Destructive and Non-Destructive Evaluation of Anthocyanin Content and Quality Attributes in Red Kiwifruit Subjected to Plant Spray Treatment with Cis-3-Hexenyl Butyrate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Kiwifruit Storage Conditions
2.3. Physical and Chemical Parameters
2.4. AOTF-NIR Spectra Acquisition
2.5. Chemometric Processing
2.6. Statistical Analyzes
3. Results and Discussion
3.1. Cis-3-Hexenyl Butyrate Efficacy on Physical and Chemical Parameters and Anthocyanin Content
3.2. Nir Spectral Acquisition Models for Anthocyanins and SSC
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bakoğlu, N.; Tuna Gunes, N. Impact of Harvest Time on Cold Storage Performance in Kiwifruit. J. Food Compos. Anal. 2024, 135, 106601. [Google Scholar] [CrossRef]
- FAO. Food and Agriculture Organization of the United Nations. 2022. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 22 December 2024).
- Asadi, M.; Ghasemnezhad, M.; Bakhshipour, A.; Olfati, J.-A.; Mirjalili, M.H. Predicting the Quality Attributes Related to Geographical Growing Regions in Red-Fleshed Kiwifruit by Data Fusion of Electronic Nose and Computer Vision Systems. BMC Plant Biol. 2024, 24, 13. [Google Scholar] [CrossRef] [PubMed]
- Montefiori, M.; Comeskey, D.J.; Wohlers, M.; McGhie, T.K. Characterization and Quantification of Anthocyanins in Red Kiwifruit (Actinidia spp.). J. Agric. Food Chem. 2009, 57, 6856–6861. [Google Scholar] [CrossRef] [PubMed]
- Goffi, V.; Modesti, M.; Forniti, R.; Botondi, R. Quality of Green (Actinidia chinensis Var. deliciosa ‘Hayward’) and Yellow (A. chinensis var. chinensis ‘Soreli’) Kiwifruit during Cold Storage at 0 °C in Normal Atmosphere and with Gaseous Ozone. Acta Hortic. 2018, 1218, 473–480. [Google Scholar] [CrossRef]
- Goffi, V.; Zampella, L.; Forniti, R.; Petriccione, M.; Botondi, R. Effects of Ozone Postharvest Treatment on Physicochemical and Qualitative Traits of Actinidia chinensis ‘Soreli’ during Cold Storage. J. Sci. Food Agric. 2019, 99, 5654–5661. [Google Scholar] [CrossRef] [PubMed]
- Shu, P.; Zhang, Z.; Wu, Y.; Chen, Y.; Li, K.; Deng, H.; Zhang, J.; Zhang, X.; Wang, J.; Liu, Z.; et al. A Comprehensive Metabolic Map Reveals Major Quality Regulations in Red-flesh Kiwifruit (Actinidia chinensis). New Phytol. 2023, 238, 2064–2079. [Google Scholar] [CrossRef] [PubMed]
- Cipriani, G.; Messina, R.; Vizzotto, G.; Testolin, R. Harvest Time and Storage of ‘Soreli’ Kiwifruit (Actinidia chinensis Planch.). Acta Hortic. 2018, 1218, 459–464. [Google Scholar] [CrossRef]
- Grasso, C.; Forniti, R.; Botondi, R. Post-Harvest Quality Evaluation of “Soreli” Kiwifruit at Two Ripening °Brix Values from Vineyards of Different Age Under Hail Nets. Foods 2022, 11, 431. [Google Scholar] [CrossRef]
- Lembo, M.; Asgharinia, S.; Eramo, V.; Forniti, R.; Valentini, R.; Botondi, R. Real-time Continuous IoT-TT Spectrum as a Predictor of Plant Health and Fruit Quality in “Soreli” Kiwifruit. Chem. Eng. Trans. 2023, 102, 61–66. [Google Scholar] [CrossRef]
- Cheng, C.H.; Seal, A.G.; Murphy, S.J.; Lowe, R.G. Red-Fleshed Kiwifruit (Actinidia chinensis) Breeding in New Zealand. Acta Hortic. 2007, 753, 139–146. [Google Scholar] [CrossRef]
- Kapoor, L.; Simkin, A.J.; George Priya Doss, C.; Siva, R. Fruit Ripening: Dynamics and Integrated Analysis of Carotenoids and Anthocyanins. BMC Plant Biol. 2022, 22, 27. [Google Scholar] [CrossRef]
- Khoo, H.E.; Azlan, A.; Tang, S.T.; Lim, S.M. Anthocyanidins and Anthocyanins: Colored Pigments as Food, Pharmaceutical Ingredients, and the Potential Health Benefits. Food Nutr. Res. 2017, 61, 1361779. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.; Shi, Y.; Wang, R.; Su, D.; Tang, M.; Liu, Y.; Li, Z. Antioxidant Activity and Healthy Benefits of Natural Pigments in Fruits: A Review. Int. J. Mol. Sci. 2021, 22, 4945. [Google Scholar] [CrossRef]
- De Pascual-Teresa, S.; Sanchez-Ballesta, M.T. Anthocyanins: From Plant to Health. Phytochem. Rev. 2008, 7, 281–299. [Google Scholar] [CrossRef]
- Cevoli, C.; Iaccheri, E.; Fabbri, A.; Ragni, L. Data Fusion of FT-NIR Spectroscopy and Vis/NIR Hyperspectral Imaging to Predict Quality Parameters of Yellow Flesh “Jintao” Kiwifruit. Biosyst. Eng. 2024, 237, 157–169. [Google Scholar] [CrossRef]
- Taticharoen, T.; Pichakum, A.; Rittiron, R. NIRS Technique Development for Kiwifruit Flesh Color Evaluation. Acta Hortic. 2014, 1059, 245–249. [Google Scholar] [CrossRef]
- Bellincontro, A.; Cozzolino, D.; Mencarelli, F. Application of NIR-AOTF Spectroscopy to Monitor Aleatico Grape Dehydration for Passito Wine Production. Am. J. Enol. Vitic. 2011, 62, 256–260. [Google Scholar] [CrossRef]
- Barnaba, F.E.; Bellincontro, A.; Mencarelli, F. Portable NIR-AOTF Spectroscopy Combined with Winery FTIR Spectroscopy for an Easy, Rapid, In-field Monitoring of Sangiovese Grape Quality. J. Sci. Food Agric. 2014, 94, 1071–1077. [Google Scholar] [CrossRef]
- Muganu, M.; Paolocci, M.; Gnisci, D.; Barnaba, F.E.; Bellincontro, A.; Mencarelli, F.; Grosu, I. Effect of Different Soil Management Practices on Grapevine Growth and on Berry Quality Assessed by NIR-AOTF Spectroscopy. Acta Hortic. 2013, 978, 117–125. [Google Scholar] [CrossRef]
- Modesti, M.; Alfieri, G.; Chieffo, C.; Mencarelli, F.; Vannini, A.; Catalani, A.; Chilosi, G.; Bellincontro, A. Destructive and Non-destructive Early Detection of Postharvest Noble Rot (Botrytis cinerea) in Wine Grapes Aimed at Producing High-quality Wines. J. Sci. Food Agric. 2024, 104, 2314–2325. [Google Scholar] [CrossRef]
- López-Gresa, M.P.; Lisón, P.; Campos, L.; Rodrigo, I.; Rambla, J.L.; Granell, A.; Conejero, V.; Bellés, J.M. A Non-Targeted Metabolomics Approach Unravels the VOCs Associated with the Tomato Immune Response against Pseudomonas Syringae. Front. Plant Sci. 2017, 8, 1188. [Google Scholar] [CrossRef] [PubMed]
- López-Gresa, M.P.; Payá, C.; Ozáez, M.; Rodrigo, I.; Conejero, V.; Klee, H.; Bellés, J.M.; Lisón, P. A New Role for Green Leaf Volatile Esters in Tomato Stomatal Defense Against Pseudomonas syringe Pv. Tomato. Front. Plant Sci. 2018, 9, 1855. [Google Scholar] [CrossRef]
- Payá, C.; López-Gresa, M.P.; Intrigliolo, D.S.; Rodrigo, I.; Bellés, J.M.; Lisón, P. (Z)-3-Hexenyl Butyrate Induces Stomata Closure and Ripening in Vitis Vinifera. Agronomy 2020, 10, 1122. [Google Scholar] [CrossRef]
- Payá, C.; Belda-Palazón, B.; Vera-Sirera, F.; Pérez-Pérez, J.; Jordá, L.; Rodrigo, I.; Bellés, J.M.; López-Gresa, M.P.; Lisón, P. Signalling Mechanisms and Agricultural Applications of (Z)-3-Hexenyl Butyrate-Mediated Stomatal Closure. Hortic. Res. 2024, 11, uhad248. [Google Scholar] [CrossRef] [PubMed]
- McGuire, R.G. Reporting of Objective Color Measurements. HortScience 1992, 27, 1254–1255. [Google Scholar] [CrossRef]
- Bongiorni, S.; Arisi, I.; Ceccantoni, B.; Rossi, C.; Cresta, C.; Castellani, S.; Forgione, I.; Rinalducci, S.; Muleo, R.; Prantera, G. Apple Polyphenol Diet Extends Lifespan, Slows down Mitotic Rate and Reduces Morphometric Parameters in Drosophila Melanogaster: A Comparison between Three Different Apple Cultivars. Antioxidants 2022, 11, 2086. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023; Available online: https://www.r-project.org/ (accessed on 22 December 2024).
- Huang, Z.; Li, J.; Zhang, J.; Gao, Y.; Hui, G. Physicochemical Properties Enhancement of Chinese Kiwi Fruit (Actinidia chinensis Planch) via Chitosan Coating Enriched with Salicylic Acid Treatment. J. Food Meas. Charact. 2017, 11, 184–191. [Google Scholar] [CrossRef]
- Asadi, M.; Ghasemnezhad, M.; Olfati, J.; Bakhshipour, A.; Mirjalili, M.H.; Atak, A. Comparison of Important Quality Components of Red-Flesh Kiwifruit (Actinidia Chinensis) in Different Locations. Open Agric. 2024, 9, 22–83. [Google Scholar] [CrossRef]
- Ferrer, A.; Remón, S.; Negueruela, A.I.; Oria, R. Changes during the Ripening of the Very Late Season Spanish Peach Cultivar Calanda. Sci. Hortic. 2005, 105, 435–446. [Google Scholar] [CrossRef]
- Peng, Y.; Lin-Wang, K.; Cooney, J.M.; Wang, T.; Espley, R.V.; Allan, A.C. Differential Regulation of the Anthocyanin Profile in Purple Kiwifruit (Actinidia Species). Hortic. Res. 2019, 6, 3. [Google Scholar] [CrossRef]
- Bertrand, D.; Dufour, E. La Spectroscopie Infrarouge et Ses Applications Analytiques; Lavoisier: Paris, France, 2006; 660p. [Google Scholar]
- Shenk, J.S.; Westerhaus, M.O. Population Definition, Sample Selection, and Calibration Procedures for Near Infrared Reflectance Spectroscopy. Crop Sci. 1991, 31, 469–474. [Google Scholar] [CrossRef]
- Ayvaz, H.; Temizkan, R.; Genis, H.E.; Mortas, M.; Ozer Genis, D.; Dogan, M.A.; Nazlim, B.A. Rapid Discrimination of Turkish Commercial Hazelnut (Corylus avellana L.) Varieties Using Near-Infrared Spectroscopy and Chemometrics. Vib. Spectrosc. 2022, 119, 103353. [Google Scholar] [CrossRef]
- Maeda, H.; Ozaki, Y.; Tanaka, M.; Hayashi, N.; Kojima, T. Near Infrared Spectroscopy and Chemometrics Studies of Temperature-Dependent Spectral Variations of Water: Relationship between Spectral Changes and Hydrogen Bonds. J. Near Infrared Spectrosc. 1995, 3, 191. [Google Scholar] [CrossRef]
- Barnes, R.J.; Dhanoa, M.S.; Lister, S.J. Standard Normal Variate Transformation and De-Trending of Near-Infrared Diffuse Reflectance Spectra. Appl. Spectrosc. 1989, 43, 772–777. [Google Scholar] [CrossRef]
- Brown, P.J.; Vannucci, M.; Fearn, T. Bayes Model Averaging with Selection of Regressors. J. R. Stat. Soc. Ser. B Stat. Methodol. 2002, 64, 519–536. [Google Scholar] [CrossRef]
- Nicolaï, B.M.; Beullens, K.; Bobelyn, E.; Peirs, A.; Saeys, W.; Theron, K.I.; Lammertyn, J. Nondestructive Measurement of Fruit and Vegetable Quality by Means of NIR Spectroscopy: A Review. Postharvest Biol. Technol. 2007, 46, 99–118. [Google Scholar] [CrossRef]
- Cirilli, M.; Bellincontro, A.; Urbani, S.; Servili, M.; Esposto, S.; Mencarelli, F.; Muleo, R. On-Field Monitoring of Fruit Ripening Evolution and Quality Parameters in Olive Mutants Using a Portable NIR-AOTF Device. Food Chem. 2016, 199, 96–104. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhu, L.; Li, N.; Liu, Z.; Wang, L.; Chitrakar, B.; Xu, D.; Cui, Z.; Tang, Y.; Hu, L.; et al. NIR Spectroscopy for Quality Assessment and Shelf-Life Prediction of Kiwifruit. Postharvest Biol. Technol. 2024, 218, 113201. [Google Scholar] [CrossRef]
- Manzoor, M.F.; Hussain, A.; Naumovski, N.; Ranjha, M.M.A.N.; Ahmad, N.; Karrar, E.; Xu, B.; Ibrahim, S.A. A Narrative Review of Recent Advances in Rapid Assessment of Anthocyanins in Agricultural and Food Products. Front. Nutr. 2022, 9, 1342. [Google Scholar] [CrossRef]
- Johnson, J.B.; Walsh, K.B.; Naiker, M.; Ameer, K. The Use of Infrared Spectroscopy for the Quantification of Bioactive Compounds in Food: A Review. Molecules 2023, 28, 3215. [Google Scholar] [CrossRef]
- Ferrer-Gallego, R.; Rodríguez-Pulido, F.J.; Toci, A.T.; García-Estevez, I. Phenolic Composition, Quality and Authenticity of Grapes and Wines by Vibrational Spectroscopy. Food Rev. Int. 2022, 38, 884–912. [Google Scholar] [CrossRef]
- Torres Mariani, N.C.; de Almeida Teixeira, G.H.; Gomes de Lima, K.M.; Morgenstern, T.B.; Nardini, V.; Cunha Júnior, L.C. NIRS and ISPA-PLS for Predicting Total Anthocyanin Content in Jaboticaba Fruit. Food Chem. 2015, 174, 643–648. [Google Scholar] [CrossRef]
- McGlone, V.A.; Kawano, S. Firmness, Dry-Matter and Soluble-Solids Assessment of Postharvest Kiwifruit by NIR Spectroscopy. Postharvest Biol. Technol. 1998, 13, 131–141. [Google Scholar] [CrossRef]
Parameter | Treatments | T0 | T1 | T2 | T3 | T4 |
---|---|---|---|---|---|---|
WL (%) | T | - | 1.01 ± 0.09 (cdA) | 2.73 ± 0.40 (cdbA) | 3.22 ± 0.20 (abA) | 4.06 ± 0.41 (aA) |
C | - | 1.79 ± 0.44 (dA) | 2.7 ± 0.41 (bcdA) | 4.39 ± 0.60 (abA) | 4.92 ± 0.39 (aA) | |
SSC (Brix) | T | 13.38 ± 0.74 (deA) | 15.80 ± 0.70 (bcA) | 18.66 ± 0.32 (aA) | 18.70 ± 0.15 (aA) | 18.80 ± 0.33 (aA) |
C | 12.06 ± 0.56 (eA) | 14.52 ± 0.27 (cdA) | 17.58 ± 0.14 (abB) | 17.38 ± 0.14 (abB) | 18.46 ± 0.23 (aA) | |
FFP (Kg cm−2) | T | 7.12 ± 0.30 (cB) | 5.22 ± 0.37 (dB) | 3.08 ± 0.12 (deB) | 2.47 ± 0.50 (eB) | 2.12 ± 0.30 (eA) |
C | 10.95 ± 0.42 (aA) | 8.21 ± 0.18 (abA) | 6.04 ± 0.17 (bA) | 4.07 ± 0.55 (bcA) | 2.13 ± 0.23 (eA) |
Parameter. | Treatments | T0 | T1 | T2 | T3 | T4 |
---|---|---|---|---|---|---|
L* | T | 54.66 ± 1.82 (bcB) | 50.32 ± 2.32 (dB) | 42.61 ± 0.82 (efB) | 45.53 ± 1.45 (eB) | 45.55 ± 1.60 (eB) |
C | 65.20 ± 1.50 (aA) | 58.85 ± 1.78 (abcA) | 52.13 ± 1.80 (bcA) | 52.06 ± 0.6 (bcA) | 52.90 ± 0.39 (bcA) | |
h* | T | 54.98 ± 2.96 (bcB) | 62.66 ± 4.05 (abA) | 48.09 ± 2.22 (cB) | 70.45 ± 1.90 (aA) | 62.84 ± 4.27 (abA) |
C | 73.60 ± 3.44 (aA) | 70.63 ± 1.20 (aA) | 74.19 ± 2.04 (aA) | 71.06 ± 1.70 (aA) | 65.89 ± 2.96 (abA) | |
a* | T | 7.32 ± 0.71 (bcdA) | 9.79 ± 0.43 (bA) | 14.98 ± 0.56 (aA) | 8.86 ± 0.23 (bA) | 9.27 ± 0.77 (bA) |
C | 4.55 ± 1.30 (cdB) | 6.46 ± 1.24 (bcdA) | 3.80 ± 1.11 (dB) | 7.97 ± 0.21 (bA) | 8.39 ± 0.26 (bA) |
Pre-Treatment | R2 cal | R2 cv | RMSEC | RMSECV | LV | RPD |
---|---|---|---|---|---|---|
- | 0.964 | 0.594 | 2.5452 | 8.7862 | 6 | 1.56 |
ABS | 0.868 | 0.754 | 4.8413 | 6.6595 | 4 | 2.05 |
SNV | 0.986 | 0.871 | 1.5969 | 4.8304 | 7 | 2.83 |
SG derivatives 1^ | 0.986 | 0.860 | 1.5636 | 5.0582 | 5 | 2.70 |
MSC + autoscale | 0.953 | 0.803 | 2.8866 | 5.9376 | 5 | 2.30 |
Pre-Treatment | R2 cal | R2 cv | RMSEC | RMSECV | LV | RPD |
---|---|---|---|---|---|---|
- | 0.859 | 0.692 | 0.8616 | 0.2966 | 5 | 1.81 |
ABS | 0.888 | 0.784 | 0.7671 | 1.0746 | 6 | 2.19 |
SNV | 0.872 | 0.776 | 0.8219 | 1.0939 | 5 | 2.15 |
SG derivatives 1^ | 0.914 | 0.740 | 0.6707 | 1.1932 | 4 | 1.97 |
MSC + autoscale | 0.941 | 0.713 | 0.555 | 1.278 | 8 | 1.84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lembo, M.; Eramo, V.; Riggi, R.; Forniti, R.; Bellincontro, A.; Botondi, R. Destructive and Non-Destructive Evaluation of Anthocyanin Content and Quality Attributes in Red Kiwifruit Subjected to Plant Spray Treatment with Cis-3-Hexenyl Butyrate. Foods 2025, 14, 480. https://doi.org/10.3390/foods14030480
Lembo M, Eramo V, Riggi R, Forniti R, Bellincontro A, Botondi R. Destructive and Non-Destructive Evaluation of Anthocyanin Content and Quality Attributes in Red Kiwifruit Subjected to Plant Spray Treatment with Cis-3-Hexenyl Butyrate. Foods. 2025; 14(3):480. https://doi.org/10.3390/foods14030480
Chicago/Turabian StyleLembo, Micaela, Vanessa Eramo, Riccardo Riggi, Roberto Forniti, Andrea Bellincontro, and Rinaldo Botondi. 2025. "Destructive and Non-Destructive Evaluation of Anthocyanin Content and Quality Attributes in Red Kiwifruit Subjected to Plant Spray Treatment with Cis-3-Hexenyl Butyrate" Foods 14, no. 3: 480. https://doi.org/10.3390/foods14030480
APA StyleLembo, M., Eramo, V., Riggi, R., Forniti, R., Bellincontro, A., & Botondi, R. (2025). Destructive and Non-Destructive Evaluation of Anthocyanin Content and Quality Attributes in Red Kiwifruit Subjected to Plant Spray Treatment with Cis-3-Hexenyl Butyrate. Foods, 14(3), 480. https://doi.org/10.3390/foods14030480