Effect of Crude Polysaccharides from Ecklonia cava Hydrolysate on Cell Proliferation and Differentiation of Hanwoo Muscle Stem Cells for Cultured Meat Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Hydrolysis of E. cava and Preparation of Crude Polysaccharide
2.2. Monosaccharide Composition Analysis Using High-Performance Anion-Exchange Chromatography
2.3. Primary Hanwoo Muscle Satellite Cell Isolation (HMSCs)
2.4. Cell Proliferation and Differentiation
2.5. Cell Proliferation Assay
2.6. Quantitative Real-Time PCR (qRT-PCR)
2.7. Cell Migration Effect (Wound-Healing Assay)
2.8. Statistical Analysis
3. Results and Discussion
3.1. Monosaccharide Composition Analysis of E. cava Extract
3.2. Effect of E. cava Extract on Proliferation Capacity of HMSCs
3.3. Effect of E. cava on Cell Migration Effect of HMSCs
3.4. Effect of E. cava Extract on Differentiation Capacity of HMSCs
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, H.J.; Yong, H.I.; Kim, M.; Choi, Y.-S.; Jo, C. Status of meat alternatives and their potential role in the future meat market—A review. Asian Australas. J. Anim. Sci. 2020, 33, 1533–1543. [Google Scholar] [CrossRef]
- Kim, T.-K.; Yong, H.I.; Cha, J.Y.; Park, S.-Y.; Jung, S.; Choi, Y.-S. Drying-induced restructured jerky analog developed using a combination of edible insect protein and textured vegetable protein. Food Chem. 2022, 373, 131519. [Google Scholar] [CrossRef]
- Hadi, J.; Brightwell, G. Safety of alternative proteins: Technological, environmental and regulatory aspects of cultured meat, plant-based meat, insect protein and single-cell protein. Foods 2021, 10, 1226. [Google Scholar] [CrossRef] [PubMed]
- Ramani, S.; Ko, D.; Kim, B.; Cho, C.; Kim, W.; Jo, C.; Lee, C.-K.; Kang, J.; Hur, S.; Park, S. Technical requirements for cultured meat production: A review. J. Anim. Sci. Technol. 2021, 63, 681–692. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Guan, X.; Yu, S.; Zhou, J.; Chen, J. Production of meat alternatives using live cells, cultures and plant proteins. Curr. Opin. Food Sci. 2022, 43, 43–52. [Google Scholar] [CrossRef]
- Röös, E.; Sundberg, C.; Hansson, P.-A. Carbon footprint of food products. In Assessment of Carbon Footprint in Different Industrial Sectors; Springer: Singapore, 2014; Volume 1, pp. 85–112. [Google Scholar]
- Desjardins, R.; Worth, D.; Vergé, X.; Maxime, D.; Dyer, J.; Cerkowniak, D. Carbon footprint of beef cattle. Sustainability 2012, 4, 3279–3301. [Google Scholar] [CrossRef]
- Herrero, M.; Thornton, P.K.; Mason-D’Croz, D.; Palmer, J.; Benton, T.G.; Bodirsky, B.L.; Bogard, J.R.; Hall, A.; Lee, B.; Nyborg, K.; et al. Innovation can accelerate the transition towards a sustainable food system. Nat. Food 2020, 1, 266–272. [Google Scholar] [CrossRef]
- Post, M.J. Cultured meat from stem cells: Challenges and prospects. Meat Sci. 2012, 92, 297–301. [Google Scholar] [CrossRef] [PubMed]
- Chriki, S.; Hocquette, J.-F. The myth of cultured meat: A review. Front. Nutr. 2020, 7, 7. [Google Scholar] [CrossRef] [PubMed]
- Sousa-Victor, P.; García-Prat, L.; Muñoz-Cánoves, P. Control of satellite cell function in muscle regeneration and its disruption in ageing. Nat. Rev. Mol. Cell Biol. 2022, 23, 204–226. [Google Scholar] [CrossRef]
- Li, Y.; Qian, Z.-J.; Ryu, B.; Lee, S.-H.; Kim, M.-M.; Kim, S.-K. Chemical components and its antioxidant properties in vitro: An edible marine brown alga, Ecklonia cava. Bioorg. Med. Chem. 2009, 17, 1963–1973. [Google Scholar] [CrossRef]
- Wijesinghe, W.; Jeon, Y.-J. Exploiting biological activities of brown seaweed Ecklonia cava for potential industrial applications: A review. Int. J. Food Sci. Nutr. 2012, 63, 225–235. [Google Scholar] [CrossRef] [PubMed]
- Wijesekara, I.; Yoon, N.Y.; Kim, S.K. Phlorotannins from Ecklonia cava (Phaeophyceae): Biological activities and potential health benefits. Biofactors 2010, 36, 408–414. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Ding, S.-J.; Ding, X.; Liu, Z.; Wang, J.-L.; Chen, Y.; Liu, P.-P.; Li, H.-X.; Zhou, G.-H.; Tang, C.-B. Effects of selected flavonoids on cell proliferation and differentiation of porcine muscle stem cells for cultured meat production. Food Res. Int. 2022, 160, 111459. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Liu, M.; Meng, Q. Angelica polysaccharide promotes proliferation and osteoblast differentiation of mesenchymal stem cells by regulation of long non-coding RNA H19: An animal study. Bone Jt. Res. 2019, 8, 323–332. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.Y.; Chen, S.H.; Chen, C.H.; Chou, P.Y.; Yang, C.C.; Lin, F.H. Polysaccharide extracted from Bletilla striata promotes proliferation and migration of human tenocytes. Polymers 2020, 12, 2567. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Li, C.; Liu, D.; Guo, J. Effects of Lycium barbarum polysaccharides on the proliferation and differentiation of primary Sertoli cells in young rats. J. Trad. Chin. Med. Sci. 2022, 9, 78–84. [Google Scholar] [CrossRef]
- Eom, S.J.; Lee, J.-A.; Kim, J.H.; Park, J.-T.; Lee, N.H.; Kim, B.-K.; Kang, M.-C.; Song, K.-M. Skin-protective effect of polysaccharide from ultrasonicated sesame oil cake. Ind. Crop. Prod. 2023, 203, 117123. [Google Scholar] [CrossRef]
- Lee, J.-H.; Kim, J.-H.; Kim, S.-M.; Kim, J.-Y.; Kim, J.-H.; Eom, S.-J.; Kang, M.-C.; Song, K.-M. The antioxidant activity of Undaria pinnatifida sporophyll extract obtained using ultrasonication: A focus on crude polysaccharide extraction using ethanol precipitation. Antioxidants 2023, 12, 1904. [Google Scholar] [CrossRef]
- Park, S.; Gagliardi, M.; Swennen, G.; Dogan, A.; Kim, Y.; Park, Y.; Park, G.; Oh, S.; Post, M.; Choi, J. Effects of hypoxia on proliferation and differentiation in Belgian Blue and Hanwoo muscle satellite cells for the development of cultured meat. Biomolecules 2022, 12, 838. [Google Scholar] [CrossRef]
- Oh, S.; Park, S.; Park, Y.; Kim, Y.-A.; Park, G.; Cui, X.; Kim, K.; Joo, S.; Hur, S.; Kim, G. Culturing characteristics of Hanwoo myosatellite cells and C2C12 cells incubated at 37 °C and 39 °C for cultured meat. J. Anim. Sci. Technol. 2023, 65, 664–678. [Google Scholar] [CrossRef]
- Ahn, G.; Lee, W.; Kim, K.-N.; Lee, J.-H.; Heo, S.-J.; Kang, N.; Lee, S.-H.; Ahn, C.-B.; Jeon, Y.-J. A sulfated polysaccharide of Ecklonia cava inhibits the growth of colon cancer cells by inducing apoptosis. EXCLI J. 2015, 14, 294–306. [Google Scholar] [PubMed]
- Yang, Z.; Hu, Y.; Yue, P.; Luo, H.; Li, Q.; Li, H.; Zhang, Z.; Peng, F. Physicochemical properties and skin protection activities of polysaccharides from Usnea longissima by graded ethanol precipitation. ACS Omega 2021, 6, 25010–25018. [Google Scholar] [CrossRef]
- Zhao, S.; Lei, M.; Xu, H.; He, H.; Suvorov, A.; Wang, J.; Qiu, J.; Zhou, Q.; Yang, J.; Chen, L. The normal cell proliferation and wound healing effect of polysaccharides from Ganoderma amboinense. Food Sci. Hum. Wellness 2021, 10, 508–513. [Google Scholar] [CrossRef]
- Ding, S.; Swennen, G.M.; Messmer, T.; Gagliardi, M.; Molin, D.G.; Li, C.; Zhou, G.; Post, M.J. Maintaining bovine satellite cells stemness through p38 pathway. Sci. Rep. 2018, 8, 10808. [Google Scholar] [CrossRef] [PubMed]
- von Maltzahn, J.; Jones, A.E.; Parks, R.J.; Rudnicki, M.A. Pax7 is critical for the normal function of satellite cells in adult skeletal muscle. Proc. Natl. Acad. Sci. USA 2013, 110, 16474–16479. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.H.; Lee, H.J.; Jung, D.Y.; Kim, M.; Jung, H.Y.; Hong, H.; Choi, Y.-S.; Yong, H.I.; Jo, C. Evaluation of fermented soybean meal and edible insect hydrolysates as potential serum replacement in pig muscle stem cell culture. Food Biosci. 2023, 54, 102923. [Google Scholar] [CrossRef]
- Zanou, N.; Gailly, P. Skeletal muscle hypertrophy and regeneration: Interplay between the myogenic regulatory factors (MRFs) and insulin-like growth factors (IGFs) pathways. Cell. Mol. Life Sci. 2013, 70, 4117–4130. [Google Scholar] [CrossRef]
- Zammit, P.S. Function of the myogenic regulatory factors Myf5, MyoD, Myogenin and MRF4 in skeletal muscle, satellite cells and regenerative myogenesis. Semin. Cell Dev. Biol. 2017, 72, 19–32. [Google Scholar] [CrossRef]
- Cosgrove, B.D.; Sacco, A.; Gilbert, P.M.; Blau, H.M. A home away from home: Challenges and opportunities in engineering in vitro muscle satellite cell niches. Differentiation 2009, 78, 185–194. [Google Scholar] [CrossRef]
- Schmidt, M.; Schüler, S.C.; Hüttner, S.S.; von Eyss, B.; von Maltzahn, J. Adult stem cells at work: Regenerating skeletal muscle. Cell. Mol. Life Sci. 2019, 76, 2559–2570. [Google Scholar] [CrossRef]
- Choi, S.; Ferrari, G.; Tedesco, F.S. Cellular dynamics of myogenic cell migration: Molecular mechanisms and implications for skeletal muscle cell therapies. EMBO Mol. Med. 2020, 12, e12357. [Google Scholar] [CrossRef]
- González, M.N.; de Mello, W.; Butler-Browne, G.S.; Silva-Barbosa, S.D.; Mouly, V.; Savino, W.; Riederer, I. HGF potentiates extracellular matrix-driven migration of human myoblasts: Involvement of matrix metalloproteinases and MAPK/ERK pathway. Skeletal Muscle 2017, 7, 20. [Google Scholar] [CrossRef]
- McGill, G.l.G.; Haq, R.; Nishimura, E.K.; Fisher, D.E. c-Met expression is regulated by Mitf in the melanocyte lineage. J. Biol. Chem. 2006, 281, 10365–10373. [Google Scholar] [CrossRef]
- Trusolino, L.; Bertotti, A.; Comoglio, P.M. MET signalling: Principles and functions in development, organ regeneration and cancer. Nat. Rev. Mol. Cell Biol. 2010, 11, 834–848. [Google Scholar] [CrossRef] [PubMed]
- Webster, M.T.; Fan, C.-M. c-MET regulates myoblast motility and myocyte fusion during adult skeletal muscle regeneration. PLoS ONE 2013, 8, e81757. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Gao, C.-Q.; Chen, R.-Q.; Jin, C.-L.; Li, H.-C.; Yan, H.-C.; Wang, X.-Q. Focal adhesion kinase and paxillin promote migration and adhesion to fibronectin by swine skeletal muscle satellite cells. Oncotarget 2016, 7, 30845. [Google Scholar] [CrossRef]
- Deramaudt, T.B.; Dujardin, D.; Noulet, F.; Martin, S.; Vauchelles, R.; Takeda, K.; Rondé, P. Altering FAK-paxillin interactions reduces adhesion, migration and invasion processes. PLoS ONE 2014, 9, e92059. [Google Scholar] [CrossRef] [PubMed]
- Blais, A.; Tsikitis, M.; Acosta-Alvear, D.; Sharan, R.; Kluger, Y.; Dynlacht, B.D. An initial blueprint for myogenic differentiation. Genes Dev. 2005, 19, 553–569. [Google Scholar] [CrossRef]
- Rudnicki, M.; Le Grand, F.; McKinnell, I.; Kuang, S. The molecular regulation of muscle stem cell function. Cold Spring Harb. Symp. Quant. Biol. 2008, 73, 323–331. [Google Scholar] [CrossRef]
- Ryu, M.; Kim, M.; Jung, H.Y.; Kim, C.H.; Jo, C. Effect of p38 inhibitor on the proliferation of chicken muscle stem cells and differentiation into muscle and fat. Anim. Biosci. 2023, 36, 295–306. [Google Scholar] [CrossRef] [PubMed]
- Ishibashi, J.; Perry, R.L.; Asakura, A.; Rudnicki, M.A. MyoD induces myogenic differentiation through cooperation of its NH2-and COOH-terminal regions. J. Cell Biol. 2005, 171, 471–482. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.G.; Jayawardena, T.U.; Liyanage, N.M.; Song, K.M.; Choi, Y.S.; Jeon, Y.J.; Kang, M.C. Antioxidant potential of low molecular weight fucoidans from Sargassum autumnale against H2O2-induced oxidative stress in vitro and in zebrafish models based on molecular weight changes. Food Chem. 2022, 384, 132591. [Google Scholar]
- Wang, L.; Oh, J.Y.; Hwang, J.; Ko, J.Y.; Jeon, Y.J.; Ryu, B. In vitro and in vivo antioxidant activities of polysaccharides isolated from celluclast-assisted extract of an edible brown seaweed, Sargassum fulvellum. Antioxidants 2019, 8, 493. [Google Scholar] [CrossRef]
- Choi, Y.S.; Jeong, T.J.; Kim, H.W.; Hwang, K.E.; Sung, J.M.; Seo, D.H.; Kim, Y.B.; Kim, C.J. Combined effects of sea mustard and transglutaminase on the quality characteristics of reduced-salt frankfurters. J. Food Process. Preserv. 2017, 41, e12945. [Google Scholar] [CrossRef]
Primer | Description | Sequence (5′-3′) |
---|---|---|
PAX7 | Paired box 7 | F: AGCCGGGTTAGCAAGATACT R: GAAACTCTGGCTGACCTTGA |
MYF5 | Myogenic factor 5 | F: ATTACCAGAGACACCGACCA R: CAGGAGCCGTCGTAGAAGTA |
MYOD | Myoblast determination protein 1 | F: AACAGCGGACGACTTCTATG R: GTTAGTCGTCTTGCGTTTGC |
HGF | Hepatocyte growth factor | F: CACACGAACACAGCTTTTTG R: ATGGGACCTCGGTAACTTTC |
MET | Mesenchymal–epithelial transition factor | F: TTCATTGGGGAGCACTATGT R: CAAAGGGTGGACTGTTGTTC |
CAV3 | Cavolin 3 | F: AAAGACAGTCCACCATGGAA R: ACCGAAACCCTTTATTGGAG |
ITGB1 | Integrin subunit β1 | F: AGATGAGGTGAACAGCGAAG R: CTCACACACTCGACACTTGC |
CCND1 | Cyclin D1 | F: CTCGAAGATGAAGGAGACCA R: GAAGTGCTCGATGAAGTCGT |
MYH2 | Myosin heavy chain 2 | F: CCAGTGGAGGACCAAGTATG R: TTCCTTTGCTTTTTGTCCAG |
MYH7 | Myosin heavy chain 7 | F: TGGACAAGAAGCAGAGGAAC R: TTGAAGGTCTCCAGATGCTC |
MYOG | Myogenin | F: ACAAACCATGCACATCTCCT R: AGCACAGAGACCTTGGTCAG |
β-Actin | F: CGCAGAAAACGAGATGAGAT R: CTCGGCCACACTGTAGAACT |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.-H.; Kim, T.-K.; Kang, M.-C.; Park, M.-K.; Park, S.-H.; Choi, J.-S.; Choi, Y.-S. Effect of Crude Polysaccharides from Ecklonia cava Hydrolysate on Cell Proliferation and Differentiation of Hanwoo Muscle Stem Cells for Cultured Meat Production. Foods 2024, 13, 563. https://doi.org/10.3390/foods13040563
Lee J-H, Kim T-K, Kang M-C, Park M-K, Park S-H, Choi J-S, Choi Y-S. Effect of Crude Polysaccharides from Ecklonia cava Hydrolysate on Cell Proliferation and Differentiation of Hanwoo Muscle Stem Cells for Cultured Meat Production. Foods. 2024; 13(4):563. https://doi.org/10.3390/foods13040563
Chicago/Turabian StyleLee, Jae-Hoon, Tae-Kyung Kim, Min-Cheol Kang, Min-Kyung Park, Sang-Hun Park, Jung-Seok Choi, and Yun-Sang Choi. 2024. "Effect of Crude Polysaccharides from Ecklonia cava Hydrolysate on Cell Proliferation and Differentiation of Hanwoo Muscle Stem Cells for Cultured Meat Production" Foods 13, no. 4: 563. https://doi.org/10.3390/foods13040563
APA StyleLee, J. -H., Kim, T. -K., Kang, M. -C., Park, M. -K., Park, S. -H., Choi, J. -S., & Choi, Y. -S. (2024). Effect of Crude Polysaccharides from Ecklonia cava Hydrolysate on Cell Proliferation and Differentiation of Hanwoo Muscle Stem Cells for Cultured Meat Production. Foods, 13(4), 563. https://doi.org/10.3390/foods13040563