role in Cheese Making: A Review. Int. J. Food Prop. 2017, 20, S76–S93. [Google Scholar] [CrossRef]
- Abd El-Moneim, R.; Shamsia, S.; EL-Deeb, A.; Ziena, H. Utilization of Brewers Spent Grain (BSG) in Producing Processed Cheese “block”. J. Food Dairy Sci. 2018, 2018, 103–109. [Google Scholar] [CrossRef]
- Troncoso, F.D.; Sánchez, D.A.; Ferreira, M.L. Production of Plant Proteases and New Biotechnological: An Updated Review. ChemistryOpen 2022, 11, e202200017. [Google Scholar] [CrossRef] [PubMed]
- Mohsin, A.Z.; Norsah, E.; Marzlan, A.A.; Abd Rahim, M.H.; Meor Hussin, A.S. Exploring the Applications of Plant-Based Coagulants in Cheese: A Review. Int. Dairy J. 2024, 148, 105792. [Google Scholar] [CrossRef]
- Mazorra-Manzano, M.A.; Moreno-Hernández, J.M.; Ramírez-Suarez, J.C. Milk-Clotting Plant Proteases for Cheesemaking. In Biotechnological Applications of Plant Proteolytic Enzymes; Springer International Publishing: Cham, Switzerland, 2018; pp. 21–41. [Google Scholar]
- Nyhan, L.; Sahin, A.W.; Schmitz, H.H.; Siegel, J.B.; Arendt, E.K. Brewers’ Spent Grain: An Unprecedented Opportunity to Develop Plant-Based Nutrition Ingredients Addressing Global Challenges. J. Agric. Food Chem. 2023, 71, 10543–10564. [Google Scholar] [CrossRef]
- Xie, Z.; Dan, M.; Zhao, G.; Wang, D. Recent Advances in Microbial High-Value Utilization of Brewer’s Grain. Bioresour. Technol. 2024, 408, 131197. [Google Scholar] [CrossRef]
- Julkovski, D.J.; Sehnem, S.; Lara, A.C.; Ramos, M.d.C.P. Circularity of Resources in the Craft Brewery Segment: An Supported by Innovation. Environ. Qual. Manag. 2024, 33, 265–281. [Google Scholar] [CrossRef]
- Pasquet, P.-L.; Villain-Gambier, M.; Trébouet, D. By-Product Valorization as a Means for the Brewing Industry to move toward a Circular Bioeconomy. Sustainability 2024, 16, 3472. [Google Scholar] [CrossRef]
- Maran, J.P.; Manikandan, S.; Priya, B.; Gurumoorthi, P. Box-Behnken Design Based Multi-Response Analysis and optimization of Supercritical Carbon Dioxide Extraction of Bioactive Flavonoid from Tea (Camellia sinensis L.) Leaves. J. Food Sci. Technol. 2015, 52, 92–104. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Lenth, R.V. Response-Surface Methods in R, Using Rsm. J. Stat. Soft. 2009, 32, 1–17. [Google Scholar] [CrossRef]
- Smith, P.K.; Krohn, R.I.; Hermanson, G.T.; Mallia, A.K.; Gartner, F.H.; Provenzano, M.D.; Fujimoto, E.K.; Goeke, N.M.; Olson, B.J.; Klenk, D.C. Measurement of Protein Using Bicinchoninic Acid. Anal. Biochem. 1985, 150, 76–85. [Google Scholar] [CrossRef] [PubMed]
- Kao, S.-H.; Wong, H.-K.; Chiang, C.-Y.; Chen, H.-M. Evaluating the Compatibility of Three Colorimetric Protein assays for Two-Dimensional Electrophoresis Experiments. Proteomics 2008, 8, 2178–2184. [Google Scholar] [CrossRef] [PubMed]
- Laemmli, U.K. Cleavage of Structural Proteins during the Assembly of Head of Bacteriophage T4. Nat. Publ. Group 1970, 227, 680–685. [Google Scholar] [CrossRef] [PubMed]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 Years of Image Analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Lizardi-Jiménez, M.A.; Ricardo-Díaz, J.; Quiñones-Muñoz, T.A.; Hernández-Rosas, F.; Hernández-Martínez, R. Fungal Strain Selection for Protease Production by Solid-State Fermentation Using Agro-Industrial Waste as Substrates. Chem. Pap. 2019, 73, 2603–2610. [Google Scholar] [CrossRef]
- Anusha, R.; Singh, M.K.; Bindhu, O.S. Characterisation of Potential Milk Coagulants from Calotropis Gigantea Plant Parts and Their Hydrolytic Pattern of Bovine Casein. Eur. Food Res. Technol. 2014, 238, 997–1006. [Google Scholar] [CrossRef]
- de Farias, V.A.; da Rocha Lima, A.D.; Santos Costa, A.; de Freitas, C.D.T.; da Silva Araújo, I.M.; dos Santos Garruti, D.; de Figueiredo, E.A.T.; de Oliveira, H.D. Noni (Morinda citrifolia L.) Fruit as a New Source of Milk-Clotting Cysteine Proteases. Food Res. Int. 2020, 127, 108689. [Google Scholar] [CrossRef]
- Rawlings, N.D. Protease Families, Evolution and Mechanism of Action. In Proteases: Structure and Function; Springer: Vienna, Austria, 2013; pp. 1–36. [Google Scholar]
- Pontual, E.V.; Carvalho, B.E.A.; Bezerra, R.S.; Coelho, L.C.B.B.; Napoleão, T.H.; Paiva, P.M.G. Caseinolytic and Milk-Clotting Activities from Moringa Oleifera. Food Chem. 2012, 135, 1848–1854. [Google Scholar] [CrossRef]
- Celus, I.; Brijs, K.; Delcour, J.A. The Effects of Malting and Mashing on Barley Protein. J. Cereal Sci. 2006, 44, 203–211. [Google Scholar] [CrossRef]
- Jones, B.L.; Marinac, L. The Effect of Mashing on Malt Endoproteolytic Activities. J. Agric. Food Chem. 2002, 50, 858–864. [Google Scholar] [CrossRef]
- Vanaja, K.; Shobha Rani, R.H. Design of Experiments: Concept and Applications of Plackett Design. Clin. Res. Regul. Aff. 2007, 24, 1–23. [Google Scholar] [CrossRef]
- Chaudhari, S.R.; Shirkhedkar, A.A. Application of Plackett-Burman and Central Composite Designs for screening and Optimization of Factor Influencing the chromatographic Conditions of HPTLC Method for quantification of Efonidipine Hydrochloride. J. Anal. Sci. Technol. 2020, 11, 48. [Google Scholar] [CrossRef]
- Karlapudi, A.P.; Krupanidhi, S.; Reddy, R.; Indira, M.M.D.N.B.; Md, N.B.; Venkateswarulu, T.C. Plackett-Burman Design for Screening of Process Components and their Effects on Production of Lactase by Newly Isolated Bacillus. VUVD101 Strain from Dairy Effluent. Beni-Suef Univ. J. Basic Appl. Sci. 2018, 7, 543–546. [Google Scholar] [CrossRef]
- Filgueiras, A.V.; Gago, J.; García, I.; León, V.M.; Viñas, L. Plackett Burman Design for Microplastics Quantification in Marine. Mar. Pollut. Bull. 2021, 162, 111841. [Google Scholar] [CrossRef] [PubMed]
- Fang, M.; Yu, Z.; Zhang, W.; Cao, J.; Liu, W. Friction Coefficient Calibration of Corn Stalk Particle Mixtures Plackett-Burman Design and Response Surface Methodology. Powder Technol. 2022, 396, 731–742. [Google Scholar] [CrossRef]
- Said, K.A.M.; Amin, M.A.M. Overview on the Response Surface Methodology (RSM) in Extraction. J. Appl. Sci. Process Eng. 2015, 2, 8–17. [Google Scholar]
- Li, W.; Yang, H.; Coldea, T.E.; Zhao, H. Modification of Structural and Functional Characteristics of brewer’s Spent Grain Protein by Ultrasound Assisted Extraction. LWT 2021, 139, 110582. [Google Scholar] [CrossRef]
- Pepe, A.; Tito, F.R.; Raúl, D.G.; Guevara, M.G. Optimization of Fibrinogenolytic Activity of Solanum Tuberosum-like Protease (StSBTc-3) by Response Surface. Biotechnol. Rep. 2019, 22, e00330. [Google Scholar] [CrossRef]
- Tito, F.R.; Pepe, A.; Tonón, C.V.; Daleo, G.R.; Guevara, M.G. Optimization of Caseinolytic and Coagulating Activities of Solanum Tuberosum Rennets for Cheese Making. J. Sci. Food Agric. 2023, 103, 6947–6957. [Google Scholar] [CrossRef]
- Sammartino, M. Enzymes in Brewing. Mbaa Tq 2015, 52, 156–164. [Google Scholar]
- Sarker, P.K.; Talukdar, S.A.; Deb Promita and Sayem, S.A.; Mohsina, K. Optimization and Partial Characterization of Culture conditions for the Production of Alkaline Protease from Bacillus P003. Springerplus 2013, 2, 506. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wu, Y.; Guan, R.; Jia Guochao and Ma, Y.; Zhang, Y. Advances in Research on Calf Rennet Substitutes and Their effects on Cheese Quality. Food Res. Int. 2021, 149, 110704. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Vaid, S.; Bhat, B.; Singh, S.; Bajaj, B.K. Thermostable Enzymes for Industrial Biotechnology. In Advances in Enzyme Technology; Elsevier: Amsterdam, The Netherlands, 2019; pp. 469–495. [Google Scholar]
- Connolly, A.; Piggott, C.O.; FitzGerald, R.J. Characterisation of Protein-rich Isolates and Antioxidative Extracts from Pale and Black Brewers’ Spent Grain. Int. J. Food Sci. Technol. 2013, 48, 1670–1681. [Google Scholar] [CrossRef]
- Jaeger, A.; Zannini, E.; Sahin, A.W.; Arendt, E.K. Barley Protein Properties, Extraction and Applications, with a focus on Brewers’ Spent Grain Protein. Foods 2021, 10, 1389. [Google Scholar] [CrossRef]
- Castro, L.E.N.; Colpini, L.M.S. All-around Characterization of Brewers’ Spent Grain. Eur. Food Res. Technol. 2021, 247, 3013–3021. [Google Scholar] [CrossRef]
- Lalor, E.; Goode, D. Brewing with Enzymes. In Enzymes in Food Technology; Wiley-Blackwell: Oxford, UK, 2009; pp. 163–194. [Google Scholar]
- Bamforth, C.W. Current Perspectives on the Role of Enzymes in Brewing. J. Cereal Sci. 2009, 50, 353–357. [Google Scholar] [CrossRef]
- Jones, B.L.; Budde, A.D. How Various Malt Endoproteinase Classes Affect Wort Soluble Levels. J. Cereal Sci. 2005, 41, 95–106. [Google Scholar] [CrossRef]
- Brijs, K.; Trogh, I.; Jones, B.L.; Delcour, J.A. Proteolytic Enzymes in Germinating Rye Grains. Cereal Chem. 2002, 79, 423–428. [Google Scholar] [CrossRef]
- Creamer, L.K.; MacGibbon, A.K.H. Some Recent Advances in the Basic Chemistry of Milk Proteins And. Int. Dairy J. 1996, 6, 539–568. [Google Scholar] [CrossRef]
- Silva, M.d.C.; Costa, R.B.; Nascimento, J.S.D.; Gomes, M.M.O.d.S.; Ferreira, A.N.; Grillo, L.A.M.; da Luz, J.M.R.; Gomes, F.S.; Pereira, H.J.V. Production of Milk-Coagulating Protease by Fungus Pleurotus Djamor through Solid State Fermentation Using Wheat Bran as the Low-Cost Substrate. Prep. Biochem. Biotechnol. 2024, 1–7. [Google Scholar] [CrossRef]
- Harboe, M.; Broe, M.L.; Qvist, K.B. The Production, Action and Application of Rennet and Coagulants. In Technology of Cheesemaking; Wiley-Blackwell: Oxford, UK, 2010; pp. 98–129. [Google Scholar]
- Rojas, L.F.; Zapata, P.; Ruiz-Tirado, L. Agro-Industrial Waste Enzymes: Perspectives in Circular Economy. Curr. Opin. Green Sustain. Chem. 2022, 34, 100585. [Google Scholar] [CrossRef]
- Ravindran, R.; Hassan, S.S.; Williams, G.A.; Jaiswal, A.K. A Review on Bioconversion of Agro-Industrial Wastes to industrially Important Enzymes. Bioengineering 2018, 5, 93. [Google Scholar] [CrossRef] [PubMed]
- Murlidhar, M.; Anusha, R.; Bindhu, O.S. Plant-Based Coagulants in Cheese Making: Review. In Dairy Engineering, 1st ed.; Apple Academic Press: Waretown, NJ, USA, 2017; pp. 3–35. [Google Scholar]
- Gomes, S.; Belo, A.T.; Alvarenga, N.; Dias, J.; Lage, P.; Pinheiro, C.; Pinto-Cruz, C.; Brás, T.; Duarte, M.F.; Martins, A.P. Characterization of Cynara Cardunculus L. Flower from Alentejo as a Coagulant Agent for Cheesemaking. Int. Dairy J. 2019, 91, 178–184. [Google Scholar] [CrossRef]
- Mazorra-Manzano, M.A.; Martin, M.-H.J.; Ramírez-Suarez, J.C.; de Jesús, T.-L.M.; González-Córdova, A.F.; Vallejo-Córdoba, B. Sour Orange Citrus aurantium L. Flowers: A New Vegetable source of Milk-Clotting Proteases. Lebenson. Wiss. Technol. 2013, 54, 325–330. [Google Scholar] [CrossRef]
- Freitas, C.D.T.; Leite, H.B.; Oliveira João, P.B.; Amaral, J.L.; Egito, A.S.; Vairo-Cavalli, S.; Lobo, M.D.P.; Monteiro-Moreira, A.C.O.; Ramos, M.V. Insights into Milk-Clotting Activity of Latex Peptidases from Calotropis Procera and Cryptostegia Grandiflora. Food Res. Int. 2016, 87, 50–59. [Google Scholar] [CrossRef]
- Nitu, S.; Geicu-Cristea, M.; Matei, F. Milk-Clotting Enzymes Obtained from Plants in Cheesemaking—A Review. Sci. Bull. Ser. F. Biotechnol. 2021, 25, 66–75. [Google Scholar]
Variable | Levels | |
---|---|---|
−1 | +1 | |
pH | 5 | 9 |
Temperature (°C) | 30 | 60 |
Homogenization time (min) | 1 | 3 |
DTT (mM) | 0 | 10 |
Triton X-100 (%v/v) | 0 | 5 |
CaCl2 (mM) | 0 | 10 |
Variable | Levels | |
---|---|---|
−1 | +1 | |
pH | 5 | 10 |
Temperature (°C) | 20 | 60 |
CaCl2 (mM) | 0 | 20 |
Run | pH | T (°C) | Homogenization Time (min) | Triton (%v/v) | DTT (mM) | CaCl2 (mM) | CA (U mL−1) | Protein Concentration (mg mL−1) |
---|---|---|---|---|---|---|---|---|
1 | 9 | 30 | 3 | 0.0 | 0 | 0 | 61 | 0.80 |
2 | 9 | 60 | 1 | 5.0 | 0 | 0 | 42 | 1.60 |
3 | 5 | 60 | 3 | 0.0 | 10 | 0 | 31 | 1.00 |
4 | 9 | 30 | 3 | 5.0 | 0 | 10 | 83 | 0.90 |
5 | 9 | 60 | 1 | 5.0 | 10 | 0 | 43 | 1.30 |
6 | 9 | 60 | 3 | 0.0 | 10 | 10 | 65 | 1.20 |
7 | 5 | 60 | 3 | 5.0 | 0 | 10 | 45 | 1.50 |
8 | 5 | 30 | 3 | 5.0 | 10 | 0 | 33 | 0.60 |
9 | 5 | 30 | 1 | 5.0 | 10 | 10 | 51 | 0.55 |
10 | 9 | 30 | 1 | 0.0 | 10 | 10 | 82 | 0.75 |
11 | 5 | 60 | 1 | 0.0 | 0 | 10 | 50 | 0.85 |
12 | 5 | 30 | 1 | 0.0 | 0 | 0 | 55 | 0.35 |
13 | 7 | 45 | 2 | 2.5 | 5 | 5 | 55 | 0.95 |
14 | 7 | 45 | 2 | 2.5 | 5 | 5 | 51 | 1.10 |
15 | 7 | 45 | 2 | 2.5 | 5 | 5 | 60 | 0.90 |
Run | pH | T (°C) | CaCl2 (mM) | CA (U mL−1) | Protein Concentration (mg mL−1) |
---|---|---|---|---|---|
1 | 5 | 20 | 10 | 50 | 0.82 |
2 | 10 | 20 | 10 | 70 | 0.12 |
3 | 5 | 60 | 10 | 45 | 1.38 |
4 | 10 | 60 | 10 | 51 | 0.99 |
5 | 5 | 40 | 0 | 49 | 1.03 |
6 | 10 | 40 | 0 | 55 | 0.48 |
7 | 5 | 40 | 20 | 45 | 0.87 |
8 | 10 | 40 | 20 | 60 | 0.39 |
9 | 7.5 | 20 | 0 | 75 | 0.66 |
10 | 7.5 | 60 | 0 | 60 | 1.87 |
11 | 7.5 | 20 | 20 | 65 | 1.08 |
12 | 7.5 | 60 | 20 | 53 | 1.95 |
13 | 7.5 | 40 | 10 | 85 | 1.08 |
14 | 7.5 | 40 | 10 | 90 | 1.38 |
15 | 7.5 | 40 | 10 | 80 | 1.22 |
CA | Protein Concentration | |
---|---|---|
pH | 7.9 | 7.0 |
T (°C) | 33 | 60 |
CaCl2 (mM) | 9 | Non significant |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Villegas, M.M.; Silva, J.N.; Tito, F.R.; Tonón, C.V.; Muñoz, F.F.; Pepe, A.; Guevara, M.G. From Beer to Cheese: Characterization of Caseinolytic and Milk-Clotting Activities of Proteases Derived from Brewer’s Spent Grain (BSG). Foods 2024, 13, 3658. https://doi.org/10.3390/foods13223658
Villegas MM, Silva JN, Tito FR, Tonón CV, Muñoz FF, Pepe A, Guevara MG. From Beer to Cheese: Characterization of Caseinolytic and Milk-Clotting Activities of Proteases Derived from Brewer’s Spent Grain (BSG). Foods. 2024; 13(22):3658. https://doi.org/10.3390/foods13223658
Chicago/Turabian StyleVillegas, Maximiliano M., Johana N. Silva, Florencia R. Tito, Claudia V. Tonón, Fernando F. Muñoz, Alfonso Pepe, and María G. Guevara. 2024. "From Beer to Cheese: Characterization of Caseinolytic and Milk-Clotting Activities of Proteases Derived from Brewer’s Spent Grain (BSG)" Foods 13, no. 22: 3658. https://doi.org/10.3390/foods13223658
APA StyleVillegas, M. M., Silva, J. N., Tito, F. R., Tonón, C. V., Muñoz, F. F., Pepe, A., & Guevara, M. G. (2024). From Beer to Cheese: Characterization of Caseinolytic and Milk-Clotting Activities of Proteases Derived from Brewer’s Spent Grain (BSG). Foods, 13(22), 3658. https://doi.org/10.3390/foods13223658