Antibiotic Residues in Raw Cow’s Milk: A Systematic Review of the Last Decade
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy and Selection Criteria
2.2. Inclusion and Exclusion Criteria
2.3. Data Extraction and Analysis
2.4. Quality Assessment
3. Results and Discussion
3.1. The Survey Process
3.2. Data and Characteristics of the Included Studies
3.2.1. Residual Antibiotic Rate
3.2.2. Detection Methods
3.2.3. Composition, Physicochemical, and Microbiological Analyses
3.2.4. Risk and Effects of Antibiotic Residues
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Food and Agriculture Organization of the United Nations (FAO). Dairy Market Review: Overview of Global Market Developments in 2023; FAO: Rome, Italy, 2024. [Google Scholar]
- Lin, T.; MEletharayil, G.; Kapoor, R.; Abbaspourrad, A. Bioactives in bovines milk: Chemistry, technology, and applications. Nutr. Rev. 2021, 79 (Suppl. S2), 48–69. [Google Scholar] [CrossRef] [PubMed]
- FAO. Food Agriculture Organization of the United Nations. Gateway to Dairy Production and Products. 2023. Available online: https://www.fao.org/dairy-production-products/products/en/ (accessed on 12 July 2024).
- Obiebe, T.; Odey, J.; Tanimowo, W.O.; Afolabi, K.O.; Jahid, I.K.; Reuben, R.C. Antimicrobial use and resistance in food animal production: Food safety and associated concerns in Sub-Saharan Africa. Int. Microbiol. 2023, 27, 1–23. [Google Scholar]
- World Organisation for Animal Health (WOAH). OIE Standards, Guidelines and Resolutions on Antimicrobial Resistance and the Use of Antimicrobial Agents; WOAH: Paris, France, 2023. [Google Scholar]
- Mulchandani, R.; Wang, Y.; Gilbert, M.; Van Boeckel, T.P. Global trends in antimicrobial use in food-producing animals: 2020 to 2030. PLoS Glob. Public Health 2023, 3, e0001305. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization of the United Nations (FAO) and World Health Organization (WHO). Codex Alimentarius—Milk and Milk Products, 2nd ed.; FAO & WHO: Rome, Italy, 2022. [Google Scholar]
- European Commission. Guidelines on Data Requirements for Setting Maximum Residue Levels, Comparability of Residue Trials and Extrapolation of Residue Data on Products from Plant and Animal Origin; European Commission: Brussels, Belgium, 2023. [Google Scholar]
- Estany-Gestal, A.; Salgado-Barreira, A.; Vazquez-Lago, J.M. Antibiotic Use and Antimicrobial Resistance: A Global Public Health Crisis. Antibiotics 2024, 12, 900. [Google Scholar] [CrossRef] [PubMed]
- Wordl Health Organization (WHO). 2023 Antibacterial Agents in Clinical and Preclinical Development: An Overview and Analysis; World Health Organization: Geneva, Switzerland, 2024. [Google Scholar]
- Rollin, E.; Dhuyvetter, K.C.; Overton, M.W. The cost of clinical mastitis in the first 30 days of lactation: An economic modeling tool. Prev. Vet. Med. 2015, 122, 257–264. [Google Scholar] [CrossRef]
- World Health Organization (WHO). One Health: A holistic approach to health and well-being. Wkly. Epidemiol. Rec. 2023, 1, 621–652. [Google Scholar]
- Matore, Z.; Estévez-Moreno, A. Drivers and indicators of dairy animal welfare in large-scale dairies. Trop. Anim. Health Prod. 2023, 55, 43–55. [Google Scholar] [CrossRef]
- Kapoor, S.; Goel, A.D.; Jain, V. Milk-borne diseases through the lens of one health. Front. Microbiol. 2023, 14, 1041051. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (FAO). Food Safety and Quality: Ensuring the Absence of Pathogens and Contaminants in Milk Production; FAO: Rome, Italy, 2023. [Google Scholar]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Moher, D. Updating guidance for reporting systematic reviews: Development of the PRISMA 2020 statement. J. Clin. Epidemiol. 2021, 134, 103–112. [Google Scholar] [CrossRef]
- Ngasala, J.U.; Nonga, H.E.; Mtambo, M.M.A. Assessment of raw milk quality and stakeholders’ awareness on milk-borne health risks in Aruscha City and Meru District, Tanzania. Trop. Anim. Health. Prod. 2015, 47, 927–932. [Google Scholar] [CrossRef]
- Ondieki, G.K.; Ombui, J.N.; Obonyo, M.; Gura, Z.; Githuku, J.; Orinde, A.B.; Gikunju, J.K. Antimicrobial residues and compositional quality of informally marketed raw cow milk, Lamu West Sub-County, Kenya, 2015. Pan. Afr. Med. J. 2017, 28, 5. [Google Scholar] [CrossRef] [PubMed]
- Orwa, J.D.; Matofari, J.W.; Muliro, P.S.; Lamuka, P. Assessment of sulphonamides and tetracyclines antibiotic residue contaminants in rural and peri urban dairy value chains in Kenya. Int. J. Food Contam. 2017, 4, 5. [Google Scholar] [CrossRef]
- Joubrane, K.; Jammoul, A.; Daher, R.; Ayoub, S.; El Jed, M.; Hneino, M.; El Hawari, K.; Al Iskandarani, M.; Daher, Z. Microbiological contamination, antimicrobial residues, and antimicrobial resistance in raw bovine milk in Lebanon. Int. Dairy J. 2022, 134, 105455. [Google Scholar] [CrossRef]
- Pugajeva, I.; Ikkere, L.E.; Judjallo, E.; Bartkevics, V. Determination of residues and metabolites of more than 140 pharmacologically active substances in meat by liquid chromatography coupled to high resolution Orbitrap mass spectrometry. J. Pharm. Biomed. 2019, 166, 252–263. [Google Scholar] [CrossRef] [PubMed]
- Mahmoudi, R.; Asadpour, R.; Alamoti, M.R.P.; Golchin, A.; Kiyani, R.; Pour, M.; Altafy, R. Raw cow milk quality: Relationship between antibiotic residue and somatic cell count. Int. Food Res. J. 2013, 6, 3347–3350. [Google Scholar]
- Angicano, M.M.; Braga, A.P.; Aroeira, L.J.M.; Rangel, A.H.N.; Silva, M.S. Cattle milk quality in the Semiarid region of Rio Grande do Norte, Brazil. Semin. Ciênc. Agrár. 2015, 4, 2809–2818. [Google Scholar] [CrossRef]
- Ürkek, B.; Şengul1, M.; Erkaya, T. Prevalence and Comparing of Some Microbiological Properties, Somatic Cell Count and Antibiotic Residue of Organic and Conventional Raw Milk Produced in Turkey. Korean J. Food Sci. Anim. Resour. 2017, 2, 264–273. [Google Scholar] [CrossRef]
- Gwandu, S.H.; Nonga, H.E.; Mdegela, R.H.; Katakweba, A.S.; Suleiman, T.S.; Ryoba, R. Assessment of Raw Cow Milk Quality in Smallholder Dairy Farms in Pemba Island Zanzibar, Tanzania. Vet. Med. Int. 2018, 1031726. [Google Scholar] [CrossRef]
- Moudgil, P.; Bedi, J.S.; Aulakh, R.S. Antibiotic residues and mycotoxins in raw milk in Punjab (India): A rising concern for food safety. J. Food. Sc. Technol. 2019, 11, 5146–5151. [Google Scholar] [CrossRef]
- Oliveira, A.C.; Souza, F.N.; Sant’Anna, F.M. Temporal and geographical comparison of bulk tank milk and water microbiota composition in Brazilian dairy farms. Food Microbiol. 2021, 98, 103793. [Google Scholar] [CrossRef]
- Zeghilet, N.; Bouchoucha, B.; Bouaziz, O. βeta-lactam and Tetracycline Antibiotic Residues in Cow Milk in the Constantine region, Algeria. Vet. Stanica 2022, 53, 3. [Google Scholar] [CrossRef]
- Raza, M.A.; Durrani, A.Z.; Saleem, M.H.; Ashraf, K.; Ali, M.M.; Akhtar, K.H.; Rubab, N. Detection of Antibiotic Residues of Penicillin and Oxytetracycline in Milk. Punjab Univ. J. Zool 2022, 141, 48. [Google Scholar] [CrossRef]
- Hajrulai-Musliu, Z.; Uzunov, R.; Jovanov, S.; Kerluku, M.; Jankuloski, D.; Stojkovski, V.; Pendovski, L.; Sasanya, J.J. Determination of veterinary drug residues, mycotoxins, and pesticide residues in bovine milk by liquid chromatography electrospray ionisation–tandem mass spectrometry. J. Vet. Res. 2022, 66, 215–224. [Google Scholar] [CrossRef] [PubMed]
- Sora, V.M.; Panseri, S.; Nobile, M.; Di Cesare, F.; Meroni, G.; Chiesa, L.M.; Zecconi, A. Milk Quality and Safety in a One Health Perspective: Results of a Prevalence Study on Dairy Herds in Lombardy (Italy). Life 2022, 12, 786. [Google Scholar] [CrossRef] [PubMed]
- Meklati, F.R.; Panara, A.; Hadef, A.; Meribai, A.; Ben-Mahdi, M.H.; Desenaki; Thomaidis, N.S. Comparative Assessment of Antibiotic Residues Using Liquid Chromatography Coupled with Tandem Mass Spectrometry (LC-MS/MS) and a Rapid Screening Test in Raw Milk Collected from the North-Central Algerian Dairies. Toxics 2022, 10, 19. [Google Scholar] [CrossRef] [PubMed]
- Butovskaya, E.; Gambi, L.; Giovanetti, A.; Fedrizzi, G. Screening of antibiotic residues in raw bovine milk in Lombardy, Italy: Microbial growth inhibition assay and LC-HRMS technique integration for an accurate monitoring. Heliyon 2023, 9, 15395. [Google Scholar] [CrossRef]
- Sachi, S.; Ferdous, J.; Sikder, M.H.; Hussani, S.M.A.K. Antibiotic residues in milk: Past, present, and future. J. Adv. Vet. Anim. Res. 2019, 3, 315–332. [Google Scholar] [CrossRef]
- Van Boeckel, T.P.; Charles, B.; Marius, G.; Grenfell, B.T.; Levin, S.A.; Robinson, T.P.; Teillant, A.; Laxminarayan, R. Global trends in antimicrobial use in food animals. Proc. Natl. Acad. Sci. USA 2015, 18, 5649–5654. [Google Scholar] [CrossRef]
- Tian, L.; Khalil, S.; Bayen, S. Effect of thermal treatments on the degradation of antibiotic residues in food. Crit. Rev. Food Sci. Nutr. 2017, 57, 3760–3770. [Google Scholar] [CrossRef]
- Lu, G.; Chen, Q.; Liu, Y.; Zhang, Y.; Huang, Y.; Zhu, L. Status of antibiotic residues and detection techniques used in Chinese milk: A systematic review based on cross-sectional surveillance data. Food Res. Int. 2021, 147, 110450. [Google Scholar] [CrossRef]
- Cobirka, M.; Tancin, V.; Slama, P. Epidemiology and Classification of Mastitis. Animals 2020, 10, 2212. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Ying, G.G.; Deng, W.J. Antibiotic Residues in Food: Extraction, Analysis, and Human Health Concerns. J. Agric. Food Chem. 2019, 67, 7569–7586. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Antimicrobial Resistance in Africa: A One Health Approach; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Dube, P.S.; Legoabe, L.J.; Beteck, R.M. Quinolone: A versatile therapeutic compound class. Mol. Divers. 2022, 27, 1501–1526. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Peng, D.; Liu, Q.; Shabbir, M.A.B.; Sajid, A.; Liu, Z.; Wang, Y.; Yuan, Z. A novel microbiological method in microtiter plates for screening seven kinds of widely used antibiotics residues in milk, chicken egg and honey. Front. Microbiol. 2019, 10, 436. [Google Scholar] [CrossRef] [PubMed]
- Bion, A.B.; Henzelin, Y.; Qu, G.; Pizzocri, G.; Bolzoni, G.; Buffoli, E. Analysis of 27 antibiotic residues in raw cow’s milk and milk-based products-validation of delvotest® T. Food Addit. Contam Part A Chem. Anal. Control. Exp. Risk Assess. 2015, 33, 54–59. [Google Scholar] [CrossRef] [PubMed]
- Serraino, F.; Giacometti, G.; Marchetti, A.V.; Zambrini, A.V.; Zanirato, G.; Fustini, M.; Rosmini, R. Survey on antimicrobial residues in raw milk and antimicrobial use in dairy farms in the Emilia-Romagna region, Italy. Ital. J. Anim. Sci. 2013, 12, 422–425. [Google Scholar] [CrossRef]
- Majdinasab, M.; Mishra, R.K.; Tang, X.; Marty, J.M. Detection of antibiotics in food: New achievements in the development of biosensors. TrAC Trends Anal. Chem. 2020, 127, 115883. [Google Scholar] [CrossRef]
- Teixeira, R.C.; Luiz, L.C.; Junqueira, G.M.A.; Bell, M.J.V.; Anjos, V.C. Detection of antibiotic residues in Cow’s milk: A theoretical and experimental vibrational study. J. Mol. Struct. 2020, 1215, 128221. [Google Scholar] [CrossRef]
- Osman, M.; Al Mir, H.; Rafei, R.; Dabboussi, F.; Madec, J.Y.; Haenni, M.; Hamze, M. Epidemiology of antimicrobial resistance in Lebanese extra-hospital settings: An overview. J. Glob. Antimicrob. Resist. 2019, 17, 123–129. [Google Scholar] [CrossRef]
Authorship, Year | Country of Origin of the Study | Type of Sample Analyzed | Sample Source |
---|---|---|---|
Mahmoudi et al. [22], 2013 | Iran | Unspecified * | Dairy farms (unspecified *) |
Ngasala et al. [17], 2015 | Tanzania | Refrigerated raw milk | Small dairy farms (unspecified *), milk suppliers and resellers |
Angicano [23], 2015 | Brazil | Refrigerated raw milk | Cooling tank |
Ürkek et al. [24], 2017 | Turkey | Refrigerated raw milk | Cooling tanks (9 conventional and 9 organic farms) |
Ondieki [18], 2017 | Kenya | Refrigerated raw milk | Dairy farms (unspecified *) and milk suppliers |
Orwa et al. [19], 2017 | Kenya | Refrigerated raw milk | Dairy farms (unspecified *), dairy farms (individual samples), conveyors, and silos. |
Gwandu et al. [25], 2018 | Tanzania | Frozen raw milk | Small dairy farms (unspecified *) |
Moudgil et al. [26] 2019 | India | Frozen raw milk | Individuals (cows) |
Oliveira et al. [27], 2021 | Brazil | Refrigerated raw milk | Cooling tanks |
Zeghilet et al. [28], 2022 | Argelia | Unspecified * | Milk collectors |
Joubrane [20], 2022 | Lebanon | Refrigerated raw milk | Small to large farms (unspecified *), collection centers, cooperatives and street vendors |
Raza et al. [29], 2022 | Pakistan | Refrigerated raw milk | Cooling tank |
Hajrulai-Musliu et al. [30], 2022 | North Macedonia | Refrigerated raw milk | Dairy farms (unspecified *) |
Sora et al. [31], 2022 | Italy | Frozen raw milk | Dairy farms (unspecified *) |
Meklati et al. [32], 2022 | Argelia | Frozen raw milk, Refrigerated raw milk | Dairy industries |
Butovskaya et al. [33], 2023 | Italy | Frozen raw milk, Refrigerated raw milk | Dairy farms (unspecified *) |
Author | Number of Samples | Positive Samples | Positive Samples (%) |
---|---|---|---|
Mahmoudi [22] | 200 | 115 | 57.70 |
Ngasala [17] | 35 | 0 | 0 |
Angicano et al. [23] | 920 | 0 | 0 |
Ürkek et al. [24] | Conventional farms: 50; Organic farms: 47 | Conventional farms: 1; Organic farms: 2 | Conventional farms: 2.00; Organic farms: 4.23 |
Ondieki [18] | Farms: 207; Suppliers: 152 | Farms: 32; Suppliers: 28 | Farms: 15.50; Suppliers: 18.40 |
Orwa [19] | 309 | 95 | 30.74 |
Gwandu et al. [25] | 98 | 81 | 82.70 |
Moudgil et al. [26] | 168 | 19 | 11.30 |
Oliveira et al. [27] | 22 | 0 | 0 |
Zeghilet et al. [28] | 109 | 11 | 10.09 |
Joubrane [20] | 84 | 14 | 16.67 |
Raza et al. [29] | 200 | 41 | 20.50 |
Hajrulai-Musliu et al. [30] | 120 | 5 | 4.16 |
Sora et al. [31] | 331 | 7 | 2.11 |
Meklati et al. [32] | Kit BetaStar®: 445; LC-MS/MS: 52 * | BetaStar®: 34; LC-MS/MS: 47 * | BetaStar®: 7.64; LC-MS/MS: 90.4 * |
Butovskaya et al. [33] | Delvotest® SP-NT: 408,033; HPLC: 100 * | Delvotest® SP-NT: 364; HPLC: 54 * | Delvotest® SP-NT: 0.09; HPLC: 54 * |
Total | 411,530 | 849 | 0.21 |
Authorship | Physicochemical or Microbiological Analysis |
---|---|
Mahmoudi et al. [22] | Somatic cell count (SCC) |
Ngasala et al. [17] | pH, acidity, density, and total viable count |
Angicano et al. [23] | Fat, protein, casein, lactose, total solids, solids not-fat, freezing point, urea, and SCC |
Ürkek et al. [24] | SCC, Total aerobic mesophilic bacteria count, coliforms, yeasts, molds, and coagulase-positive S. aureus |
Ondieki et al. [18] | Added water, fat, solids not-fat, protein, specific gravity, and freezing point |
Gwandu et al. [25] | pH, acidity, density, ash, fat, total solids, total viable count, and total coliforms |
Moudgil et al. [26] | Mycotoxins (aflatoxin M1 and ochratoxin A) |
Oliveira et al. [27] | SCC, standard plate count (SPC), microbiome, psychrotrophic microorganism count, and differential bacterial count |
Joubrane et al. [20] | Count of total aerobic mesophilic bacteria, total coliforms, E. coli, S. aureus, L. monocytogenes, Salmonella spp., and b-hemolytic streptococci |
Sora et al. [31] | SCC, fat, protein, extraction, identification, and quantification of S. aureus, S. Agalactiae and M. Bovis |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Costa, L.V.; Gebara, C.; Zacaroni, O.d.F.; Freitas, N.E.; Silva, A.N.d.; Prado, C.S.; Nunes, I.A.; Cavicchioli, V.Q.; Duarte, F.O.S.; Lage, M.E.; et al. Antibiotic Residues in Raw Cow’s Milk: A Systematic Review of the Last Decade. Foods 2024, 13, 3758. https://doi.org/10.3390/foods13233758
Costa LV, Gebara C, Zacaroni OdF, Freitas NE, Silva ANd, Prado CS, Nunes IA, Cavicchioli VQ, Duarte FOS, Lage ME, et al. Antibiotic Residues in Raw Cow’s Milk: A Systematic Review of the Last Decade. Foods. 2024; 13(23):3758. https://doi.org/10.3390/foods13233758
Chicago/Turabian StyleCosta, Lucyana Vieira, Clarice Gebara, Ozana de Fátima Zacaroni, Natylane Eufransino Freitas, Adriele Nascimento da Silva, Cristiano Sales Prado, Iolanda Aparecida Nunes, Valéria Quintana Cavicchioli, Francine Oliveira Souza Duarte, Moacir Evandro Lage, and et al. 2024. "Antibiotic Residues in Raw Cow’s Milk: A Systematic Review of the Last Decade" Foods 13, no. 23: 3758. https://doi.org/10.3390/foods13233758
APA StyleCosta, L. V., Gebara, C., Zacaroni, O. d. F., Freitas, N. E., Silva, A. N. d., Prado, C. S., Nunes, I. A., Cavicchioli, V. Q., Duarte, F. O. S., Lage, M. E., Alencar, F. R. d., Machado, B. A. S., Hodel, K. V. S., & Minafra, C. (2024). Antibiotic Residues in Raw Cow’s Milk: A Systematic Review of the Last Decade. Foods, 13(23), 3758. https://doi.org/10.3390/foods13233758