Characterization of a Fermented Beverage from Discarded Bread Flour Using Two Commercial Probiotics Starters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Bread Flour
2.1.2. Microorganisms and Enzymes
2.2. Methods
2.2.1. Fermentation Procedure and Storage
2.2.2. Proximate Composition
2.2.3. NaCl Content
2.2.4. Determination of Gamma-Aminobutyric Acid (GABA)
2.2.5. Analysis of Volatile Compounds
2.2.6. Consumer Acceptance
2.2.7. Microbial Determination
2.2.8. Analysis of Organic Acids
2.2.9. Analysis of Carbohydrates
2.2.10. Statistical Analysis
3. Results and Discussion
3.1. Macronutrients
3.2. Volatile Compounds
3.3. Sensory Analysis
3.4. Microbial Growth
3.5. Determination of Organic Acids
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Fermentation Time (d) | Sample | Glucose (g per 100 g) | Isomaltose (g per 100 g) | Maltose (g per 100 g) |
---|---|---|---|---|
1 | LGG E S | 10.9632 ± 0.9499 a | 0.0341 ± 0.0092 ab | 0.0605 ± 0.0352 cd |
LGG NE S | 0.0024 ± 0.0011 c | 0.0145 ± 0.0004 cde | 0.6304 ± 0.0120 a | |
LGG E DS | 10.7377 ± 1.5658 a | 0.0244 ± 0.0005 bcd | 0.1035 ± 0.0084 c | |
LGG NE DS | 0.0015 ± 0.0005 c | 0.0059 ± 0.0005 de | 0.2557 ± 0.0028 b | |
BY E S | 8.4065 ± 4.7617 ab | 0.0295 ± 0.0030 bc | 0.0364 ± 0.0372 cd | |
BY NE S | 0.0056 ± 0.0078 c | 0.0010 ± 0.0018 e | 0.0474 ± 0.0814 cd | |
BY E DS | 5.6437 ± 2.0498 b | 0.0483 ± 0.0202 a | 0.0606 ± 0.0173 cd | |
BY NE DS | 0.001415 ± 0.0028 c | - | 0.0051 ± 0.0073 d | |
15 | LGG E S | 11.9013 ± 0.9913 a | 0.0563 ± 0.0011 b | 0.0162 ± 0.0011 d |
LGG NE S | 0.0021 ± 0.0008 c | 0.0139 ± 0.0009 c | 0.6284 ± 0.0503 a | |
LGG E DS | 11.0114 ± 1.4064 ab | 0.0459 ± 0.0073 b | 0.0275 ± 0.0235 d | |
LGG NE DS | 0.0032 ± 0.0030 c | 0.0059 ± 0.0006 c | 0.2607 ± 0.0155 b | |
BY E S | 10.0508 ± 4.7908 ab | 0.0524 ± 0.0011 b | 0.0323 ± 0.0202 cd | |
BY NE S | 0.0055 ± 0.0006 c | 0.0001 ± 0.0002 c | 0.0092 ± 0.0106 d | |
BY E DS | 7.1052 ± 0.8121 b | 0.0771 ± 0.0144 a | 0.0831 ± 0.0099 c | |
BY NE DS | - | - | 0.0033 ± 0.0041 d | |
21 | LGG E S | 12.4819 ± 1.2800 a | 0.0579 ± 0.0195 ab | 0.0193 ± 0.0016 b |
LGG NE S | 0.0010 ± 0.0003 b | 0.0131 ± 0.0015 c | 0.6075 ± 0.0657 a | |
LGG E DS | 12.8468 ± 1.8321 a | 0.0601 ± 0.0231 a | 0.0346 ± 0.0273 b | |
LGG NE DS | 0.0079 ± 0.0092 b | 0.0092 ± 0.0045 c | 0.4520 ± 0.2317 a | |
BY E S | 9.3650 ± 4.9087 a | 0.0510 ± 0.0153 ab | 0.0096 ± 0.0023 b | |
BY NE S | 0.0024 ± 0.0028 b | - | 0.0057 ± 0.0046 b | |
BY E DS | 2.0348 ± 0.3807 b | 0.0289 ± 0.0104 bc | 0.0136 ± 0.0009 b | |
BY NE DS | 0.0013 ± 0.0025 b | - | 0.0021 ± 0.0025 b |
References
- Hanson, C.; Lipinski, B.; Robertson, K.; Dias, D.; Gavilan, I.; Gréverath, P.; Ritter, S.; Fonseca, J.; van Otterdijk, R.; Timmermans, T.; et al. Food Loss and Waste Accounting and Reporting Standard; World Business Council for Sustainable Development: Geneva, Switzerland, 2016. [Google Scholar]
- FAO. Food Wastage Footprint: Impacts on Natural Resources—Summary Report. Available online: https://www.fao.org/3/i3347e/i3347e.pdf (accessed on 22 April 2021).
- Moving Forward on Food Loss and Waste Reduction; The State of Food and Agriculture; Food and Agriculture Organization of the United Nations: Rome, Italy, 2019; ISBN 978-92-5-131789-1.
- Kummu, M.; de Moel, H.; Porkka, M.; Siebert, S.; Varis, O.; Ward, P.J. Lost food, wasted resources: Global food supply chain losses and their impacts on freshwater, cropland, and fertiliser use. Sci. Total Environ. 2012, 438, 477–489. [Google Scholar] [CrossRef]
- Dymchenko, A.; Geršl, M.; Gregor, T. Trends in bread waste utilisation. Trends Food Sci. Technol. 2023, 132, 93–102. [Google Scholar] [CrossRef]
- Gómez, M.; Martinez, M.M. Redistribution of surplus bread particles into the food supply chain. LWT 2023, 173, 114281. [Google Scholar] [CrossRef]
- Blandino, A.; Al-Aseeri, M.E.; Pandiella, S.S.; Cantero, D.; Webb, C. Cereal-based fermented foods and veverages. Food Res. Int. 2003, 36, 527–543. [Google Scholar] [CrossRef]
- Bianchi, F.; Rossi, E.A.; Sakamoto, I.K.; Adorno, M.A.T.; Van de Wiele, T.; Sivieri, K. Beneficial effects of fermented vegetal beverages on human gastrointestinal microbial ecosystem in a simulator. Food Res. Int. 2014, 64, 43–52. [Google Scholar] [CrossRef]
- Cox, R.; Narisetty, V.; Nagarajan, S.; Agrawal, D.; Ranade, V.V.; Salonitis, K.; Venus, J.; Kumar, V. High-Level Fermentative production of lactic acid from bread waste under non-sterile conditions with a circular biorefining approach and zero waste discharge. Fuel 2022, 313, 122976. [Google Scholar] [CrossRef]
- Immonen, M.; Maina, N.H.; Wang, Y.; Coda, R.; Katina, K. Waste bread recycling as a baking ingredient by tailored lactic acid fermentation. Int. J. Food Microbiol. 2020, 327, 108652. [Google Scholar] [CrossRef] [PubMed]
- Verni, M.; Minisci, A.; Convertino, S.; Nionelli, L.; Rizzello, C.G. Wasted bread as substrate for the cultivation of starters for the food industry. Front. Microbiol. 2020, 11, 510905. [Google Scholar] [CrossRef] [PubMed]
- Sigüenza-Andrés, T.; Pando, V.; Gómez, M.; Rodríguez-Nogales, J.M. Optimization of a simultaneous enzymatic hydrolysis to obtain a high-glucose slurry from bread waste. Foods 2022, 11, 1793. [Google Scholar] [CrossRef] [PubMed]
- Corbo, M.R.; Bevilacqua, A.; Petruzzi, L.; Casanova, F.P.; Sinigaglia, M. Functional beverages: The emerging side of functional foods: Commercial trends, research, and health implications. Comp. Rev. Food Sci. Food Safe 2014, 13, 1192–1206. [Google Scholar] [CrossRef]
- Sidhu, J.S.; Kabir, Y.; Huffman, F.G. Functional foods from cereal grains. Int. J. Food Prop. 2007, 10, 231–244. [Google Scholar] [CrossRef]
- Markowiak, P.; Śliżewska, K. Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients 2017, 9, 1021. [Google Scholar] [CrossRef]
- Sanders, M.E.; Merenstein, D.; Merrifield, C.A.; Hutkins, R. Probiotics for human use. Nutr. Bull. 2018, 43, 212–225. [Google Scholar] [CrossRef]
- Vijaya Kumar, B.; Vijayendra, S.V.N.; Reddy, O.V.S. Trends in dairy and non-dairy probiotic products—A review. J. Food Sci. Technol. 2015, 52, 6112–6124. [Google Scholar] [CrossRef]
- Cui, Y.; Miao, K.; Niyaphorn, S.; Qu, X. Production of gamma-aminobutyric acid from lactic acid bacteria: A systematic review. Int. J. Mol. Sci. 2020, 21, 995. [Google Scholar] [CrossRef] [PubMed]
- Salmerón, I.; Thomas, K.; Pandiella, S.S. Effect of potentially probiotic lactic acid bacteria on the physicochemical composition and acceptance of fermented cereal beverages. J. Funct. Foods 2015, 15, 106–115. [Google Scholar] [CrossRef]
- Tripathi, M.K.; Giri, S.K. Probiotic functional foods: Survival of probiotics during processing and storage. J. Funct. Foods 2014, 9, 225–241. [Google Scholar] [CrossRef]
- Chavan, M.; Gat, Y.; Harmalkar, M.; Waghmare, R. Development of non-dairy fermented probiotic drink based on germinated and ungerminated cereals and legume. LWT—Food Sci. Technol. 2018, 91, 339–344. [Google Scholar] [CrossRef]
- Aparicio-García, N.; Martínez-Villaluenga, C.; Frias, J.; Peñas, E. Production and characterization of a novel gluten-free fermented beverage based on sprouted oat flour. Foods 2021, 10, 139. [Google Scholar] [CrossRef] [PubMed]
- Peyer, L.C.; Zannini, E.; Arendt, E.K. Lactic acid bacteria as sensory biomodulators for fermented cereal-based beverages. Trends Food Sci. Technol. 2016, 54, 17–25. [Google Scholar] [CrossRef]
- Massa, A.; Axpe, E.; Atxa, E.; Hernández, I. Sustainable, carbonated, non-alcoholic beverages using leftover bread. Int. J. Gastron. Food Sci. 2022, 30, 100607. [Google Scholar] [CrossRef]
- Nguyen, T.-L.; Toh, M.; Lu, Y.; Ku, S.; Liu, S.-Q. Biovalorization of market surplus bread for development of probiotic-fermented potential functional beverages. Foods 2022, 11, 250. [Google Scholar] [CrossRef]
- Sigüenza-Andrés, T.; Gómez, M.; Rodríguez-Nogales, J.M.; Caro, I. Development of a fermented plant-based beverage from discarded bread flour. LWT 2023, 182, 114795. [Google Scholar] [CrossRef]
- ISO 712:2009; Cereals and Cereal Products–Determination of Moisture Content–Reference Method. International Organization for Standardization: Geneva, Switzerland, 2009.
- ISO 20483:2013; Cereals and Pulses–Determination of the Nitrogen Content and Calculation of the Crude Protein Content–Kjeldahl Method. International Organization for Standardization: Geneva, Switzerland, 2013.
- Shin, J.-M.; Hwang, Y.-O.; Tu, O.-J.; Jo, H.-B.; Kim, J.-H.; Chae, Y.-Z.; Rhu, K.-H.; Park, S.-K. Comparison of different methods to quantify fat classes in bakery products. Food Chem. 2013, 136, 703–709. [Google Scholar] [CrossRef] [PubMed]
- ISO 2171:2023; Cereals, Pulses and by-Products-Determination of Ash Yield by Incineration. International Organization for Standardization: Geneva, Switzerland, 2023.
- Carcea, M.; Narducci, V.; Turfani, V.; Aguzzi, A. A survey of sodium chloride content in Italian artisanal and industrial bread. Foods 2018, 7, 181. [Google Scholar] [CrossRef]
- Erbaş, M.; Kemal Uslu, M.; Ozgun Erbaş, M.; Certel, M. Effects of fermentation and storage on the organic and fatty acid contents of tarhana, a Turkish fermented cereal food. J. Food Compos. Anal. 2006, 19, 294–301. [Google Scholar] [CrossRef]
- Henderson, J.W.; Faye, T.; Wittek, U.; Stevens, J. Amino acid analysis of spinach and apple using a QuEChERS sample preparation technique and automated OPA/FMOC derivatization LC method. Agil. Technol. 2009. [Google Scholar]
- Soto, S.; Serrano, E.; Humada, M.J.; Fernández-Diez, A.; Caro, I.; Castro, A.; Mateo, J. Volatile compounds in the perirenal fat from calves finished on semiextensive or intensive systems with special emphasis on terpenoids. Grasas Y Aceites 2015, 66, e108. [Google Scholar] [CrossRef]
- Carballo, D.E.; Caro, I.; Andrés, S.; Giráldez, F.J.; Mateo, J. Assessment of the antioxidant effect of astaxanthin in fresh, frozen and cooked lamb patties. Food Res. Int. 2018, 111, 342–350. [Google Scholar] [CrossRef]
- ISO 8589:1988; Sensory Analysis–General Guidance for The Design of Test Rooms. International Organization for Standardization: Geneva, Switzerland, 1988.
- Lawless, H.T.; Heymann, H. Sensory Evaluation of Food: Principles and Practices; Food Science Text Series; Springer: New York, NY, USA, 2010; ISBN 978-1-4419-6487-8. [Google Scholar]
- Cal-Sabater, P.; Caro, I.; Castro, M.J.; Cao, M.J.; Mateo, J.; Quinto, E.J. Flow cytometry to assess the counts and physiological state of Cronobacter sakazakii cells after heat exposure. Foods 2019, 8, 688. [Google Scholar] [CrossRef]
- Baranyi, J.; Roberts, T.A. A dynamic approach to predicting bacterial growth in food. Int. J. Food Microbiol. 1994, 23, 277–294. [Google Scholar] [CrossRef] [PubMed]
- Grasso, N.; Alonso-Miravalles, L.; O’Mahony, J.A. Composition, physicochemical and sensorial properties of commercial plant-based yogurts. Foods 2020, 9, 252. [Google Scholar] [CrossRef]
- Pontonio, E.; Raho, S.; Dingeo, C.; Centrone, D.; Carofiglio, V.E.; Rizzello, C.G. Nutritional, functional, and technological characterization of a novel gluten and lactose-free yogurt-style snack produced with selected lactic acid bacteria andleguminosae flours. Front. Microbiol. 2020, 11, 1664. [Google Scholar] [CrossRef]
- Martensson, O.; Öste, R.; Holst, O. The effect of yoghurt culture on the survival of probiotic bacteria in oat-based, non-dairy products. Food Res. Int. 2002, 35, 775–784. [Google Scholar] [CrossRef]
- Bernat, N.; Cháfer, M.; Chiralt, A.; González-Martínez, C. Development of a non-dairy probiotic fermented product based on almond milk and inulin. Food Sci. Technol. Int. 2015, 21, 440–453. [Google Scholar] [CrossRef]
- Zhuang, K.; Jiang, Y.; Feng, X.; Li, L.; Dang, F.; Zhang, W.; Man, C. Transcriptomic response to GABA-producing Lactobacillus plantarum CGMCC 1.2437T induced by L-MSG. PLoS ONE 2018, 13, e0199021. [Google Scholar] [CrossRef] [PubMed]
- Yogeswara, I.B.A.; Maneerat, S.; Haltrich, D. Glutamate decarboxylase from lactic acid bacteria—A Key Enzyme in GABA Synthesis. Microorganisms 2020, 8, 1923. [Google Scholar] [CrossRef]
- Harlé, O.; Falentin, H.; Niay, J.; Valence, F.; Courselaud, C.; Chuat, V.; Maillard, M.-B.; Guédon, É.; Deutsch, S.-M.; Thierry, A. Diversity of the Metabolic Profiles of a broad range of lactic acid bacteria in soy juice fermentation. Food Microbiol. 2020, 89, 103410. [Google Scholar] [CrossRef]
- Papaioannou, G.; Kosma, I.; Badeka, A.V.; Kontominas, M.G. Profile of volatile compounds in dessert yogurts prepared from cow and goat milk, using different starter cultures and probiotics. Foods 2021, 10, 3153. [Google Scholar] [CrossRef]
- Wang, J.; Wei, B.-C.; Wang, X.; Zhang, Y.; Gong, Y.-J. Aroma profiles of sweet cherry juice fermented by different lactic acid bacteria determined through integrated analysis of electronic nose and gas chromatography–ion mobility spectrometry. Front. Microbiol. 2023, 14, 1113594. [Google Scholar] [CrossRef]
- Beshkova, D.; Simova, E.; Frengova, G.; Simov, Z. Production of flavour compounds by yogurt starter cultures. J. Ind. Microbiol. Biotechnol. 1998, 20, 180–186. [Google Scholar] [CrossRef]
- Jyoti, B.D.; Suresh, A.K.; Venkatesh, K.V. Effect of preculturing conditions on growth of Lactobacillus rhamnosus on medium containing glucose and citrate. Microbiol. Res. 2004, 159, 35–42. [Google Scholar] [CrossRef]
- Bezkorovainy, A.; Miller-Catchpole, R. Biochemistry and Physiology of Bifidobacteria, 1st ed.; CRC Press: Boca Raton, FL, USA, 2020; ISBN 978-0-367-81172-3. [Google Scholar]
- Corsetti, A.; Settanni, L. Lactobacilli in sourdough fermentation. Food Res. Int. 2007, 40, 539–558. [Google Scholar] [CrossRef]
- Endo, A.; Dicks, L.M.T. Physiology of the LAB. In Lactic Acid Bacteria; Holzapfel, W.H., Wood, B.J.B., Eds.; Wiley: Hoboken, NJ, USA, 2014; pp. 13–30. ISBN 978-1-4443-3383-1. [Google Scholar]
- Bujna, E.; Farkas, N.A.; Tran, A.M.; Dam, M.S.; Nguyen, Q.D. Lactic acid fermentation of apricot juice by mono- and mixed cultures of probiotic Lactobacillus and Bifidobacterium strains. Food Sci. Biotechnol. 2017, 27, 547–554. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Zhao, S.; Hao, G.; Yu, H.; Tian, H.; Zhao, G. Role of Lactic acid bacteria on the yogurt flavour: A review. Int. J. Food Prop. 2017, 20, S316–S330. [Google Scholar] [CrossRef]
- Iglesias, M.B.; Echeverría, G.; Viñas, I.; López, M.L.; Abadias, M. Biopreservation of fresh-cut pear using Lactobacillus rhamnosus GG and effect on quality and volatile compounds. LWT 2018, 87, 581–588. [Google Scholar] [CrossRef]
- Wang, S.; Chen, P.; Dang, H. Lactic acid bacteria and γ-aminobutyric acid and diacetyl. In Lactic Acid Bacteria; Chen, W., Ed.; Springer: Singapore, 2019; pp. 1–19. ISBN 9789811372827. [Google Scholar]
- Teixeira, P. Lactobacillus delbrueckii ssp. bulgaricus. In Encyclopedia of Food Microbiology; Elsevier: Amsterdam, The Netherlands, 2014; pp. 425–431. ISBN 978-0-12-384733-1. [Google Scholar]
- Martin, F.; Cachon, R.; Pernin, K.; De Coninck, J.; Gervais, P.; Guichard, E.; Cayot, N. Effect of oxidoreduction potential on aroma biosynthesis by lactic acid bacteria in non fat yogurt. J. Dairy Sci. 2011, 94, 614–622. [Google Scholar] [CrossRef] [PubMed]
- Masiá, C.; Geppel, A.; Buldo, P.; Jensen, P.E. Effect of Lactobacillus rhamnosus on physicochemical properties of fermented plant-based raw materials. Foods 2021, 10, 573. [Google Scholar] [CrossRef]
- Dan, T.; Wang, D.; Jin, R.L.; Zhang, H.P.; Zhou, T.T.; Sun, T.S. Characterization of volatile compounds in fermented milk using solid-phase microextraction methods coupled with gas chromatography-mass spectrometry. J. Dairy Sci. 2017, 100, 2488–2500. [Google Scholar] [CrossRef] [PubMed]
- Tsangalis, D.; Shah, N.P. Metabolism of oligosaccharides and aldehydes and production of organic acids in soymilk by probiotic Bifidobacteria. Int. J. Food Sci. Technol. 2004, 39, 541–554. [Google Scholar] [CrossRef]
- Voss, G.B.; Sousa, V.; Rema, P.; Pintado, M.E.; Valente, L.M.P. Processed by-products from soy beverage (okara) as sustainable ingredients for Nile tilapia (O. Niloticus) juveniles: Effects on Nutrient Utilization and Muscle Quality. Animals 2021, 11, 590. [Google Scholar] [CrossRef]
- Real Decreto 271/2014, de 11 de Abril, Por El Que Se Aprueba la Norma de Calidad Para el Yogur o Yoghourt. Boletín Oficial del Estado, 102, de 28 abril de 2014. Available online: https://www.boe.es/eli/es/rd/2014/04/11/271 (accessed on 21 October 2023).
- Misra, A.K.; Kulla, R.K. Use of Bifidobacterium bifidum for the manufacture of bio-yoghurt and fruit bioyoghurt. Indian. J. Dairy. Sci. 1994, 47, 192–197. [Google Scholar]
- Sheth, U.; Sankaranarayanan, A.; Srinivasan, R. Recent advancements in the production of probiotic fermented beverages. In Advances in Dairy Microbial Products; Elsevier: Amsterdam, The Netherlands, 2022; pp. 247–270. ISBN 978-0-323-85793-2. [Google Scholar]
- Martinez, R.C.R.; Bedani, R.; Saad, S.M.I. Scientific Evidence for health effects attributed to the consumption of probiotics and prebiotics: An update for current perspectives and future challenges. Br. J. Nutr. 2015, 114, 1993–2015. [Google Scholar] [CrossRef]
- Zalán, Z.; Hudáček, J.; Štětina, J.; Chumchalová, J.; Halász, A. Production of organic acids by Lactobacillus strains in three different media. Eur. Food Res. Technol. 2010, 230, 395–404. [Google Scholar] [CrossRef]
- Helland, M.H.; Wicklund, T.; Narvhus, J.A. Growth and metabolism of selected strains of probiotic bacteria in milk and water-based cereal puddings. Int. Dairy J. 2004, 14, 957–965. [Google Scholar] [CrossRef]
- Nyanzi, R.; Jooste, P.J. Cereal-based functional foods. In Probiotics; Rigobelo, E.C., Ed.; InTechOpen: Rijeka, Croatia, 2012; ISBN 978-953-51-0776-7. [Google Scholar]
- Cruz, A.G.; Faria, J.A.F.; Walter, E.H.M.; Andrade, R.R.; Cavalcanti, R.N.; Oliveira, C.A.F.; Granato, D. Processing optimization of probiotic yogurt containing glucose oxidase using response surface methodology. J. Dairy Sci. 2010, 93, 5059–5068. [Google Scholar] [CrossRef]
- Nguyen, B.T.; Bujna, E.; Fekete, N.; Tran, A.T.M.; Rezessy-Szabo, J.M.; Prasad, R.; Nguyen, Q.D. Probiotic beverage from pineapple juice fermented with Lactobacillus and Bifidobacterium strains. Front. Nutr. 2019, 6, 54. [Google Scholar] [CrossRef]
LGG | BY | |||||||
---|---|---|---|---|---|---|---|---|
E S | NE S | E DS | NE DS | E S | NE S | E DS | NE DS | |
Moisture (%) | 81.77 ± 0.13 | 80.95 ± 0.28 | 83.84 ± 1.09 | 83.30 ± 0.09 | 81.71 ± 0.25 | 82.59 ± 0.19 | 83.66 ± 0.28 | 83.72 ± 2.29 |
Protein (%) | 2.34 ± 0.12 | 2.38 ± 0.03 | 2.03 ± 0.02 | 1.93 ± 0.16 | 2.38 ± 0.01 | 2.17 ± 0.00 | 2.06 ± 0.19 | 1.89 ± 0.38 |
Carbohydrates (%) | 15.20 ± 0.05 | 15.95 ± 0.39 | 13.69 ± 1.06 | 14.48 ± 0.09 | 15.15 ± 0.16 | 14.55 ± 0.23 | 13.97 ± 0.09 | 14.09 ± 1.90 |
NaCl (%) | 0.22 ± 0.00 b | 0.23 ± 0.01 ab | 0.13 ± 0.02 c | 0.11 ± 0.01 c | 0.23 ± 0.00 b | 0.27 ± 0.01 a | 0.12 ± 0.00 c | 0.12 ± 0.01 c |
Ash (%) | 0.48 ± 0.05 ab | 0.49 ± 0.08 ab | 0.31 ± 0.00 bc | 0.18 ± 0.02 c | 0.54 ± 0.08 a | 0.43 ± 0.03 ab | 0.19 ± 0.01 c | 0.19 ± 0.00 c |
GABA (mg/100 g) | 0.26 ± 0.10 a | 0.27 ± 0.02 a | 0.18 ± 0.14 ab | 0.05 ± 0.01 bc | 0.25 ± 0.03 a | 0.18 ± 0.02 ab | 0.02 ± 0.01 c | 0.03 ± 0.02 c |
LGG | BY | |||||||
---|---|---|---|---|---|---|---|---|
E S | NE S | E DS | NE DS | E S | NE S | E DS | NE DS | |
2-Carbon compounds | ||||||||
Acetic acid | 9.1 ± 12.8 c | - | 3.4 ± 4.8 c | - | 1528.6 ± 232.0 a | 772.0 ± 17.0 b | 255.3 ± 117.9 c | 62.7 ± 50.0 c |
Ethanol | 19.0 ± 12.6 | 60.9 ± 27.4 | 14.9 ± 4.4 | 53.2 ± 35.8 | 13.4 ± 4.2 | 33.0 ± 2.7 | 22.2 ± 7.1 | 40.9 ± 14.1 |
Acetaldehyde | 2.8 ± 3.9 c | 0.6 ± 0.9 c | 2.7 ± 3.8 c | 2.1 ± 0.1 c | 29.0 ± 3.0 ab | 32.7 ± 2.0 a | 23.4 ± 0.4 ab | 19.8 ± 3.2 b |
Partial sum | 30.8 ± 4.1 c | 61.5 ± 28.2 c | 21.0 ± 4.3 c | 55.3 ± 35.9 c | 1570.9 ± 232.5 a | 837.6 ± 16.3 b | 300.8 ± 110.2 c | 123.2 ± 67.2 c |
Ketones | ||||||||
Butane-2,3-dione | 871.1 ± 270.6 a | 338.0 ± 122.8 bc | 699.0 ± 62.3 ab | 192.5 ± 0.9 c | 513.2 ± 38.7 abc | 301.2 ± 28.1 bc | 489.5 ± 30.1 abc | 145.4 ± 46.1 c |
Pentane-2,3-dione | - | - | - | - | 20.9 ± 1.7 | 10.1 ± 14.3 | 5.8 ± 8.2 | - |
3-Hydroxybutan-2-one | 25.3 ± 8.7 | - | - | - | 3.6 ± 0.8 | - | - | - |
Partial sum | 896.4 ± 279.6 a | 338.0 ± 122.8 bc | 699.0 ± 62.3 ab | 192.5 ± 0.9 c | 537.6 ± 41.2 abc | 311.3 ± 42.4 bc | 495.3 ± 21.9 abc | 145.4 ± 46.1 c |
Branched-chain alcohols and aldehydes | ||||||||
2-Methylpropan-1-ol | 6.8 ± 0.4 | 10.2 ± 4.6 | 5.2 ± 1.1 | 5.0 ± 7.1 | 5.1 ± 2.3 | 9.9 ± 0.2 | - | - |
3-Methylbutan-1-ol | 47.0 ± 34.7 | - | - | - | 17.4 ± 0.2 | - | 37.5 ± 13.1 | 4.1 ± 5.7 |
2-Methylpropanal | 0.5 ± 0.6 b | 3.3 ± 2.7 b | 2.7 ± 0.4 b | 4.9 ± 2.1 ab | 8.3 ± 4.8 ab | 15.8 ± 3.8 a | 9.4 ± 3.5 ab | 7.1 ± 2.1 ab |
3-Methylbutanal | - | 13.8 ± 4.1 | 1.4 ± 2.0 | 10.7 ± 6.0 | 2.0 ± 2.8 | 9.0 ± 0.1 | 4.9 ± 6.9 | 8.3 ± 1.3 |
2-Methylbutanal | - | 1.5 ± 2.1 | - | 4.4 ± 1.8 | 10.3 ± 8.0 | 16.8 ± 2.6 | 7.8 ± 4.0 | 10.3 ± 2.1 |
Partial sum | 54.3 ± 33.7 | 28.8 ± 13.4 | 9.3 ± 1.3 | 25.0 ± 17.0 | 43.0 ± 1.9 | 51.4 ± 6.2 | 59.5 ± 19.6 | 29.8 ± 11.2 |
Straight-chain 5- to 6-carbon alcohols and aldehydes | ||||||||
Hexanol | - | - | 5.1 ± 7.2 | - | 5.8 ± 8.2 | - | 5.1 ± 7.1 | - |
Pentanal | - | - | 20.0 ± 12.2 | - | - | - | - | 10.3 ± 14.5 |
Hexanal | 128.3 ± 3.8 a | - | 32.4 ± 45.8 b | - | 10.4 ± 4.7 b | 5.4 ± 7.6 b | - | 17.2 ± 24.3 b |
Partial sum | 128.3 ± 3.8 a | - | 57.4 ± 50.7 ab | - | 16.2 ± 12.9 b | 5.4 ± 7.6 b | 5.1 ± 7.1 b | 27.5 ± 38.8 ab |
Hydrocarbons | ||||||||
Pentane | 6.0 ± 2.7 | 16.6 ± 8.0 | 5.7 ± 1.0 | 16.1 ± 3.0 | 7.1 ± 1.7 | 8.1 ± 1.8 | 5.5 ± 1.0 | 26.3 ± 20.2 |
Hexane | 15.3 ± 5.8 | 32.2 ± 18.0 | 20.7 ± 2.3 | 37.5 ± 23.1 | 35.1 ± 24.4 | 14.6 ± 2.7 | 18.0 ± 1.6 | 22.1 ± 1.3 |
2,2,4-Trimethylpentane | 13.2 ± 9.0 | 12.8 ± 11.5 | 12.7 ± 1.1 | 12.6 ± 7.7 | 4.6 ± 6.4 | 7.8 ± 2.1 | 15.2 ± 4.4 | 15.5 ± 0.6 |
Octane | 16.8 ± 1.6 | 17.0 ± 8.9 | 20.6 ± 4.3 | - | - | - | 2.8 ± 4.0 | 10.3 ± 8.2 |
Decane | 105.9 ± 75.6 | 143.4 ± 23.3 | 316.4 ± 22.8 | 265.2 ± 106.8 | 135.6 ± 100.5 | 741.7 ± 813.9 | 394.2 ± 80.5 | 431.1 ± 53.2 |
Partial sum | 157.1 ± 68.3 | 221.9 ± 0.1 | 376.1 ± 29.2 | 331.3 ± 94.4 | 182.2 ± 80.8 | 772.2 ± 812.5 | 435.6 ± 80.3 | 505.2 ± 79.8 |
Total sum | 1266.8 ± 389.1 ab | 650.1 ± 81.2 b | 1162.7 ± 43.7 ab | 604.0 ± 112.3 b | 2349.8 ± 365.5 a | 1977.8 ± 869.7 ab | 1296.2 ± 224.8 b | 831.0 ± 220.6 b |
Starter | Log CFU/g t1d | Log CFU/g t15d | Log CFU/g t21d |
---|---|---|---|
Bifidobacterium BY E S | 7.97 ± 0.09 a | 9.78 ± 0.34 b | - |
Bifidobacterium BY E DS | 7.48 ± 0.07 b | 6.90 ± 0.14 d | 6.73 ± 0.75 |
Bifidobacterium BY NE S | 7.97 ± 0.14 a | 10.35 ± 0.05 a | - |
Bifidobacterium BY NE DS | 7.96 ± 0.03 a | 8.68 ± 0.03 c | 6.75 ± 0.16 |
Lactobacillus BY E S | 4.67 ± 0.21 b | 4.36 ± 0.88 | 3.74 ± 0.00 |
Lactobacillus BY E DS | 4.21 ± 0.07 c | 1.60 ± 0.58 | 1.35 ± 0.56 |
Lactobacillus BY NE S | 5.33 ± 0.11 a | 4.73 ± 0.30 | 3.16 ± 0.56 |
Lactobacillus BY NE DS | 3.28 ± 0.04 d | 2.79 ± 1.44 | 1.83 ± 0.00 |
Streptococcus BY E S | 7.20 ± 0.76 a | 6.94 ± 0.13 | 6.26 ± 0.10 |
Streptococcus BY E DS | 6.22 ± 0.01 ab | 6.28 ± 0.06 | 6.08 ± 0.35 |
Streptococcus BY NE S | 6.64 ± 0.00 a | 6.21 ± 1.33 | 6.48 ± 1.95 |
Streptococcus BY NE DS | 5.30 ± 0.13 b | 4.30 ± 0.13 | 4.38 ± 0.03 |
Lactobacillus LGG E S | 8.11 ± 0.02 b | 8.91 ± 0.08 | 8.69 ± 0.30 |
Lactobacillus LGG E DS | 8.63 ± 0.07 a | 8.36 ± 0.27 | 7.93 ± 0.69 |
Lactobacillus LGG NE S | 8.45 ± 0.22 a | 8.06 ± 0.01 | 7.93 ± 0.05 |
Lactobacillus LGG NE DS | 7.95 ± 0.01 b | 7.75 ± 0.13 | 7.79 ± 0.00 |
Fermentation Time (d) | Sample | Lactic (g per 100 g) | Acetic (g per 100 g) | Citric (g per 100 g) | Propionic (g per 100 g) | Butiric (g per 100 g) |
---|---|---|---|---|---|---|
1 | LGG E S | 0.7224 ± 0.0249 a | 0.0316 ± 0.0015 c | 0.0037 ± 0.0018 c | 0.0039 ± 0.0039 ab | - |
LGG NE S | 0.2510 ± 0.0454 c | 0.0362 ± 0.0028 abc | 0.0040 ± 0.0006 c | 0.0031 ± 0.0035 ab | - | |
LGG E DS | 0.3728 ± 0.1153 b | 0.0242 ± 0.0017 d | 0.0035 ± 0.0001 c | 0.0033 ± 0.0022 ab | - | |
LGG NE DS | 0.09835 ± 0.0085 d | 0.0372 ± 0.0007 abc | 0.0031 ± 0.0001 c | 0.0047 ± 0.0002 ab | 0.0001 ± 0.0002 b | |
BY E S | 0.2309 ± 0.0160 c | 0.0413 ± 0.0057 a | 0.0184 ± 0.0015 a | 0.0021 ± 0.0011 b | 0.0003 ± 0.0005 b | |
BY NE S | 0.1069 ± 0.0187 d | 0.0381 ± 0.0033 ab | 0.0183 ± 0.0020 a | 0.0023 ± 0.0008 b | 0.0014 ± 0.0014 a | |
BY E DS | 0.1085 ± 0.0085 d | 0.0321 ± 0.0013 bc | 0.0145 ± 0.0079 ab | 0.0056 ± 0.0013 ab | - | |
BY NE DS | 0.0445 ± 0.0034 d | 0.0319 ± 0.0005 bc | 0.0101 ± 0.0003 bc | 0.0081 ± 0.0018 a | - | |
15 | LGG E S | 0.9849 ± 0.0895 a | 0.0343 ± 0.0022 | 0.0036 ± 0.0017 b | 0.0042 ± 0.0013 b | - |
LGG NE S | 0.3005 ± 0.0138 c | 0.0345 ± 0.0012 | 0.0053 ± 0.0005 b | 0.0041 ± 0.0028 b | 0.0009 ± 0.0012 | |
LGG E DS | 0.6260 ± 0.0208 b | 0.0274 ± 0.0014 | 0.0037 ± 0.0001 b | 0.0022 ± 0.00013 b | 0.0001 ± 0.0003 | |
LGG NE DS | 0.0425 ± 0.0190 d | 0.0406 ± 0.0183 | 0.004 ± 0.0014 b | 0.0048 ± 0.0006 ab | - | |
BY E S | 0.2252 ± 0.0082 c | 0.0429 ± 0.0039 | 0.0179 ± 0.0012 a | 0.0014 ± 0.0015 b | 0.0001 ± 0.0002 | |
BY NE S | 0.0959 ± 0.0345 d | 0.0331 ± 0.0028 | 0.0125 ± 0.0080 ab | 0.0029 ± 0.0011 b | 0.0011 ± 0.0013 | |
BY E DS | 0.1212 ± 0.0092 d | 0.0332 ± 0.0012 | 0.0164 ± 0.0092 a | 0.0039 ± 0.0017 b | - | |
BY NE DS | 0.0427 ± 0.0184 d | 0.0278 ± 0.0048 | 0.0101 ± 0.0029 ab | 0.0095 ± 0.0040 a | - | |
21 | LGG E S | 0.8771 ± 0.0434 a | 0.0313 ± 0.0013 | 0.0020 ± 0.0006 | 0.0048 ± 0.0013 abc | - |
LGG NE S | 0.2509 ± 0.0212 bc | 0.0312 ± 0.0008 | 0.0034 ± 0.0001 | 0.0047 ± 0.0019 abc | 0.0004 ± 0.0004 | |
LGG E DS | 0.4647 ± 0.3052 b | 0.0401 ± 0.0173 | 0.0113 ± 0.0092 | 0.0012 ± 0.0006 d | 0.0006 ± 0.0006 | |
LGG NE DS | 0.0778 ± 0.0357 c | 0.0290 ± 0.0081 | 0.0024 ± 0.0008 | 0.0046 ± 0.0008 abcd | - | |
BY E S | 0.4443 ± 0.2250 b | 0.0367 ± 0.0112 | 0.0104 ± 0.0086 | 0.0019 ± 0.0022 cd | 0.0001 ± 0.0002 | |
BY NE S | 0.0897 ± 0.0256 c | 0.0288 ± 0.0058 | 0.0046 ± 0.0018 | 0.0066 ± 0.0013 ab | 0.0040 ± 0.0080 | |
BY E DS | 0.0882 ± 0.0261 c | 0.0286 ± 0.0033 | 0.0120 ± 0.0072 | 0.0043 ± 0.0012 bcd | 0.0021 ± 0.0042 | |
BY NE DS | 0.0445 ± 0.0103 c | 0.0279 ± 0.0023 | 0.0114 ± 0.0033 | 0.0078 ± 0.0018 a | 0.0002 ± 0.0004 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sigüenza-Andrés, T.; Mateo, J.; Rodríguez-Nogales, J.M.; Gómez, M.; Caro, I. Characterization of a Fermented Beverage from Discarded Bread Flour Using Two Commercial Probiotics Starters. Foods 2024, 13, 951. https://doi.org/10.3390/foods13060951
Sigüenza-Andrés T, Mateo J, Rodríguez-Nogales JM, Gómez M, Caro I. Characterization of a Fermented Beverage from Discarded Bread Flour Using Two Commercial Probiotics Starters. Foods. 2024; 13(6):951. https://doi.org/10.3390/foods13060951
Chicago/Turabian StyleSigüenza-Andrés, Teresa, Javier Mateo, José M. Rodríguez-Nogales, Manuel Gómez, and Irma Caro. 2024. "Characterization of a Fermented Beverage from Discarded Bread Flour Using Two Commercial Probiotics Starters" Foods 13, no. 6: 951. https://doi.org/10.3390/foods13060951
APA StyleSigüenza-Andrés, T., Mateo, J., Rodríguez-Nogales, J. M., Gómez, M., & Caro, I. (2024). Characterization of a Fermented Beverage from Discarded Bread Flour Using Two Commercial Probiotics Starters. Foods, 13(6), 951. https://doi.org/10.3390/foods13060951