Debranched Lentil Starch–Sodium Alginate-Based Encapsulated Particles of Lacticaseibacillus rhamnosus GG: Morphology, Structural Characterization, In Vitro Release Behavior, and Storage Stability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Debranched Lentil Starch (DBS) with Short Chain Length
2.3. Preparation of LGG Bacterial Suspensions
2.4. Preparation of Encapsulate LGG Particles
2.5. Determination of the Content of Amylose and RS
2.6. High-Performance Size-Exclusion Chromatography (HPSEC)
2.7. X-Ray Diffraction (XRD)
2.8. Solid-State 13C Cross-Polarization and Magic Angle Spinning Nuclear Magnetic Resonance (13C CP/MAS NMR)
2.9. Fourier-Transform Infrared Spectroscopy (FT-IR)
2.10. Scanning Electron Microscope (SEM)
2.11. Confocal Laser Scanning Microscope (CLSM)
2.12. Encapsulation Efficiency (EE) and Encapsulation Yield (EY)
2.13. Tolerance of Encapsulated LGG Under Simulated Gastrointestinal Conditions
2.14. Storage Stability
2.15. Statistical Analysis
3. Results and Discussion
3.1. Amylose and RS Content
3.2. Molecular Weight Distribution by HPSEC
3.3. Crystallinity by XRD
3.4. Structural Conformation by 13C CP/MAS NMR
3.5. Molecular Order by FT-IR
3.6. Morphological Characteristics by SEM
3.7. Morphological Characteristics by CLSM
3.8. Encapsulation Efficiency (EE) and Encapsulation Yield (EY) of Encapsulated LGG Particles
3.9. The Tolerance of Encapsulated LGG Under Simulated Gastrointestinal Conditions
3.10. Storage Stability of Encapsulated LGG Particles
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, X.Y.; Hu, R.Q.; Lin, F.; Yang, T.; Lu, Y.W.; Sun, Z.J.; Li, T.Y.; Chen, J. Lactobacillus reuteri or Lactobacillus rhamnosus GG intervention facilitates gut barrier function, decreases corticosterone and ameliorates social behavior in LPS-exposed offspring. Food Res. Int. 2024, 197, 1115212. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Jiao, T.; Xu, Y.; Li, D.Z.; Si, Q.; Hao, J.F.; Zhao, J.X.; Zhang, H.; Chen, W. Bifidobacterium adolescentis and Lactobacillus rhamnosus alleviate non-alcoholic fatty liver disease induced by a high-fat, high-cholesterol diet through modulation of different gut microbiota-dependent pathways. Food Funct. 2020, 11, 6115. [Google Scholar] [CrossRef] [PubMed]
- Jang, H.R.; Park, H.J.; Kang, D.; Chung, H.; Nam, M.H.; Lee, Y.; Park, J.H.; Lee, H.Y. A protective mechanism of probiotic Lactobacillus against hepatic steatosis via reducing host intestinal fatty acid absorption. Exp. Mol. Med. 2019, 51, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Li, Y.; Wan, Y.; Hu, T.; Liu, L.; Yang, S.; Gong, Z.; Zeng, Q.; Wei, Y.; Yang, W.; et al. A novel postbiotic from Lactobacillus rhamnosus GG with a beneficial effect on intestinal barrier function. Front. Microbiol. 2019, 10, 477. [Google Scholar] [CrossRef]
- Barajas-Álvarez, P.; González-Ávila, M.; Espinosa-Andrews, H. Recent advances in probiotic encapsulation to improve viability under storage and gastrointestinal conditions and their impact on functional food formulation. Food Rev. Int. 2021, 39, 992–1013. [Google Scholar] [CrossRef]
- Akanny, E.; Bourgeois, S.; Bonhommé, A.; Commun, C.; Doleans-Jordheim, A.; Bessueille, F.; Bordes, C. Development of enteric polymer-based microspheres by spray-drying for colonic delivery of Lactobacillus rhamnosus GG. Int. J. Pharm. 2020, 584, 119414. [Google Scholar] [CrossRef]
- Jacob, P.L.; Brugnoli, B.; Giudice, A.D.; Phan, H.; Chauhan, V.M.; Beckett, L.; Gillis, R.B.; Moloney, C.; Cavanagh, R.J.; Krumins, E.; et al. Poly (Diglycerol adipate) variants as enhanced nanocarrier replacements in drug delivery applications. J. Colloid Interface Sci. 2023, 641, 1043–1057. [Google Scholar] [CrossRef]
- Ab’Lah, N.; Yusuf, C.Y.L.; Rojsitthisak, P.; Wong, T.W. Reinvention of starch for oral drug delivery system design. Int. J. Biol. Macromol. 2023, 241, 124506. [Google Scholar] [CrossRef]
- Chang, R.; Li, M.; Wang, Y.F.; Chen, H.H.; Xiao, J.X.; Xiong, L.; Qiu, L.Z.; Bian, X.L.; Sun, C.R.; Sun, Q.J. Retrogradation behavior of debranched starch with different degrees of polymerization. Food Chem. 2019, 297, 125001. [Google Scholar] [CrossRef]
- Wang, D.; Zhao, M.; Wang, Y.; Mu, H.; Sun, C.; Chen, H.; Sun, Q. Research Progress on Debranched Starch: Preparation, Characterization, and Application. Food Rev. Int. 2022, 39, 6887–6907. [Google Scholar] [CrossRef]
- Gasiński, A.; Kawa-Rygielska, J. Mashing quality and nutritional content of lentil and bean malts. LWT-Food Sci. Technol. 2022, 169, 113927. [Google Scholar] [CrossRef]
- Joshi, M.; Aldred, P.; McKnight, S.; Panozzo, J.F.; Kasapis, S.; Adhikari, R.; Adhikari, B. Physicochemical and functional characteristics of lentil starch. Carbohydr. Polym. 2013, 92, 1484–1496. [Google Scholar] [CrossRef] [PubMed]
- Thakur, M.; Sharma, N.; Rai, A.K.; Singh, S.P. A novel cold-active type I pullulanase from a hot-spring metagenome for effective debranching and production of resistant starch. Bioresour. Technol. 2021, 320, 124288. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Cano, B.; Mendoza-Meneses, C.J.; García-Trejo, J.F.; Macías-Bobadilla, G.; Aguirre-Becerra, H.; Soto-Zarazúa, G.M.; Feregrino-Pérez, A.A. Review and Perspectives of the Use of Alginate as a Polymer Matrix for Microorganisms Applied in Agro-Industry. Molecules 2022, 27, 4248. [Google Scholar] [CrossRef]
- Abka-khajouei, R.; Tounsi, L.; Shahabi, N.; Patel, A.K.; Abdelkafi, S.; Michaud, P. Structures, Properties and Applications of Alginates. Mar. Drugs 2022, 20, 364. [Google Scholar] [CrossRef]
- Xu, C.; Ban, Q.F.; Wang, W.; Hou, J.C.; Jiang, Z.M. Novel nano-encapsulated probiotic agents: Encapsulate materials, delivery, and encapsulation systems. J. Control. Release. 2022, 349, 184–205. [Google Scholar] [CrossRef]
- Kwoak, C.S.; Kim, S.J.; Kim, C.S. Microencapsulation of Lactobacillus plantarum ATCC 8014 and Bifidobacterium bifidum ATCC 1903 in alginate blended with starch by extrusion technique. Indian J. Anim. Sci. 2022, 92, 136–138. [Google Scholar] [CrossRef]
- Thangrongthong, S.; Puttarat, N.; Ladda, B.; Itthisoponkul, T.; Pinket, W.; Kasemwong, K.; Taweechotipatr, M. Microencapsulation of probiotic Lactobacillus brevis ST-69 producing GABA using alginate supplemented with nanocrystalline starch. Food Sci. Biotechnol. 2020, 29, 1475–1482. [Google Scholar] [CrossRef]
- Oberoi, K.; Tolun, A.; Altintas, Z.; Sharma, S. Effect of alginate-microencapsulated hydrogels on the survival of Lactobacillus rhamnosus under simulated gastrointestinal conditions. Foods 2021, 10, 1999. [Google Scholar] [CrossRef]
- Bodjrenou, D.M.; Li, X.; Chen, W.; Zhang, Y.; Zheng, B.; Zeng, H. Effect of Pullulanase Debranching Time Combined with Autoclaving on the Structural, Physicochemical Properties, and In Vitro Digestibility of Purple Sweet Potato Starch. Foods 2022, 11, 3779. [Google Scholar] [CrossRef]
- Duyen, T.T.M.; Hung, P.V. Morphology, crystalline structure and digestibility of debranched starch nanoparticles varying in average degree of polymerization and fabrication methods. Carbohydr. Polym. 2021, 256, 117424. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.; Yang, J.; Liu, W.; Gu, Z.; Li, Z.F.; Cheng, L.; Li, C.M.; Duan, X.J. Sustained release of tea polyphenols from a debranched corn starch-xanthan gum complex carrier. LWT-Food Sci. Technol. 2019, 103, 325–332. [Google Scholar] [CrossRef]
- Xu, J.; Ma, Z.; Ren, N.; Li, X.; Liu, L.; Hu, X. Understanding the multi-scale structural changes in starch and its physicochemical properties during the processing of chickpea, navy bean, and yellow field pea seeds. Food Chem. 2019, 289, 582–590. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Sweedman, M.C.; Shi, Y.C. Structural changes and digestibility of waxy maize starch debranched by different levels of pullulanase. Carbohydr. Polym. 2018, 194, 350–356. [Google Scholar] [CrossRef] [PubMed]
- Morsy, M.K.; Morsy, O.M.; Abdelmonem, M.J.A.; Elsabagh, R. Aanthocyanin-ccolored microencapsulation effects on survival rate of Lactobacillus rhamnosus GG, color Stability, and sensory parameters in strawberry nectar model. Food Bioproc. Tech. 2022, 15, 352–367. [Google Scholar] [CrossRef]
- Zhou, D.; Ma, Z.; Xu, J.; Li, X.; Hu, X. Resistant starch isolated from enzymatic, physical, and acid treated pea starch: Preparation, structural characteristics, and in vitro bile acid capacity. LWT-Food Sci. Technol. 2019, 116, 108541. [Google Scholar] [CrossRef]
- Yin, X.; Ma, Z.; Hu, X.; Li, X.; Boye, J.I. Molecular rearrangement of Laird lentil (Lens culinaris Medikus) starch during different processing treatments of the seeds. Food Hydrocoll. 2018, 79, 399–408. [Google Scholar] [CrossRef]
- Bakry, A.M.; Huang, J.; Zhai, Y.; Huang, Q. Myofibrillar protein with κ- or λ-carrageenans as novel shell materials for microencapsulation of tuna oil through complex coacervation. Food Hydrocoll. 2019, 96, 43–53. [Google Scholar] [CrossRef]
- Martin, M.J.; Lara-Villoslada, F.; Ruiz, M.A.; Morales, M.E. Effect of unmodified starch on viability of alginate-encapsulated Lactobacillus fermentum CECT5716. LWT-Food Sci. Technol. 2013, 53, 480–486. [Google Scholar] [CrossRef]
- Bi, H.; Xu, Y.; Fan, F.; Sun, X. Effect of drying methods on Lactobacillus rhamnosus GG microcapsules prepared using the complex coacervation method. J. Food Sci. 2022, 87, 1282–1291. [Google Scholar] [CrossRef]
- Ren, N.; Ma, Z.; Li, X.; Hu, X. Preparation of rutin-loaded microparticles by debranched lentil starch-based wall materials: Structure, morphology and in vitro release behavior. Int. J. Biol. Macromol. 2021, 173, 293–306. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.H.; Lin, Y. The impact of coupled acid or pullulanase debranching on the formation of resistant starch from maize starch with autoclaving–cooling cycles. Eur. Food Res. Technol. 2009, 230, 179–204. [Google Scholar] [CrossRef]
- Li, L.; Jiang, H.X.; Campbell, M.; Blanco, M.; Jane, J.L. Characterization of maize amylose-extender (ae) mutant starches. Part I: Relationship between resistant starch contents and molecular structures. Carbohydr. Polym. 2008, 74, 396–404. [Google Scholar] [CrossRef]
- Lin, J.H.; Wang, S.W.; Chang, Y.H. Impacts of acid-methanol treatment and annealing on the enzymatic resistance of corn starches. Food Hydrocoll. 2009, 23, 1465–1472. [Google Scholar] [CrossRef]
- Vasanthan, T.; Bhatty, R.S. Enhancement of resistant starch (RS3) in amylomaize, barley, field pea and lentil starches. Starch Stärke 1998, 50, 286–291. [Google Scholar] [CrossRef]
- Buléon, A.; Colonna, P.; Planchot, V.; Ball, S. Starch granules: Structure and biosynthesis. Int. J. Biol. Macromol. 1998, 23, 85–112. [Google Scholar] [CrossRef]
- Pérez, S.; Bertoft, E. The molecular structures of starch components and their contribution to the architecture of starch granules: A comprehensive review. Starch Stärke 2010, 62, 389–420. [Google Scholar] [CrossRef]
- Liu, G.; Gu, Z.; Hong, Y.; Cheng, L.; Li, C. Structure, functionality and applications of debranched starch: A review. Trends Food Sci. Tech. 2017, 63, 70–79. [Google Scholar] [CrossRef]
- Liu, G.D.; Hong, Y.; Gu, Z.B.; Li, Z.F.; Cheng, L.; Li, C.M. Preparation and characterization of pullulanase debranched starches and their properties for drug controlled-release. RSC Adv. 2015, 5, 97066–97075. [Google Scholar] [CrossRef]
- Ma, Z.; Boye, J.I. Research advances on structural characterization of resistant starch and its structure-physiological function relationship: A review. Crit. Rev. Food Sci. Nutr. 2018, 58, 1059–1083. [Google Scholar] [CrossRef]
- Lopez-Rubio, A.; Flanagan, B.M.; Gilbert, E.P.; Gidley, M.J. A novel approach for calculating starch crystallinity and its correlation with double helix content: A combined XRD and NMR study. Biopolymers 2008, 89, 761–768. [Google Scholar] [CrossRef] [PubMed]
- Cai, L.M.; Bai, Y.J.; Shi, Y.C. Study on melting and crystallization of short-linear chains from debranched waxy starches by in situ synchrotron wide-angle X-ray diffraction. J. Cereal Sci. 2012, 55, 373–379. [Google Scholar] [CrossRef]
- Kiatponglarp, W.; Tongta, S.; Rolland-Sabaté, A.; Buléon, A. Crystallization and chain reorganization of debranched rice starches in relation to resistant starch formation. Carbohydr. Polym. 2015, 122, 108–114. [Google Scholar] [CrossRef] [PubMed]
- Buléon, A.; Véronèse, G.; Putaux, J.L. Self-Association and crystallization of amylose. Aust. J. Chem. 2007, 60, 706–718. [Google Scholar] [CrossRef]
- Haralampu, S.G. Resistant starch—A review of the physical properties and biological impact of RS3. Carbohydr. Polym. 2000, 41, 285–292. [Google Scholar] [CrossRef]
- Cai, L.M.; Shi, Y.C.; Rong, L.X.; Hsiao, B.S. Debranching and crystallization of waxy maize starch in relation to enzyme digestibility. Carbohydr. Polym. 2010, 81, 385–393. [Google Scholar] [CrossRef]
- Barros, F.; Awika, J.M.; Rooney, L.W. Interaction of tannins and other sorghum phenolic compounds with starch and effects on in vitro starch digestibility. J. Agric. Food Chem. 2012, 60, 11609–11617. [Google Scholar] [CrossRef]
- Gidley, M.J.; Bociek, S.M. Molecular organization in starches: A carbon 13 CP/MAS NMR study. J. Am. Chem. Soc. 1985, 107, 7040–7044. [Google Scholar] [CrossRef]
- Zhang, L.; Wei, Y.; Liao, W.Y.; Tong, Z.; Wang, Y.; Liu, J.F.; Gao, Y.X. Impact of trehalose on physicochemical stability of β-carotene high loaded microcapsules fabricated by wet-milling coupled with spray drying. Food Hydrocoll. 2021, 121, 106977. [Google Scholar] [CrossRef]
- Liu, Y.W.; Xu, B.; An, F.; Liu, J. Physicochemical Properties of Cassava Starch-Konjac Glucomannan Composites. Starch Stärke 2021, 73, 2000186. [Google Scholar] [CrossRef]
- Hlaing, M.M.; Wood, B.R.; McNaughton, D.; Ying, D.; Dumsday, G.; Augustin, M.A. Effect of Drying Methods on Protein and DNA Conformation Changes in Lactobacillus rhamnosus GG Cells by Fourier Transform Infrared Spectroscopy. J. Agric. Food Chem. 2017, 65, 1724–1731. [Google Scholar] [CrossRef] [PubMed]
- Zaeim, D.; Sarabi-Jamab, M.; Ghorani, B.; Kadkhodaee, R.; Liu, W.L.; Tromp, R.H. Microencapsulation of probiotics in multi-polysaccharide microcapsules by electro-hydrodynamic atomization and incorporation into ice-cream formulation. Food Struct. 2020, 25, 100147. [Google Scholar] [CrossRef]
- Ma, Z.; Boye, J.I.; Simpson, B.K.; Prasher, S.O.; Monpetit, D.; Malcolmson, L. Thermal processing effects on the functional properties and microstructure of lentil, chickpea, and pea flours. Food Res. Int. 2011, 44, 2534–2544. [Google Scholar] [CrossRef]
- Sivakumar, C.; Stobbs, J.A.; Tu, K.; Karunakaran, C.; Paliwal, J. Unravelling particle morphology and flour porosity of roller-milled green lentil flour using scanning electron microscopy and synchrotron X-ray micro-computed tomography. Powder Technol. 2024, 436, 119470. [Google Scholar] [CrossRef]
- Hassan, H.; Gomaa, A.; Subirade, M.; Kheadr, E.; St-Gelais, D.; Fliss, I. Novel design for alginate/resistant starch microcapsules controlling nisin release. Int. J. Biol. Macromol. 2020, 153, 1186–1192. [Google Scholar] [CrossRef] [PubMed]
- Roy, F.; Boye, J.I.; Simpson, B.K. Bioactive proteins and peptides in pulse crops: Pea, chickpea and lentil. Food Res. Int. 2010, 43, 432–442. [Google Scholar] [CrossRef]
- Sun, Q.; Li, G.; Dai, L.; Ji, N.; Xiong, L. Green preparation and characterisation of waxy maize starch nanoparticles through enzymolysis and recrystallisation. Food Chem. 2014, 162, 223–228. [Google Scholar] [CrossRef]
- Martín, R.; Olivares, M.; Marín, M.L.; Fernández, L.; Xaus, J.; Rodríguez, J.M. Probiotic Potential of 3 Lactobacilli Strains Isolated From Breast Milk. J. Hum. Lact. 2005, 21, 8–17. [Google Scholar] [CrossRef]
- Kailasapathy, K. Survival of free and encapsulated probiotic bacteria and their effect on the sensory properties of yoghurt. LWT-Food Sci. Technol. 2006, 39, 1221–1227. [Google Scholar] [CrossRef]
- Ta, L.P.; Bujna, E.; Antal, O.; Ladányi, M.; Juhász, R.; Szécsi, A.; Kun, S.; Sudheer, S.; Gupta, V.K.; Nguyen, Q.D. Effects of various polysaccharides (alginate, carrageenan, gums, chitosan) and their combination with prebiotic saccharides (resistant starch, lactosucrose, lactulose) on the encapsulation of probiotic bacteria Lactobacillus casei 01 strain. Int. J. Biol. Macromol. 2021, 183, 1136–1144. [Google Scholar] [CrossRef]
- Godward, G.; Kailasapathy, K. Viability and survival of free, encapsulated and co-encapsulated probiotic bacteria in yoghurt. Milchwissenschaft 2003, 58, 396–399. [Google Scholar]
- Etchepare, M.D.A.; Raddatz, G.C.; Flores, E.M.D.M.; Zepka, L.Q.; Jacob-Lopes, E.; Barin, J.S.; Grosso, C.R.F.; Menezes, C.R.D. Effect of resistant starch and chitosan on survival of Lactobacillus acidophilus microencapsulated with sodium alginate. LWT-Food Sci. Technol. 2015, 65, 511–517. [Google Scholar] [CrossRef]
Samples | Amylose Content (%) | Resistant Starch Content (%) | Mw (g/mol) | Mw/Mn |
---|---|---|---|---|
UDBS | 23.20 ± 0.66 d | 13.11 ± 0.02 c | 2.676 × 107 (±0.654%) d | 2.077 (±0.813%) d |
DBS30 | 50.25 ± 0.81 c | 20.63 ± 0.13 b | 7.511 × 105 (±0.215%) c | 1.963 (±0.843%) c |
DBS60 | 65.32 ± 0.49 b | 23.79 ± 0.83 a | 6.633 × 105 (±0.248%) b | 1.809 (±0.819%) b |
DBS90 | 75.44 ± 0.37 a | 23.30 ± 0.34 a | 4.070 × 105 (±0.394%) a | 1.619 (±1.013%) a |
Samples | DO Value by FT-IR | DD Value by FT-IR | Crystallinity by XRD (C1, %) | Crystallinity by 13C NMR (C2, %) | Double-Helix Content by 13C NMR (%) | Single-Helix Content by 13C NMR (%) | PPA by 13C NMR (%) |
---|---|---|---|---|---|---|---|
UDBS | 1.0313 ± 0.0003 b | 1.0030 ± 0.0001 f | 14.26 ± 0.37 f | 22.36 ± 0.04 e | 66.06 ± 0.01 ab | 1.42 ± 0.04 a | 4.93 ± 0.06 bc |
DBS30 | 1.0164 ± 0.0001 f | 1.0045 ± 0.0001 e | 27.71 ± 0.69 c | 36.14 ± 0.67 b | 64.12 ± 0.07 bc | 0.71 ± 0.00 d | 5.09 ± 0.07 ab |
DBS60 | 1.0221 ± 0.0001 d | 1.0121 ± 0.0002 c | 37.42 ± 0.57 a | 43.40 ± 1.09 a | 64.48 ± 0.30 bc | 0.71 ± 0.06 d | 2.39 ± 0.04 g |
DBS90 | 1.0258 ± 0.0008 c | 1.0177 ± 0.0005 b | 30.84 ± 0.18 b | 44.23 ± 0.24 a | 64.61 ± 0.25 bc | 0.92 ± 0.02 c | 3.58 ± 0.20 f |
UDBS-LGG | 1.0170 ± 0.0003 f | 1.0129 ± 0.0005 c | 11.54 ± 0.76 g | 18.51 ± 0.32 f | 63.39 ± 2.91 c | 1.05 ± 0.02 b | 4.57 ± 0.02 d |
DBS30-LGG | 1.0200 ± 0.0003 e | 1.0060 ± 0.0002 d | 23.61 ± 0.37 d | 27.15 ± 1.22 d | 65.40 ± 0.11 abc | 0.71 ± 0.03 d | 4.22 ± 0.04 e |
DBS60-LGG | 1.0194 ± 0.0010 e | 1.0045 ± 0.0015 e | 24.36 ± 0.44 d | 29.33 ± 0.52 c | 65.34 ± 0.01 abc | 0.66 ± 0.01 d | 5.28 ± 0.03 a |
DBS90-LGG | 1.0390 ± 0.0390 a | 1.0267 ± 0.0005 a | 22.01 ± 0.10 e | 37.63 ± 1.92 b | 67.24 ± 1.14 a | 0.49 ± 0.18 e | 4.82 ± 0.28 c |
Samples | Specific Count of Enpasulated Probiotics (log CFU/g) | EE (%) | EY (%) |
---|---|---|---|
UDBS-LGG | 8.72 ± 0.02 c | 69.59 ± 0.60 c | 36.49 ± 2.16 c |
DBS30-LGG | 8.99 ± 0.01 b | 92.26 ± 0.30 b | 68.88 ± 0.72 b |
DBS60-LGG | 9.04 ± 0.01 a | 94.07 ± 0.38 a | 76.64 ± 0.43 a |
DBS90-LGG | 9.05 ± 0.01 a | 94.36 ± 0.15 a | 77.88 ± 0.43 a |
Samples | SGJ-0 (log CFU/g) | SGJ-0.5 (log CFU/g) | SGJ-1 (log CFU/g) | SGJ-2 (log CFU/g) | SIJ-1 (log CFU/g) | SIJ-2 (log CFU/g) | SIJ-4 (log CFU/g) |
---|---|---|---|---|---|---|---|
UDBS-LGG | 7.72 ± 0.02 a | 7.52 ± 0.03 b | 7.48 ± 0.03 b | 7.40 ± 0.03 c | 7.33 ± 0.02 d | 7.30 ± 0.04 de | 7.26 ± 0.01 e |
DBS30-LGG | 7.98 ± 0.01 a | 7.88 ± 0.01 b | 7.86 ± 0.00 c | 7.81 ± 0.00 d | 7.79 ± 0.01 e | 7.74 ± 0.02 f | 7.70 ± 0.02 g |
DBS60-LGG | 8.04 ± 0.05 a | 7.98 ± 0.04 ab | 7.95 ± 0.05 b | 7.92 ± 0.02 bc | 7.87 ± 0.04 c | 7.86 ± 0.04 c | 7.84 ± 0.05 c |
DBS90-LGG | 8.04 ± 0.03 a | 7.98 ± 0.03 b | 7.95 ± 0.03 bc | 7.92 ± 0.04 cd | 7.88 ± 0.03 de | 7.86 ± 0.03 e | 7.86 ± 0.03 e |
Free-LGG | 8.12 ± 0.01 a | 7.83 ± 0.01 a | 7.67 ± 0.01 a | 6.07 ± 0.07 b | 5.34 ± 0.10 b | 4.90 ± 1.18 b | 4.85 ± 1.25 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Hu, X.; Ma, Z. Debranched Lentil Starch–Sodium Alginate-Based Encapsulated Particles of Lacticaseibacillus rhamnosus GG: Morphology, Structural Characterization, In Vitro Release Behavior, and Storage Stability. Foods 2024, 13, 4047. https://doi.org/10.3390/foods13244047
Zhang J, Hu X, Ma Z. Debranched Lentil Starch–Sodium Alginate-Based Encapsulated Particles of Lacticaseibacillus rhamnosus GG: Morphology, Structural Characterization, In Vitro Release Behavior, and Storage Stability. Foods. 2024; 13(24):4047. https://doi.org/10.3390/foods13244047
Chicago/Turabian StyleZhang, Jinxiu, Xinzhong Hu, and Zhen Ma. 2024. "Debranched Lentil Starch–Sodium Alginate-Based Encapsulated Particles of Lacticaseibacillus rhamnosus GG: Morphology, Structural Characterization, In Vitro Release Behavior, and Storage Stability" Foods 13, no. 24: 4047. https://doi.org/10.3390/foods13244047
APA StyleZhang, J., Hu, X., & Ma, Z. (2024). Debranched Lentil Starch–Sodium Alginate-Based Encapsulated Particles of Lacticaseibacillus rhamnosus GG: Morphology, Structural Characterization, In Vitro Release Behavior, and Storage Stability. Foods, 13(24), 4047. https://doi.org/10.3390/foods13244047