The Potential of Edible Insects as a Safe, Palatable, and Sustainable Food Source in the European Union
Abstract
:1. Introduction
2. Edible Species
3. Palatable Foodstuffs Containing Insects
4. Consumer Perception
4.1. Neophobia
4.2. Cultural Influence on the Consumption of Insects as a Food Source
5. A Safe Food Source
5.1. Chemical Hazards
5.1.1. Mycotoxins
5.1.2. Heavy Metals
5.1.3. Veterinary Drugs and Hormones
5.1.4. Pesticide Residues
5.1.5. Accumulation of Pesticides
5.1.6. Dioxins
5.2. Biological Hazards
5.2.1. Bacteria
5.2.2. Viruses
5.2.3. Prions
5.2.4. Parasites
5.3. Allergens
Gluten-Free Food Source
5.4. Physical Hazards
6. Nutritional Composition of Edible Insects
6.1. Macronutrients
6.1.1. Protein
6.1.2. Fat
6.1.3. Fibre
6.2. Antinutrients
6.3. Micronutrients
Vitamins and Minerals
7. Legislative Requirements
8. Sustainable Insect Farming
8.1. Vertical Farming
8.2. Upscaled Production and Slaughter
8.3. Food Security and Sustainability and the Circular Economy
8.4. Insect Welfare
9. Future Perspective and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Van Huis, A.; Van Itterbeeck, J.; Klunder, H. Edible Insects: Future Prospects for Food and Feed Security; FAO: Rome, Italy, 2013; Volume 171, ISBN 9789251075951/9251075956. ISSN 0027753. Available online: https://library.wur.nl/WebQuery/wurpubs/fulltext/258042 (accessed on 22 July 2021).
- Van Huis, A.; Rumpold, B.A.; van der Fels-Klerx, H.J.; Tomberlin, J.K. Advancing edible insects as food and feed in a circular economy. J. Insects Food Feed 2021, 7, 935–948. [Google Scholar] [CrossRef]
- Van Huis, A. Prospects of insects as food and feed. Org. Agric. 2021, 11, 301–308. [Google Scholar] [CrossRef]
- Meyer-Rochow, V.B. Can Insects Help to Ease The Problem of World Food Shortage? Search 1975, 6, 261–262. [Google Scholar]
- Balzan, S.; Fasolato, L.; Maniero, S.; Novelli, E. Edible insects and young adults in a north-east Italian city an exploratory study. Br. Food J. 2016, 118, 318–326. [Google Scholar] [CrossRef]
- Mancini, S.; Moruzzo, R.; Riccioli, F.; Paci, G. European consumers’ readiness to adopt insects as food. A review. Food Res. Int. 2019, 122, 661–678. [Google Scholar] [CrossRef] [PubMed]
- Imathiu, S. Benefits and food safety concerns associated with consumption of edible insects. NFS J. 2019, 18, 1–11. [Google Scholar] [CrossRef]
- Wendin, K.M.; Nyberg, M.E. Factors influencing consumer perception and acceptability of insect-based foods. Curr. Opin. Food Sci. 2021, 40, 67–71. [Google Scholar] [CrossRef]
- Fukutomi, Y.; Kawakami, Y. Respiratory sensitization to insect allergens: Species, components and clinical symptoms. Allergol. Int. 2021, 70, 303–312. [Google Scholar] [CrossRef]
- Mancini, S.; Fratini, F.; Tuccinardi, T.; Degl’Innocenti, C.; Paci, G. Tenebrio molitor reared on different substrates: Is it gluten free? Food Control 2019, 110, 20–23. [Google Scholar] [CrossRef]
- Meyer, A.M.; Meijer, N.; van den Hil, E.F.H.; van der Fels-Klerx, H.J. Chemical food safety hazards of insects reared for food and feed. J. Insects Food Feed 2021, 7, 823–831. [Google Scholar] [CrossRef]
- Murefu, T.R.; Macheka, L.; Musundire, R.; Manditsera, F.A. Safety of wild harvested and reared edible insects: A review. Food Control 2019, 101, 209–224. [Google Scholar] [CrossRef]
- Meyer-Rochow, V.B.; Gahukar, R.T.; Ghosh, S.; Jung, C. Chemical Composition, Nutrient Quality and Acceptability of Edible Insects Are Affected by Species, Developmental Stage, Gender, Diet, and Processing Method. Foods 2021, 10, 1036. [Google Scholar] [CrossRef]
- Van Huis, A. Edible insects: Challenges and prospects. Entomol. Res. 2022, 52, 161–177. [Google Scholar] [CrossRef]
- Belluco, S.; Losasso, C.; Maggioletti, M.; Alonzi, C.C.; Paoletti, M.G.; Ricci, A. Edible insects in a food safety and nutritional perspective: A critical review. Compr. Rev. Food Sci. Food Saf. 2013, 2, 96–313. [Google Scholar] [CrossRef]
- Van der Fels-Klerx, H.J.; Camenzuli, L.; Belluco, S.; Meijer, N.; Ricci, A. Food Safety Issues Related to Uses of Insects for Feeds and Foods. Compr. Rev. Food Sci. Food Saf. 2018, 17, 1172–1183. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Meyer-Rochow, V.B.; Jung, C. What Governs Selection and Acceptance of Edible Insects? In Edible Insects in Sustainable Food Systems; Halloran, A., Flore, R., Vantomme, P., Roos, N., Eds.; Springer: Cham, Switzerland, 2018; pp. 331–351. [Google Scholar]
- Ghosh, S.; Lee, S.M.; Jung, C.; Meyer-Rochow, V.B. Nutritional composition of five commercial edible insects in South Korea. J. Asia Pac. Entomol. 2017, 20, 686–694. [Google Scholar] [CrossRef]
- Mina, G.; Peira, G.; Bonadonna, A. The Potential Future of Insects in the European Food System: A Systematic Review Based on the Consumer Point of View. Foods 2023, 12, 646. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, D.; Zhou, S.; Duan, H.; Guo, J.; Yan, W. Nutritional Composition, Health Benefits and Application Value of Edible Insects: A Review. Foods 2022, 11, 3961. [Google Scholar] [CrossRef]
- Lee, J.E.; Min, S.H.; Lee, D.H.; Oh, T.J.; Kim, K.M.; Moon, J.H.; Choi, S.H.; Park, K.S.; Jang, H.C.; Lim, S. Comprehensive assessment of lipoprotein subfraction profiles according to glucose metabolism status, and association with insulin resistance in subjects with early-stage impaired glucose metabolism. Int. J. Cardiol. 2016, 225, 327–331. [Google Scholar] [CrossRef]
- Sarma, S.; Sockalingam, S.; Dash, S. Obesity as a multisystem disease: Trends in obesity rates and obesity-related complications. Diabetes Obes. Metab. 2021, 23, 3–16. [Google Scholar] [CrossRef]
- Kang, Y.; Applegate, C.C.; He, F.; Oba, P.M.; Vieson, M.D.; Sanchez-Sanchez, L.; Swanson, K.S. Yellow Mealworm (Tenebrio molitor) and Lesser Mealworm (Alphitobius diaperinus) Proteins Slowed Weight Gain and Improved Metabolism of Diet-Induced Obesity Mice. J. Nutr. 2023, 153, 2237–2248. [Google Scholar] [CrossRef] [PubMed]
- Fatahi, S.; Sayyari, A.A.; Salehi, M.; Safa, M.; Sohouli, M.; Shidfar, F.; Santos, H.O. The effects of chitosan supplementation on anthropometric indicators of obesity, lipid and glycemic profiles, and appetite-regulated hormones in adolescents with overweight or obesity: A randomized, double-blind clinical trial. BMC Pediatr. 2022, 22, 527. [Google Scholar] [CrossRef] [PubMed]
- Wu, R.A.; Ding, Q.; Yin, L.; Chi, X.; Sun, N.; He, R.; Luo, L.; Ma, H.; Li, Z. Comparison of the nutritional value of mysore thorn borer (Anoplophora chinensis) and mealworm larva (Tenebrio molitor): Amino acid, fatty acid, and element profiles. Food Chem. 2020, 323, 126818. [Google Scholar] [CrossRef] [PubMed]
- Seo, M.; Goo, T.W.; Chung, M.Y.; Baek, M.; Hwang, J.S.; Kim, M.A.; Yun, E.Y. Tenebrio molitor larvae inhibit adipogenesis through AMPK and MAPKs signaling in 3T3-L1 adipocytes and obesity in high-fat diet-induced obese mice. Int. J. Mol. Sci. 2017, 18, 518. [Google Scholar] [CrossRef]
- Likhitha, P.; Naik, V.C.P.; Moharil, M.P.; Undirwade, D.B.; Kulkarni, U.S.; Kolhe, A.V. Molecular profiling of resistance alleles in Pectinophora gossypiella (Saunders) (Lepidoptera: Gelechiidae) collected from different locations. Egypt. J. Biol. Pest Control 2023, 33, 55. [Google Scholar] [CrossRef]
- Manwanina-Kiumba, N.; Luminet, O.; Chang, B.; Mopendo-Mwisomi, E. Individual and collective factors influencing consumer attitudes and behaviour towards edible insects in Kinshasa: A pilot study. Health Psychol. Behav. Med. 2023, 11, 2229411. [Google Scholar] [CrossRef]
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development United Nations United Nations Transforming Our World: The 2030 Agenda for Sustainable Development. 2015. Available online: https://sdgs.un.org/publications/transforming-our-world-2030-agenda-sustainable-development-17981 (accessed on 1 January 2024).
- UN. United Nations Agenda 2030. 2022. Available online: https://unstats.un.org/sdgs/report/2022/ (accessed on 1 September 2022).
- Rumpold, B.A.; Schlüter, O.K. Nutritional composition and safety aspects of edible insects. Mol. Nutr. Food Res. 2013, 57, 802–823. [Google Scholar] [CrossRef]
- The European Parliament and the Council of the European Union. Regulation (EU) 2015/2283 of the European Parliament and of the Council of 25 November 2015 on novel foods, amending Regulation (EU) No 1169/2011 of the European Parliament and of the Council and repealing Regulation (EC) No 258/97 etc. Off. J. Eur. Union 2015, 327, 1–22. [Google Scholar]
- Goodwin, M.A.; Waltman, W.D. Transmission of Eimeria, viruses, and bacteria to chicks: Darkling beetles (alphitobius diaperinus) as vectors of pathogens. J. Appl. Poult. Res. 1996, 5, 51–55. [Google Scholar] [CrossRef]
- Ordoñez-Araque, R.; Egas-Montenegro, E. Edible insects: A food alternative for the sustainable development of the planet. Int. J. Gastron. Food Sci. 2021, 23, 100304. [Google Scholar] [CrossRef]
- Janssen, R.H.; Vincken, J.P.; Van Den Broek, L.A.M.; Fogliano, V.; Lakemond, C.M.M. Nitrogen-to-Protein Conversion Factors for Three Edible Insects: Tenebrio molitor, Alphitobius diaperinus, and Hermetia illucens. J. Agric. Food Chem. 2017, 65, 2275–2278. [Google Scholar] [CrossRef] [PubMed]
- Skotnicka, M.; Karwowska, K.; Kłobukowski, F.; Borkowska, A.; Pieszko, M. Possibilities of the development of edible insect-based foods in europe. Foods 2021, 10, 766. [Google Scholar] [CrossRef] [PubMed]
- Di Mattia, C.; Battista, N.; Sacchetti, G.; Serafini, M. Antioxidant activities in vitro of water and liposoluble extracts obtained by different species of edible insects and invertebrates. Front. Nutr. 2019, 6, 106. [Google Scholar] [CrossRef]
- European Food Safety Authority. Risk profile related to production and consumption of insects as food and feed. EFSA J. 2015, 13, 4257. [Google Scholar] [CrossRef]
- Van Huis, A. Potential of insects as food and feed in assuring food security. Annu. Rev. Entomol. 2013, 58, 563–583. [Google Scholar] [CrossRef] [PubMed]
- Raheem, D.; Raposo, A.; Oluwole, O.B.; Nieuwland, M.; Saraiva, A.; Carrascosa, C. Entomophagy: Nutritional, ecological, safety and legislation aspects. Food Res. Int. 2019, 126, 108672. [Google Scholar] [CrossRef] [PubMed]
- Dossey, A.T.; Morales-Ramos, J.A.; Rojas, M.G. Insects as Sustainable Food Ingredients; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar] [CrossRef]
- Schabel, H.G. Forest Insects as Food: A Global Review; RAP Publications: Bangkok, Thailand, 2010; Volume 37, p. 64. Available online: https://www.fao.org/3/i1380e/i1380e00.htm (accessed on 1 January 2024).
- Toti, E.; Massaro, L.; Kais, A.; Aiello, P.; Palmery, M.; Peluso, I. Entomophagy: A narrative review on nutritional value, safety, cultural acceptance and a focus on the role of food neophobia in Italy. Eur. J. Investig. Health Psychol. Educ. 2020, 10, 628–643. [Google Scholar] [CrossRef]
- Govorushko, S. Global status of insects as food and feed source: A review. Trends Food Sci. Technol. 2019, 91, 436–445. [Google Scholar] [CrossRef]
- Li, L.; Zhao, Z.; Liu, H. Feasibility of feeding yellow mealworm (Tenebrio molitor L.) in bioregenerative life support systems as a source of animal protein for humans. Acta Astronaut. 2013, 92, 103–109. [Google Scholar] [CrossRef]
- Zhao, X.; Vázquez-Gutiérrez, J.L.; Johansson, D.P.; Landberg, R.; Langton, M. Yellow mealworm protein for food purposes-Extraction and functional properties. PLoS ONE 2016, 11, e0147791. [Google Scholar] [CrossRef]
- Verhoeckx, K.C.M.; van Broekhoven, S.; den Hartog-Jager, C.F.; Gaspari, M.; de Jong, G.A.H.; Wichers, H.J.; van Hoffen, E.; Houben, G.F.; Knulst, A.C. House dust mite (Der p 10) and crustacean allergic patients may react to food containing Yellow mealworm proteins. Food Chem. Toxicol. 2014, 65, 364–373. [Google Scholar] [CrossRef]
- Pali-Scholl, I.; Meinlschmidt, P.; Larenas-Linnemann, D.; Purschke, B.; Hofstetter, G.; Rodriguez-Monroy, F.A.; Einhorn, L.; Mothes-Luksch, N.; Jensen-Jarolim, E.; Jager, H. Edible insects: Cross-recognition of IgE from crustacean- and house dust mite allergic patients, and reduction of allergenicity by food processing. World Allergy Organ. J. 2019, 12, 100006. [Google Scholar] [CrossRef] [PubMed]
- Gkinali, A.A.; Matsakidou, A.; Vasileiou, E.; Paraskevopoulou, A. Potentiality of Tenebrio molitor larva-based ingredients for the food industry: A review. Trends Food Sci. Technol. 2021, 119, 495–507. [Google Scholar] [CrossRef]
- Eilenberg, J.; Vlak, J.M.; Nielsen-LeRoux, C.; Cappellozza, S.; Jensen, A.B. Diseases in insects produced for food and feed. J. Insects Food Feed 2015, 1, 87–102. [Google Scholar] [CrossRef]
- Mishyna, M.; Chen, J.; Benjamin, O. Sensory attributes of edible insects and insect-based foods–Future outlooks for enhancing consumer appeal. Trends Food Sci. Technol. 2019, 95, 141–148. [Google Scholar] [CrossRef]
- Wang, Y.S.; Shelomi, M. Review of Black Soldier Fly (Hermetia illucens) as Animal Feed and Human Food. Foods 2017, 6, 91. [Google Scholar] [CrossRef] [PubMed]
- Smetana, S.; Schmitt, E.; Mathys, A. Sustainable use of Hermetia illucens insect biomass for feed and food: Attributional and consequential life cycle assessment. Resour. Conserv. Recycl. 2019, 144, 285–296. [Google Scholar] [CrossRef]
- Grabowski, N.T.; Klein, G. Microbiology of processed edible insect products–Results of a preliminary survey. Int. J. Food Microbiol. 2017, 243, 03–107. [Google Scholar] [CrossRef]
- Mishyna, M.; Martinez, J.J.I.; Chen, J.; Benjamin, O. Extraction, characterization and functional properties of soluble proteins from edible grasshopper (Schistocerca gregaria) and honey bee (Apis mellifera). Food Res. Int. 2019, 116, 697–706. [Google Scholar] [CrossRef]
- Jensen, A.B.; Evans, J.; Jonas-Levi, A.; Benjamin, O.; Martinez, I.; Dahle, B.; Roos, N.; Lecocq, A.; Foley, K. Standard methods for Apis mellifera brood as human food. J. Apic. Res. 2019, 58, 1–28. [Google Scholar] [CrossRef]
- Evans, J.D.; Muller, A.; Jensen, A.B.; Dahle, B.; Flore, R.; Eilenberg, J.; Frost, M.B. A descriptive sensory analysis of honeybee drone brood from Denmark and Norway. J. Insects Food Feed 2016, 2, 277–283. [Google Scholar] [CrossRef]
- Patel, S.; Suleria, H.A.R.; Rauf, A. Edible insects as innovative foods: Nutritional and functional assessments. Trends Food Sci. Technol. 2018, 86, 352–359. [Google Scholar] [CrossRef]
- Prabhu, V.V. Edible Insects in Sustainable Food Systems. Future Food J. Food Agric. Soc. 2019, 7, 2. [Google Scholar] [CrossRef]
- Poma, G.; Cuykx, M.; Amato, E.; Calaprice, C.; Focant, J.F.; Covaci, A. Evaluation of hazardous chemicals in edible insects and insect-based food intended for human consumption. Food Chem. Toxicol. 2017, 100, 70–79. [Google Scholar] [CrossRef] [PubMed]
- Payne, C.L.R.; Scarborough, P.; Rayner, M.; Nonaka, K. A systematic review of nutrient composition data available for twelve commercially available edible insects, and comparison with reference values. Trends Food Sci. Technol. 2016, 47, 69–77. [Google Scholar] [CrossRef]
- Garofalo, C.; Milanović, V.; Cardinali, F.; Aquilanti, L.; Clementi, F.; Osimani, A. Current knowledge on the microbiota of edible insects intended for human consumption: A state-of-the-art review. Food Res. Int. 2019, 125, 108527. [Google Scholar] [CrossRef]
- LiYa, Y. A Study on the Potential of Insect Protein and Lipid as a Food Source; Wageningen University and Research: Wageningen, The Netherlands, 2015; p. 186. Available online: http://edepot.wur.nl/330195 (accessed on 26 August 2021).
- Maciel-Vergara, G.; Jensen, A.B.; Lecocq, A.; Eilenberg, J. Diseases in edible insect rearing systems. J. Insects Food Feed 2021, 7, 621–638. [Google Scholar] [CrossRef]
- Fernandez-Cassi, X.; Supeanu, A.; Vaga, M.; Jansson, A.; Boqvist, S.; Vagsholm, I. The house cricket (Acheta domesticus) as a novel food: A risk profile. J. Insects Food Feed 2019, 5, 137–157. [Google Scholar] [CrossRef]
- Reginald, K.; Wong, Y.R.; Shah, S.M.R.; Teh, K.F.; Freddy-Jalin, E.J.F.; Khan, N.A. Investigating immune responses of the house cricket, Acheta domesticus to pathogenic Escherichia coli K1. Microbes Infect. 2021, 23, 104876. [Google Scholar] [CrossRef]
- Igual, M.; García-Segovia, P.; Martínez-Monzó, J. Effect of Acheta domesticus (house cricket) addition on protein content, colour, texture, and extrusion parameters of extruded products. J. Food Eng. 2020, 282, 110032. [Google Scholar] [CrossRef]
- Klunder, H.C.; Wolkers-Rooijackers, J.; Korpela, J.M.; Nout, M.J.R. Microbiological aspects of processing and storage of edible insects. Food Control 2012, 26, 628–631. [Google Scholar] [CrossRef]
- Zielińska, E.; Baraniak, B.; Karaś, M.; Rybczyńska, K.; Jakubczyk, A. Selected species of edible insects as a source of nutrient composition. Food Res. Int. 2015, 77, 460–466. [Google Scholar] [CrossRef]
- Zielińska, E.; Karaś, M.; Baraniak, B. Comparison of functional properties of edible insects and protein preparations thereof. LWT—Food Sci. Technol. 2018, 91, 168–174. [Google Scholar] [CrossRef]
- Oibiokpa, F.I.; Akanya, H.O.; Jigam, A.A.; Saidu, A.N. Nutrient and Antinutrient Compositions of Some Edible Insect Species in Northern Nigeria. Fountain J. Nat. Appl. Sci. 2017, 6, 9–24. [Google Scholar] [CrossRef]
- Da Rosa Machado, C.; Thys, R.C.S. Cricket powder (Gryllus assimilis) as a new alternative protein source for gluten-free breads. Innov. Food Sci. Emerg. Technol. 2019, 56, 102180. [Google Scholar] [CrossRef]
- Grabowski, N.T.; Klein, G. Microbiology of cooked and dried edible Mediterranean field crickets (Gryllus bimaculatus) and superworms (Zophobas atratus) submitted to four different heating treatments. Food Sci. Technol. Int. 2017, 23, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Srinroch, C.; Srisomsap, C.; Chokchaichamnankit, D.; Punyarit, P.; Phiriyangkul, P. Identification of novel allergen in edible insect, Gryllus bimaculatus and its cross-reactivity with Macrobrachium spp. allergens. Food Chem. 2015, 184, 160–166, Erratum in Food Chem. 2015, 188, 673. [Google Scholar] [CrossRef] [PubMed]
- Hlongwane, Z.T.; Slotow, R.; Munyai, T.C. Nutritional composition of edible insects consumed in africa: A systematic review. Nutrients 2020, 12, 2786. [Google Scholar] [CrossRef]
- Turck, D.; Castenmiller, J.; De Henauw, S.; Hirsch-Ernst, K.I.; Kearney, J.; Maciuk, A.; Manglesdorf, I.; Mc Ardle, H.J.; Naska, A.; Pelaez, C.; et al. Safety of frozen and dried formulations from migratory locust (Locusta migratoria) as a Novel food pursuant to Regulation (EU) 2015/2283. EFSA J. 2021, 19, e06667. [Google Scholar] [CrossRef]
- Van Itterbeeck, J.; Pelozuelo, L. How Many Edible Insect Species Are There? A Not So Simple Question. Diversity 2022, 14, 143. [Google Scholar] [CrossRef]
- Linn, S. Books in Review: The Insect Cookbook: Food for a Sustainable Planet. Florida Entomol. 2015, 99, 157–158. [Google Scholar] [CrossRef]
- Shelomi, M. The meat of affliction: Insects and the future of food as seen in Expo 2015. Trends Food Sci. Technol. 2016, 56, 175–179. [Google Scholar] [CrossRef]
- De Boer, A.; Bast, A. Demanding safe foods–Safety testing under the novel food regulation (2015/2283). Trends Food Sci. Technol. 2018, 72, 125–133. [Google Scholar] [CrossRef]
- Aguilera, Y.; Pastrana, I.; Rebollo-Hernanz, M.; Benitez, V.; Alvarez-Rivera, G.; Viego, J.L.; Martin-Cabrejas, M.A. Investigating edible insects as a sustainable food source: Nutritional value and techno-functional and physiological properties. Food Funct. 2021, 12, 6309–6322. [Google Scholar] [CrossRef] [PubMed]
- Ververais, E.; Ackerl, R.; Azzollini, D.; Colombo, P.A.; de Sesmaisons, A.; Dumas, C.; Fernandez-Dumont, A.; Da Costa, L.F.; Germini, A.; Goumperis, T.; et al. Novel foods in the European Union: Scientific requirements and challenges of the risk assessment process by the European Food Safety Authority. Food Res. Int. 2020, 137, 109515. [Google Scholar] [CrossRef] [PubMed]
- Schiel, L.; Wind, C.; Braun, P.G.; Koethe, M. Legal framework for the marketing of food insects in the European Union. Ernährungs Umsch. 2020, 67, 76–85. [Google Scholar] [CrossRef]
- Köhler, R.; Kariuki, L.; Lambert, C.; Biesalski, H.K. Protein, amino acid and mineral composition of some edible insects from Thailand. J. Asia Pac. Entomol. 2019, 22, 372–378. [Google Scholar] [CrossRef]
- House, J. Consumer acceptance of insect-based foods in the Netherlands: Academic and commercial implications. Appetite 2016, 107, 47–58. [Google Scholar] [CrossRef]
- House, J. Insects as food in the Netherlands: Production networks and the geographies of edibility. Geoforum 2018, 94, 82–93. [Google Scholar] [CrossRef]
- YnsectPress Release. 2022. Available online: https://www.ynsect.com/fr/actualites-presse/ (accessed on 8 January 2024).
- La Barbera, F.; Verneau, F.; Videbæk, P.N.; Amato, M.; Grunert, K.G. A self-report measure of attitudes toward the eating of insects: Construction and validation of the Entomophagy Attitude Questionnaire. Food Qual. Prefer. 2019, 79, 103757. [Google Scholar] [CrossRef]
- Woolf, E.; Zhu, Y.; Emory, K.; Zhao, J.; Liu, C. Willingness to consume insect-containing foods: A survey in the United States. LWT 2018, 102, 100–105. [Google Scholar] [CrossRef]
- Orsi, L.; Voege, L.L.; Stranieri, S. Eating edible insects as sustainable food? Exploring the determinants of consumer acceptance in Germany. Food Res. Int. 2019, 125, 108573. [Google Scholar] [CrossRef] [PubMed]
- Pliner, P.; Hobden, K. Development of a scale to measure the trait of food neophobia in humans. Appetite 1992, 19, 105–120. [Google Scholar] [CrossRef] [PubMed]
- Rabadán, A.; Bernabéu, R. A systematic review of studies using the Food Neophobia Scale: Conclusions from thirty years of studies. Food Qual. Prefer. 2021, 93, 104241. [Google Scholar] [CrossRef]
- Müller, A. Insects as Food in Laos and Thailand: A Case of ‘Westernisation’? Asian J. Soc. Sci. 2019, 47, 204–223. [Google Scholar] [CrossRef]
- George, R. The McDonaldisation of Society; Sage Publications Ltd.: London, UK, 2000. [Google Scholar]
- Cicatiello, C.; Vitali, A.; Lacetera, N. How does it taste? Appreciation of insect-based snacks and its determinants. Int. J. Gastron. Food Sci. 2020, 21, 100211. [Google Scholar] [CrossRef]
- Pali-Schöll, I.; Binder, R.; Moens, Y.; Polesny, F.; Monsó, S. Edible insects–defining knowledge gaps in biological and ethical considerations of entomophagy. Crit. Rev. Food Sci. Nutr. 2019, 59, 2760–2771. [Google Scholar] [CrossRef]
- NCD-RisC. Ranking Obesity by Country, Adults Prevalence of Obesity. World Obesity. 2016. Available online: https://data.worldobesity.org/rankings/ (accessed on 29 December 2023).
- Bentham, J. Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: A pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults. Lancet 2017, 390, 2627–2642. [Google Scholar] [CrossRef]
- Eurostat. Population Projected to Decline in Two-Thirds of EU Regions. The European Union. 2023. Available online: https://ec.europa.eu/eurostat/web/products-eurostat-news/-/ddn-20210430-2 (accessed on 29 December 2023).
- Hideo, T. East Asia’s Looming Demographic Crisis. nippon.com. 2020. Available online: https://www.nippon.com/en/in-depth/d00639/ (accessed on 29 December 2023).
- The European Parliament and the Council of the European Union. Regulation (EC) No 853/2004 of the European Parliament and of the Council of 29 April 2004 laying down specific hygiene rules for food of animal origin. Off. J. Eur. Communities 2004, 853, 69–74. [Google Scholar]
- Smith, J.E.; Solomons, G.; Lewis, C.; Anderson, J.G. Role of mycotoxins in human and animal nutrition and health. Nat. Toxins 1995, 3, 187–192. [Google Scholar] [CrossRef]
- Leni, G.; Cirlini, M.; Jacobs, J.; Depraetere, S.; Gianotten, N.; Sforza, S.; Dall’Asta, C. Impact of naturally contaminated substrates on Alphitobius diaperinus and Hermetia illucens: Uptake and excretion of mycotoxins. Toxins 2019, 11, 476. [Google Scholar] [CrossRef] [PubMed]
- Camenzuli, L.; van Dam, R.; de Rijk, T.; Andriessen, R.; van Schelt, J.; van der Fels-Klerx, H.J.I. Tolerance and excretion of the mycotoxins aflatoxin B1, zearalenone, deoxynivalenol, and ochratoxin A by Alphitobius diaperinus and hermetia illucens from contaminated substrates. Toxins 2018, 10, 91. [Google Scholar] [CrossRef] [PubMed]
- Chulyan, M. Heavy Metals Regulations in the European Union: An Overview. Compliancegate.com. 2020. Available online: https://www.compliancegate.com/heavy-metal-regulations-european-union/ (accessed on 29 December 2023).
- Van der Fels-Klerx, H.J.; Meijer, N.; Nijkamp, M.M.; Schmitt, E.; van Loon, J.A.A. Chemical food safety of using former foodstuffs for rearing black soldier fly larvae (Hermetia illucens) for feed and food use. J. Insects Food Feed 2020, 6, 475–488. [Google Scholar] [CrossRef]
- Lindqvist, L.; Block, M. Excretion of cadmium during moulting and metamorphosis in Tenebrio molitor (Coleoptera; Tenebrionidae). Comp. Biochem. Physiol. Part C 1995, 111, 325–328. [Google Scholar] [CrossRef]
- Truzzi, C.; Illuminati, S.; Girolametti, F.; Antonucci, M.; Scarponi, G.; Ruschioni, S.; Riolo, P.; Anibaldi, A. Influence of feeding substrates on the presence of toxic metals (Cd, pb, ni, as, hg) in larvae of Tenebrio molitor: Risk assessment for human consumption. Int. J. Environ. Res. Public Health 2019, 16, 4815. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Yang, Q.; Lin, Y.; Tang, Z.; Tomberlin, J.K.; Liu, W.; Huang, Y. Black soldier fly larvae effectively degrade lincomycin from pharmaceutical industry wastes. J. Environ. Manag. 2021, 307, 114539. [Google Scholar] [CrossRef]
- Lalander, C.; Senecal, J.; Gros Calvo, M.; Ahrens, L.; Josefsson, S.; Wiberg, K.; Vinnerás, B. Fate of pharmaceuticals and pesticides in fly larvae composting. Sci. Total Environ. 2016, 565, 279–286. [Google Scholar] [CrossRef]
- Charlton, A.J.; Dickenson, M.; Wakefield, M.E.; Fitches, E.; Kenis, M.; Han, R.; Zhu, F.; Kone, N.; Grant, M.; Devic, E.; et al. Exploring the chemical safety of fly larvae as a source of protein for animal feed. J. Insects Food Feed 2015, 1, 7–16. [Google Scholar] [CrossRef]
- Roeder, K.A.; Kuriachan, I.; Vinson, S.B.; Behmer, S.T. Evaluation of a microbial inhibitor in artificial diets of a generalist caterpillar, Heliothis virescens. J. Insect Sci. 2010, 10, 197. [Google Scholar] [CrossRef]
- Lv, X.; Liu, C.; Li, Y.; Gao, Y.; Guo, B.; Wang, H.; Li, J. Bioaccumulation and Excretion of Enantiomers of Myclobutanil in Tenebrio molitor Larvae Through Dietary Exposure. Chirality 2013, 25, 890–896. [Google Scholar] [CrossRef]
- Yin, J.; Gao, Y.; Zhu, F.; Hao, W.; Xu, Q.; Wang, H.; Guo, B. Enantiomerization and stereoselectivity in bioaccumulation of furalaxyl in Tenebrio molitor larvae. Ecotoxicol. Environ. Saf. 2017, 145, 244–249. [Google Scholar] [CrossRef] [PubMed]
- Houbraken, M.; Sprangers, T.; De Clercq, P.; Cooreman-Algoed, M.; Couchement, T.; De Clercq, G.; Verbeke, S.; Spanoghe, P. Pesticide contamination of Tenebrio molitor (Coleoptera: Tenebrionidae) for human consumption. Food Chem. 2016, 201, 264–269. [Google Scholar] [CrossRef] [PubMed]
- Purschke, B.; Scheibelberger, R.; Axmann, S.; Adler, A.; Jäger, H. Impact of substrate contamination with mycotoxins, heavy metals and pesticides on the growth performance and composition of black soldier fly larvae (Hermetia illucens) for use in the feed and food value chain. Food Addit. Contam.—Part A Chem. Anal. Control Expo. Risk Assess. 2017, 34, 1410–1420. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Regulation (EC) No 396/2005, Maximum residue levels of pesticides in/on food and feed of plant and animal. Off. J. Eur. Union Legis. L70 2005, 48, 1–21. Available online: http://data.europa.eu/eli/reg/2005/396/oj (accessed on 1 January 2024).
- Lindberg, L.N. The European Community as a Political System. J. Common Mark. Stud. 1967, 5, 344–387. [Google Scholar] [CrossRef]
- Pius, C.; Sichilongo, S.; Koosaletse-Mswela, P.; Dikinya, O. Monitoring polychlorinated dibenzo-p-dioxins/dibenzofurans and dioxin-like polychlorinated biphenyls in Africa since the implementation of the Stockholm Convention—An overview. Environ. Sci. Pollut. Res. 2019, 26, 101–113. [Google Scholar] [CrossRef]
- European Commission. Commission regulation (EU) No 277/2012 of 28 March 2012. Off. J. Eur. Union L91 2012, 55, 1–32. Available online: http://data.europa.eu/eli/reg/2012/277/oj (accessed on 1 January 2024).
- European Commission. Commission Regulation (EU) No 835/2011 of 19 August 2011. Off. J. Eur. Union L215 2011, 54, 1–28. Available online: http://data.europa.eu/eli/reg/2011/835/oj (accessed on 1 January 2024).
- Osimani, A.; Cardinali, F.; Aquilanti, L.; Garofalo, C.; Roncolini, A.; Milanovic, V.; Pasquini, M.; Tavoletti, S.; Clementi, F. Occurrence of transferable antibiotic resistances in commercialized ready-to-eat mealworms (Tenebrio molitor L.). Int. J. Food Microbiol. 2017, 263, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Garofalo, C.; Osimani, A.; Milanovic, V.; Taccari, M.; Cardinali, F.; Aquilanti, L.; Riola, P.; Ruschioni, S.; Isidoro, N.; Clementi, F. The microbiota of marketed processed edible insects as revealed by high-throughput sequencing. Food Microbiol. 2017, 62, 15–22. [Google Scholar] [CrossRef]
- Fasolato, L.; Cardazzo, B.; Carraro, L.; Fontana, F.; Novelli, E.; Balzan, S. Edible processed insects from e-commerce: Food safety with a focus on the Bacillus cereus group. Food Microbiol. 2018, 76, 296–303. [Google Scholar] [CrossRef]
- Adams, M. Virus Taxonomy: Ninth Report of the International Committee on Taxonomy of Viruses; Elsevier: Amsterdam, The Netherlands; Academic Press: Cambridge, MA, USA, 2012. [Google Scholar]
- Maciel-Vergara, G.; Ros, V.I.D. Viruses of insects reared for food and feed. J. Invertebr. Pathol. 2017, 147, 60–75. [Google Scholar] [CrossRef]
- Post, K.; Riesner, D.; Walldorf, V.; Mehlhorn, H. Fly larvae and pupae as vectors for scrapie. Lancet 1999, 354, 1969–1970. [Google Scholar] [CrossRef] [PubMed]
- Lupi, O. Risk analysis of ectoparasites acting as vectors for chronic wasting disease. Med. Hypotheses 2005, 65, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Lupi, O. Myiasis as a risk factor for prion diseases in humans. J. Eur. Acad. Dermatol. Venereol. 2006, 20, 1037–1045. [Google Scholar] [CrossRef] [PubMed]
- Thackray, A.M.; Muhammad, F.; Zhang, C.; Di, Y.; Jahn, T.R.; Landgraf, M.; Crowther, D.C.; Evers, J.F.; Bujdoso, R. Ovine PrP transgenic Drosophila show reduced locomotor activity and decreased survival. Biochem. J. 2012, 444, 487–495. [Google Scholar] [CrossRef]
- Pinotti, L.; Ottoboni, M. Substrate as insect feed for bio-mass production. J. Insects Food Feed 2021, 7, 585–596. [Google Scholar] [CrossRef]
- Gałęcki, R.; Sokół, R. A parasitological evaluation of edible insects and their role in the transmission of parasitic diseases to humans and animals. PLoS ONE 2019, 14, e0219303. [Google Scholar] [CrossRef]
- Jeandron, A.; Rinaldi, L.; Abdyldaieva, G.; Usubalieva, J.; Steinmann, P.; Cringoll, G.; Utzinger, J. Human infections with Dicrocoelium dendriticum in kyrgyzstan: The tip of the Iceberg? J. Parasitol. 2011, 97, 1170–1172. [Google Scholar] [CrossRef]
- Chiu, M.C.; Huang, C.G.; Wu, W.J.; Lin, Z.H.; Chen, H.W.; Shiao, S.F. A new millipede-parasitizing horsehair worm, Gordius Chiashanus sp. nov., at medium altitudes in Taiwan (Nematomorpha, Gordiida). Zookeys 2020, 941, 25–48. [Google Scholar] [CrossRef]
- Francis, F.; Doyen, V.; Debaugnies, F.; Mazzucchelli, G.; Caparros, R.; Alabi, T.; Blecker, G.; Haubruge, E.; Corazza, F. Limited cross reactivity among arginine kinase allergens from mealworm and cricket edible insects. Food Chem. 2019, 276, 714–718. [Google Scholar] [CrossRef]
- Broekman, H.C.H.P.; Knulst, A.C.; den Hartog Jager, C.F.; Bruijnzeel-Koomen, C.A.F.M.; Houben, G.F.; Verhoeckx, K.C.M. Anaphylactic shock and lethal anaphylaxis caused by food consumption in China. J. Allergy Clin. Immunol. 2017, 140, 600–603.e7. [Google Scholar] [CrossRef]
- Ji, K.; Chen, J.; Li, M.; Liu, Z.; Wang, C.; Zhan, Z.; Wu, X.; Xia, Q. Anaphylactic shock and lethal anaphylaxis caused by food consumption in China. Trends Food Sci. Technol. 2009, 20, 227–231. [Google Scholar] [CrossRef] [PubMed]
- Brokeman, H.; Verhoeckx, K.C.; den Hartog Jager, C.F.; Kruizinga, A.G.; Pronk-Kleinjan, M.; Remington, B.C.; Bruijnzeel-Koomen, C.A.; Houben, G.F.; Knulst, A.C. Majority of shrimp-allergic patients are allergic to mealworm. J. Allergy Clin. Immunol. 2016, 137, 1261–1263. [Google Scholar] [CrossRef] [PubMed]
- De Gier, S.; Verhoeckx, K. Insect (food) allergy and allergens. Mol. Immunol. 2018, 100, 82–106. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J.W.; Park, K.Y. Insect Allergens on the Dinning Table. Curr. Protein Pept. Sci. 2020, 21, 159–169. [Google Scholar] [CrossRef] [PubMed]
- Pener, M.P. Allergy to locusts and acridid grasshoppers: A review. J. Orthoptera Res. 2014, 23, 59–67. [Google Scholar] [CrossRef]
- Oonincx, D.G.A.B.; van Broekhoven, S.; van Huis, A.; van Loon, J.J.A. Correction: Feed conversion, survival and development, and composition of four insect species on diets composed of food byproducts. PLoS ONE 2019, 10, e0144601. [Google Scholar] [CrossRef]
- Moruzzo, R.; Mancini, S.; Guidi, A. Edible insects and sustainable development goals. Insects 2021, 12, 557. [Google Scholar] [CrossRef]
- Fasolin, L.H.; Pereira, R.N.; Pinheiro, A.C.; Martins, J.T.; Andrade, C.C.P.; Ramos, O.L.; Vincente, A.A. Emergent food proteins—Towards sustainability, health and innovation. Food Res. Int. 2019, 125, 108586. [Google Scholar] [CrossRef]
- Oonincx, D.G.A.B.; Finke, M.D. Nutritional value of insects and ways to manipulate their composition. J. Insects Food Feed 2021, 7, 639–659. [Google Scholar] [CrossRef]
- Melse-Boonstra, A. Bioavailability of Micronutrients from Nutrient-Dense Whole Foods: Zooming in on Dairy, Vegetables, and Fruits. Front. Nutr. 2020, 7, 101. [Google Scholar] [CrossRef]
- Ojha, S.; Bekhit, A.E.D.; Grune, T.; Schlüter, O.K. Bioavailability of nutrients from edible insects. Curr. Opin. Food Sci. 2021, 41, 240–248. [Google Scholar] [CrossRef]
- Bawa, M.; Songsermpong, S.; Kaewtapee, C.; Chanput, W. Effect of diet on the growth performance, feed conversion, and nutrient content of the house cricket. J. Insect Sci. 2021, 20, 10. [Google Scholar] [CrossRef] [PubMed]
- Mancini, S.; Sogari, G.; Diaz, S.E.; Menozzi, D.; Paci, G.; Moruzzo, R. Exploring the Future of Edible Insects in Europe. Foods 2022, 11, 455. [Google Scholar] [CrossRef] [PubMed]
- Halloran, A.; Hansen, H.H.; Jensen, L.S.; Bruun, S. Comparing environmental impacts from insects for feed and food as an alternative to animal production. In Edible Insects in Sustainable Food Systems; Springer: Berlin/Heidelberg, Germany, 2018; pp. 163–180. [Google Scholar] [CrossRef]
- Pal, S. Entomophagy: Future Platform for Enhancing Food and Feed Security, in Integrated Pest Management Strategies for Sustainable Agriculture; New Deli Publiahers: New Delhi, India, 2021; pp. 181–189. [Google Scholar] [CrossRef]
- Rumpold, B.A.; Schlüter, O.K. Potential and challenges of insects as an innovative source for food and feed production. Innov. Food Sci. Emerg. Technol. 2013, 17, 1–11. [Google Scholar] [CrossRef]
- Jonas-Levi, A.; Martinez, J.J.I. The high level of protein content reported in insects for food and feed is overestimated. J. Food Compos. Anal. 2017, 62, 184–188. [Google Scholar] [CrossRef]
- Ates, F.; Kaya, O. The Relationship Between Iron and Nitrogen Concentrations Based on Kjeldahl Method and SPAD-502 Readings in Grapevine (Vitis vinifera L. cv. ‘Sultana Seedless’). Erwerbs-Obstbau 2021, 63, 53–59. [Google Scholar] [CrossRef]
- Yi, L.; Lakemond, C.M.M.; Sagis, L.M.C.; Eisner-Schadler, V.; Van Huis, A.; Boekel, M.A.J.S.V. Extraction and characterisation of protein fractions from five insect species. Food Chem. 2013, 141, 3341–3348. [Google Scholar] [CrossRef]
- Bosch, G.; Zhang, S.; Oonincx, D.G.A.B.; Hendriks, W.G. Protein quality of insects as potential ingredients for dog and cat foods. J. Nutr. Sci. 2014, 3, e29. [Google Scholar] [CrossRef]
- Bouvier, G. Some questions of veterinary entomology and the fight against certain arthropods in tropical Africa. Acta Trop. 1945, 2, 42–59. [Google Scholar]
- Kuyten, P. Entomologische Berichten. Ned. Entomol. Ver. 1960, 20, 143. [Google Scholar]
- Bukkens, S.G.F. The nutritional value of edible insects. Ecol. Food Nutr. 1997, 36, 287–319. [Google Scholar] [CrossRef]
- Baiano, A. Edible insects: An overview on nutritional characteristics, safety, farming, production technologies, regulatory framework, and socio-economic and ethical implications. Trends Food Sci. Technol. 2019, 100, 35–50. [Google Scholar] [CrossRef]
- Van Huis, A. Nutrition and health of edible insects. Curr. Opin. Clin. Nutr. Metab. Care 2020, 23, 228–231. [Google Scholar] [CrossRef] [PubMed]
- European Commission. EGD Investment Plan. 2020. Available online: https://ec.europa.eu/commission/presscorner/api/files/attachment/860462/CommissionCommunicationontheEuropeanGreenDealInvestmentPlan_EN.pdf.pdf (accessed on 1 January 2024).
- Turck, D.; Bohn, T.; Castenmiller, J.; De Henauw, S.; Hirsch-Ernst, K.I.; Maciuk, A.; Manglesdorf, I.; McArdle, H.J.; Naska, A.; Pelaez, C.; et al. Safety of Beta-lactoglobulin as a Novel food pursuant to Regulation (EU) 2015/2283. EFSA J. 2022, 20, e07204. [Google Scholar] [CrossRef]
- The European Parliament and the Council of the European Union. Regulation (EU) 1169/2011 on the provision of food information to consumers. Off. J. Eur. Union 2011, L304, 18–63. [Google Scholar]
- The European Parliament and the Council of the European Union. Regulation (EC) No 178/2002 of 28 January 2002 laying down the general principles and requirements of food law, establishing the European Food Safety Authority and laying down procedures in matters of food safety. Off. J. Eur. Communities 2002, L31, 1–24. [Google Scholar]
- The European Parliament and the Council of the European Union. Implementation of regulation (EC) No 258/97 of the European Parliament and of the Council of 27 January 1997 concerning novel foods and novel food ingredients. Directorate general health and consumer protection. Off. J. Eur. Communities 1997, 40. Available online: https://eur-lex.europa.eu/eli/reg/1997/258/oj (accessed on 1 January 2024).
- Health Council of the Netherlands. The Safety Assessment of Novel Foods (2). 2007. Available online: https://www.healthcouncil.nl/documents/advisory-reports/2007/10/25/the-safety-assessment-of-novel-foods-2 (accessed on 1 January 2024).
- Blind, K. The influence of regulations on innovation: A quantitative assessment for OECD countries. Res. Policy 2012, 41, 391–400. [Google Scholar] [CrossRef]
- IPIFF. EU Legislation. Brussels: EU. 2022. Available online: https://ipiff.org/insects-eu-legislation/ (accessed on 1 January 2024).
- Overview of the European Insect Feed Market (Version 2); IPIFF:2023: Rue Joseph Stevens 7, 1000 Brussels, Belgium. Available online: https://ipiff.org/factsheets/ (accessed on 1 January 2024).
- Niyonsaba, H.H.; Hohler, J.; Kooistra, J.; van der Fels-Klerx, H.J.; Meuwissen, M.P.M. Profitability of insect farms. J. Insects Food Feed 2021, 7, 923–934. [Google Scholar] [CrossRef]
- Kok, R. Preliminary project design for insect production: Part 3—Sub-process types and reactors. J. Insects Food Feed 2021, 7, 525–539. [Google Scholar] [CrossRef]
- IPIFF. Edible Insects on the European Market. 2022. Available online: https://ipiff.org/factsheets/ (accessed on 1 January 2024).
- Van Broekhoven, S. Quality and Safety Aspects of Mealworms as Human Food. Ph.D. Thesis, Wageningen University & Research, Wageningen, The Netherlands, 2015. [Google Scholar]
- Sindermann, D.; Heidhues, J.; Kirchner, S.; Stadermann, N.; Kuhl, A. Industrial processing technologies for insect larvae. J. Insects Food Feed 2021, 7, 857–875. [Google Scholar] [CrossRef]
- Castex, M.; Lemaire, P.; Wabete, N.; Chim, L. Effect of probiotic Pediococcus acidilactici on antioxidant defences and oxidative stress of Litopenaeus stylirostris under Vibrio nigripulchritudo challenge. Fish Shellfish Immunol. 2010, 28, 622–631. [Google Scholar] [CrossRef] [PubMed]
- Ojha, S.; Bußler, S.; Psarianos, M.; Rossi, G.; Schlüter, O.K. Edible insect processing pathways and implementation of emerging technologies. J. Insects Food Feed 2021, 7, 877–900. [Google Scholar] [CrossRef]
- Smetana, S.; Spykman, R.; Heinz, V. Environmental aspects of insect mass production. J. Insects Food Feed 2021, 7, 553–571. [Google Scholar] [CrossRef]
- Van Huis, A. Welfare of farmed insects. J. Insects Food Feed 2021, 7, 573–584. [Google Scholar] [CrossRef]
- Brambell, R. Report of the Technical Committee to Enquire into the Welfare of Animals Kept under Intensive Livestock Husbandry Systems; Her Majesty’s Stationary Office: London, UK, 1965. [Google Scholar]
- Poletto, R.; Hötzel, M.J. The Five Freedoms in the global animal agriculture market: Challenges and achievements as opportunities. Anim. Front. 2012, 3, 22–30. [Google Scholar] [CrossRef]
Order | Binomial Nomenclature | Common Name | References |
---|---|---|---|
Coleoptera | Alphitobius diaperinus | Lesser mealworm; Litter beetle; Buffalo mealworm. | [25,26,27,28,29] |
Coleoptera | Rhynchophorus ferrugineus | Palm weevil. | [1,26,30,31,32,33,34,35,36] |
Coleoptera | Alphitobius laevigatua | Black fungus beetle. | [34] |
Coleoptera | Tenebrio molitor | Yellow mealworm. | [26,37,38,39,40,41,42] |
Coleoptera | Zophobas atratus | Giant mealworm. | [26,30,42,43,44] |
Diptera | Chrysomya chloropyga | Blowfly. | [26,30] |
Diptera | Hermetia illucens | Black soldier fly. | [26,42,45,46,47] |
Diptera | Musca domestica | Housefly. | [26,42] |
Hymenoptera | Apis mellifera | European honeybee. | [26,42,48,49,50] |
Hymenoptera | Atta laevigata | Leafcutter ant. | [3,26,33,51] |
Lepidoptera | Achroia grisella | Lesser wax moth. | [10,26,30,51] |
Lepidoptera | Bombyx mori | Silkworm/domestic silk moth. | [26,42,47] |
Lepidoptera | Galleria mellonella | Greater wax moth. | [26,42,52] |
Lepidoptera | Gonimbrasia belina | Mopane worm/caterpillar. | [26,30,53,54,55] |
Orthoptera | Acheta domesticus | House cricket. | [26,42,56,57,58,59,60] |
Orthoptera | Gryllodes sigillatus | Tropical house cricket; Indian house cricket; Banded house cricket. | [26,42,61,62] |
Orthoptera | Gryllus assimilis | Jamaican field cricket. | [63,64] |
Orthoptera | Gryllus bimaculatus | Two-spotted cricket. | [26,65,66,67] |
Orthoptera | Gryllus campestris | European field cricket. | [26,57,68] |
Orthoptera | Locusta migratoria migratorioides | Migratory locust; European migratory locust; African migratory locust. | [26,32,42,51,69,70] |
Orthoptera | Mecopoda elongate | Bush cricket. | [26,34] |
Orthoptera | Oxya spp. Melanophus spp. Hieroglyphus spp. Acrida spp. | Grasshopper. | [34] |
Orthoptera | Patanga succincta | Bombay locust. | [34] |
Orthoptera | Schistocerca americana | American grasshopper. | [34] |
Orthoptera | Schistocerca gregaria | Desert locust. | [26,42] |
Orthoptera | Teleogryllus mitratus | Common cricket. | [34] |
Order | Family | Genus | Species | Common Name | References |
---|---|---|---|---|---|
Coleoptera | Tenebrionidae | Tenebrio | Tenebrio molitor | Yellow Mealworm. | [71,72] |
Coleoptera | Tenebrionidae | Alphitobius | Alphitobius diaperinus larvae | Lesser mealworm; Litter beetle; Buffalo worm. | [72,73] |
Orthoptera | Gryllidae | Acheta | Acheta Domesticus | House cricket. | [72,73,74] |
Orthoptera | Gryllidae | Gryllodes | Gryllodes Sigillatus | Tropical house cricket; Indian house cricket; Banded cricket. | [72,73] |
Orthoptera | Acrididae | Locusta | Locusta Migratoria | African migratory locust; European migratory locust. | [71,72] |
Insect | Product | Retailer |
---|---|---|
Mealworms | Buggy balls | Dutch retailer Jumbo, the Netherlands. |
Buffalo Worms | Buggy citizens | Jumbo, the Netherlands. |
Waxworm Larvae | Buggy crisps | Jumbo, the Netherlands. |
Dutch Bred Buffalo Worms | Insecta Range: Burgers and schnitzels and nuggets | Food producer Damhert Nutrition, Belgium. |
Crickets | SENS bar | Czech-based food start-up in 2017. |
Crickets | Energy bars; Bag of crunchy roasted crickets in different flavours. | ‘EAT GRUB’ is a food brand available online. T: 0203 633 5771 E: [email protected] https://www.eatgrub.co.uk/ (accessed on 10 January 2024). |
Crickets or Mealworms | Bolognese sauce. | One Hop Kitchen: https://www.instagram.com/onehopkitchen/ (accessed on 10 January 2024). |
Insect | Product | Flavour | Online Retailer |
---|---|---|---|
Crickets. | Roasted Edible Crickets; Snack Gift Box. | Spicy and Sweet; Chocolate; Extra hot. | SENS https://www.eatsens.com (accessed on 10 January 2024). |
Mealworms. | Crunchy Edible Worms; Gift Set. | Garlic and herbs; Onion and parsley; Smoked paprika; Chilli and lime. | SENS https://www.eatsens.com (accessed on 10 January 2024). |
Crickets. | Edible Crickets in a Tube. | BBQ; Tomato and oregano; Salty caramel; Dark chocolate; Milk chocolate; White chocolate; Chocolate and cinnamon; Chilli and lime; Wasabi; Chipotle and carolina; Reaper. | SENS https://www.eatsens.com (accessed on 10 January 2024). |
Crickets | Edible Crickets in XXL Bag. | Chilli and lime; BBQ paprika; Tomato and oregano; Salty caramel | SENS https://www.eatsens.com (accessed on 10 January 2024). |
Crickets | Pea Cricket Protein Chips | Poppy seed and sea salt; Hot paprika; Garlic and herbs. | SENS https://www.eatsens.com (accessed on 10 January 2024). |
Crickets | Sustainable Sports Nutrition; Protein Blend. | Chocolate; Strawberry. | SENS https://www.eatsens.com (accessed on 10 January 2024). |
Crickets | Cricket Protein Bar. | Dark chocolate. | SENS https://www.eatsens.com (accessed on 10 January 2024). |
Crickets | Serious Cricket Protein Bar. | Bitter cocoa and sesame. | SENS https://www.eatsens.com (accessed on 10 January 2024). |
Crickets | Pleasure Cricket Protein Bar. | Pineapple and coconut; Dark chocolate and orange. | SENS https://www.eatsens.com (accessed on 10 January 2024). |
Crickets | Oat Cricket Protein Breakfast. | Apple and cinnamon; Hazelnut. | SENS https://www.eatsens.com (accessed on 10 January 2024). |
Crickets | Ready-to-Eat Outdoor Meal; Cricket Protein with Penne. | Vegetables; Chicken. | SENS https://www.eatsens.com (accessed on 10 January 2024). |
Crickets | Cooking and Baking; Cricket Protein Powder; Cricket Protein Pasta. | Unflavoured. | SENS https://www.eatsens.com (accessed on 10 January 2024). |
Insect | Product | Flavours | Retailer |
---|---|---|---|
Crickets, buffalo worms, mealworms, grasshoppers. | Ready-to-Eat Bundle; All in(sect) pack. Single species per pouch. | Smoky BBQ; Peri-peri; Chilli and lime; Unflavoured. | Eat Grub https://www.eatgrub.co.uk (accessed on 10 January 2024). |
Crickets. | Ready-to-eat bundle; Crunchy Roasted Crickets; Each pouch contains a different flavoured cricket; Classic Combo; Smokin’ hot. | Salted toffee; Salt and vinegar; Peri-peri; Smoky BBQ; Sweet chilli and lime. | Eat Grub https://www.eatgrub.co.uk (accessed on 10 January 2024). |
Crickets, grasshoppers, mealworms, buffalo worms. | Cooking Pack bundle; Edible insects Starter pack; Foodie pack; Freeze-dried insects. | Unflavoured. | Eat Grub https://www.eatgrub.co.uk (accessed on 10 January 2024). |
Crickets, mealworms, buffalo Worms. | Ingredients: Cricket Protein/Flour; Edible Crickets for roasting; Edible mealworms for roasting; Buffalo Worms for frying. | Unflavoured. | Eat Grub https://www.eatgrub.co.uk (accessed on 10 January 2024). |
Crickets. | Snacks Ready-to-Eat; Crunchy Roasted Crickets; The big mix; Individual tubes; Individual XXL bags. | Peri-peri; Classic combo; Smokin’ hot. Salt and vinegar; Salted toffee; Smoky BBQ; Sweet chilli and lime. | Eat Grub https://www.eatgrub.co.uk (accessed on 10 January 2024). |
Insect | Product | Flavours | Retailer |
---|---|---|---|
Crickets. | Cricket Bolognese Sauce. | Combination of meat, herbs, and sweet tomatoes. | One Hop Kitchen https://www.instagram.com/onehopkitchen/ (accessed on 10 January 2024) |
Mealworms. | Mealworm Bolognese Sauce. | Combination of meat, herbs, and sweet tomatoes. | One Hop Kitchen https://www.instagram.com/onehopkitchen/ (accessed on 10 January 2024). |
Order | Family | Insect 100 g | Protein | Fat | Fibre | kcal | Refs |
---|---|---|---|---|---|---|---|
Orthoptera | Gryllidae | Acheta domesticus | 64.10% | 24% | 6.20% | -- | [20,26] |
Orthoptera | Acrididae | Acrida exaltata | 64.46% | 7.07% | 7.73% | 336.93 | [20,26] |
Orthoptera | Acrididae | Arphia fallax | 71.30% | 6.52% | 11.58% | 367.04 | [20,26] |
Orthoptera | Acrididae | Melanoplus femurrubrum | 77% | 4.20% | 12.10% | 370.00 | [20,26] |
Coleoptera | Tenebrionidae | Tenebrio molitor (adult) | 60.20% | 20.80% | 16.30% | 460.60 | [20,26] |
Coleoptera | Tenebrionidae | Tenebrio molitor (pupal) | 53.10% | 36.70% | 5.10% | 552.90 | [20,26] |
Hempitera | Coreidae | Pachylis gigas (adult) | 65% | 19% | 10% | 451.00 | [20,26] |
Hempitera | Coreidae | Pachylis gigas (nymph) | 63% | 26% | 5% | 496.00 | [20,26] |
Lepidoptera | Eribidae | Latebraria amphipyrioides | 57% | 7% | 29% | 349.00 | [20,26] |
Lepidoptera | Hepialidae | Phassus triangularis | 15% | 77% | 4% | 761.00 | [20,26] |
Lepidoptera | Notodontidae | Anaphe venata (larvae) | 60.03% | 23.22% | 2.30% | 453.70 | [20,26] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Conway, A.; Jaiswal, S.; Jaiswal, A.K. The Potential of Edible Insects as a Safe, Palatable, and Sustainable Food Source in the European Union. Foods 2024, 13, 387. https://doi.org/10.3390/foods13030387
Conway A, Jaiswal S, Jaiswal AK. The Potential of Edible Insects as a Safe, Palatable, and Sustainable Food Source in the European Union. Foods. 2024; 13(3):387. https://doi.org/10.3390/foods13030387
Chicago/Turabian StyleConway, Ann, Swarna Jaiswal, and Amit K. Jaiswal. 2024. "The Potential of Edible Insects as a Safe, Palatable, and Sustainable Food Source in the European Union" Foods 13, no. 3: 387. https://doi.org/10.3390/foods13030387
APA StyleConway, A., Jaiswal, S., & Jaiswal, A. K. (2024). The Potential of Edible Insects as a Safe, Palatable, and Sustainable Food Source in the European Union. Foods, 13(3), 387. https://doi.org/10.3390/foods13030387