Geographical Origin Traceability of Navel Oranges Based on Near-Infrared Spectroscopy Combined with Deep Learning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Spectra Acquisition
2.3. Removal of Abnormal Samples
2.4. Spectra Pretreatment
2.5. Establishment of Models
2.5.1. Traditional Machine Learning Models
2.5.2. DCNN
2.6. Evaluation of Models
3. Results
3.1. Spectral Analysis
3.2. Spectral Pretreatment
3.3. Establishment of 1DCNN Model
3.4. Parameter Optimization of the 1DCNN
3.5. Comparison Between 1DCNN and Traditional Machine Learning Models
4. Discussion
4.1. The Effect of Wavelength Optimal Selection Algorithms on 1DCNN
4.2. Comparison Between NIRS and Machine Vision for Origin Traceability of Navel Orange
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, X.; Yi, M.; Mo, W.; Huang, Q.; Huang, Z.; Hu, B. Portable Mass spectrometry approach combined with machine learning for onsite field detection of Huanglongbing disease. Anal. Chem. 2023, 95, 10769–10776. [Google Scholar] [CrossRef] [PubMed]
- El-Gioushy, S.F.; Ding, Z.; Bahloul, A.M.E.; Gawish, M.S.; Abou El Ghit, H.M.; Abdelaziz, A.M.R.A.; El-Desouky, H.S.; Sami, R.; Khojah, E.; Hashim, T.A.; et al. Foliar application of nano, chelated, and conventional iron forms enhanced growth, nutritional status, fruiting aspects, and fruit quality of Washington navel orange trees (Citrus sinensis L. Osbeck). Plants 2021, 10, 2577. [Google Scholar] [CrossRef] [PubMed]
- Lyu, Q.; Liao, Q.; Liu, Y.; Lan, Y. Feasibility of SSC prediction for navel orange based on origin recognition using NIR spectroscopy. Intell. Autom. Soft Co. 2015, 21, 305–317. [Google Scholar] [CrossRef]
- Li, Y.; Liang, L.; Xu, C.; Yang, T.; Wang, Y. UPLC-Q-TOF/MS-based untargeted metabolomics for discrimination of navel oranges from different geographical origins of China. LWT 2021, 137, 110382. [Google Scholar] [CrossRef]
- Wen, J.; Li, J.; Wang, D.; Li, C.; Robbat, A.; Xia, L. Identification of geographical origin of winter jujube based on GC-MS coupled with machine-learning algorithms. J. Food Compos. Anal. 2023, 124, 105710. [Google Scholar] [CrossRef]
- Muñoz-Redondo, J.M.; Bertoldi, D.; Tonon, A.; Ziller, L.; Camin, F.; Moreno-Rojas, J.M. Multi-element and stable isotopes characterization of commercial avocado fruit (Persea americana Mill) with origin authentication purposes. Food Control 2022, 137, 108975. [Google Scholar] [CrossRef]
- Chanachot, K.; Saechua, W.; Posom, J.; Sirisomboon, P. A geographical origin classification of durian (cv. Monthong) using near-infrared diffuse reflectance spectroscopy. Foods 2023, 12, 3844. [Google Scholar] [CrossRef]
- Schütz, D.; Riedl, J.; Achten, E.; Fischer, M. Fourier-transform near-infrared spectroscopy as a fast screening tool for the verification of the geographical origin of grain maize (Zea mays L.). Food Control 2022, 136, 108892. [Google Scholar] [CrossRef]
- Wu, L.; Yue, g.; Ren, W.; Su, Y.; Li, J.; Du, Y.; Wang, Q.; Kuang, H. Rapid determination and origin identification of total polysaccharides contents in Schisandra chinensis by near-infrared spectroscopy. Spectrochim. Acta Part A-Mol. Biomol. Spectrosc. 2022, 264, 120327. [Google Scholar] [CrossRef]
- Zhang, L.; Dai, H.; Zhang, J.; Zheng, Z.; Song, B.; Chen, J.; Lin, G.; Chen, L.; Sun, W.; Huang, Y. A study on origin traceability of white tea (white peony) based on near-infrared spectroscopy and machine learning algorithms. Foods 2023, 12, 499. [Google Scholar] [CrossRef]
- Chen, H.; Tan, C.; Lin, Z. Geographical origin identification of ginseng using near-infrared spectroscopy coupled with subspace-based ensemble classifiers. Spectrochim. Acta Part A-Mol. Biomol. Spectrosc. 2024, 304, 123315. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Xu, H.; Fu, Z.; Wu, B.; Zhang, R.; Zhi, C. Non-destructive Identification of the geographical origin of red jujube by near-infrared spectroscopy and fuzzy clustering methods. Int. J. Food Prop. 2023, 26, 3275–3290. [Google Scholar] [CrossRef]
- Li, H.; Jiang, D.; Cao, J.; Zhang, D. Near-infrared spectroscopy coupled chemometric algorithms for rapid origin identification and lipid content detection of Pinus koraiensis seeds. Sensors 2020, 20, 4905. [Google Scholar] [CrossRef]
- Coppola, F.; Frigau, L.; Markelj, J.; Malešič, J.; Conversano, C.; Strlič, M. Near-infrared spectroscopy and machine learning for accurate dating of historical books. J. Am. Chem. Soc. 2023, 145, 12305–12314. [Google Scholar] [CrossRef]
- Zhang, W.; Kasun, L.C.; Wang, Q.J.; Zheng, Y.; Lin, Z. A review of machine learning for near-infrared spectroscopy. Sensors 2022, 22, 9764. [Google Scholar] [CrossRef]
- Poernomo, A.; Kang, D.-K. Biased dropout and crossmap dropout: Learning towards effective dropout regularization in convolutional neural network. Neural Netw. 2018, 104, 60–67. [Google Scholar] [CrossRef]
- Xia, J.; Huang, Y.; Li, Q.; Xiong, Y.; Min, S. Convolutional neural network with near-infrared spectroscopy for plastic discrimination. Environ. Chem. Lett. 2021, 19, 3547–3555. [Google Scholar] [CrossRef]
- Dong, Z.; Wang, J.; Sun, P.; Ran, W.; Li, Y. Mango variety classification based on convolutional neural network with attention mechanism and near-infrared spectroscopy. J. Food Meas. Charact. 2024, 18, 2237–2247. [Google Scholar] [CrossRef]
- Chen, X.; Cheng, G.; Liu, S.; Meng, S.; Jiao, Y.; Zhang, W.; Liang, J.; Zhang, W.; Wang, B.; Xu, X.; et al. Probing 1D convolutional neural network adapted to near-infrared spectroscopy for efficient classification of mixed fish. Spectrochim. Acta Part A-Mol. Biomol. Spectrosc. 2022, 279, 121350. [Google Scholar] [CrossRef]
- Jiang, H.; Deng, J.; Zhu, C. Quantitative analysis of aflatoxin B1 in moldy peanuts based on near-infrared spectra with two-dimensional convolutional neural network. Infrared Phys. Techn. 2023, 131, 104672. [Google Scholar] [CrossRef]
- Wang, D.; Zhao, F.; Wang, R.; Guo, J.; Zhang, C.; Liu, H.; Wang, Y.; Zong, G.; Zhao, L.; Feng, W. A Lightweight convolutional neural network for nicotine prediction in tobacco by near-infrared spectroscopy. Front. Plant Sci. 2023, 14, 1138693. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Zhou, X.; Xie, B.; Wang, C.; Chen, J.; Zhu, Y.; Wang, H.; Ge, F.; Huang, F. Application for identifying the origin and predicting the physiologically active ingredient contents of gastrodia elata blume using visible–near-infrared spectroscopy combined with machine learning. Foods 2023, 12, 4061. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Liu, Q.; Yan, L.; Cao, X.; Chen, Y.; Wei, Y.; Wang, F.; Xing, H. Hyperspectral imaging combined with spectral-imagery feature fusion convolutional neural network to discriminate different geographical origins of wolfberries. J. Food Compos. Anal. 2024, 132, 106259. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, S.; Zhu, Q.; Qin, Y.; Zhai, D.; Lian, F.; Li, P. Non-destructive geographical traceability of American ginseng using near-infrared spectroscopy combined with a novel deep learning model. J. Food Compos. Anal. 2024, 136, 106736. [Google Scholar] [CrossRef]
- Li, X.; Wu, J.; Bai, T.; Wu, C.; He, Y.; Huang, J.; Li, X.; Shi, Z.; Hou, K. Variety classification and identification of jujube based on near-infrared spectroscopy and 1D-CNN. Comput.Electron. Agr. 2024, 223, 109122. [Google Scholar] [CrossRef]
- Mishra, P.; Passos, D.; Marini, F.; Xu, J.; Amigo, J.M.; Gowen, A.; Jansen, J.J.; Biancolillo, A.; Roger, J.M.; Rutledge, D.; et al. Deep learning for near-infrared spectral data modelling: Hypes and benefits. Trac-Trend. Anal Chem. 2022, 157, 116804. [Google Scholar] [CrossRef]
- Whitfield, R.G.; Gerger, M.E.; Sharp, R.L. Near-infrared spectrum qualification via Mahalanobis distance determination. Appl. Spectrosc. 1987, 41, 1204–1213. [Google Scholar] [CrossRef]
- Shi, X.; Yao, L.; Pan, T. Visible and near-infrared spectroscopy with multi-parameters optimization of Savitzky-Golay smoothing applied to rapid analysis of soil Cr content of Pearl River Delta. J. Geosci. Environ. Prot. 2023, 09, 75–83. [Google Scholar] [CrossRef]
- Dhanoa, M.S.; Lister, S.J.; Sanderson, R.; Barnes, R.J. The link between multiplicative scatter correction (MSC) and standard normal variate (SNV) transformations of NIR spectra. J. Near Infrared Spec. 1994, 2, 43–47. [Google Scholar] [CrossRef]
- Jiang, G.; Zhou, K.; Wang, J.; Sun, G.; Cui, S.; Chen, T.; Zhou, S.; Bai, Y.; Chen, X. Estimation of rock copper content based on Fractional-order derivative and visible near-infrared–Shortwave infrared spectroscopy. Ore Geol. Rev. 2022, 150, 105092. [Google Scholar] [CrossRef]
- Sampaio, P.S.; Castanho, A.; Almeida, A.S.; Oliveira, J.; Brites, C. Identification of rice flour types with near-infrared spectroscopy associated with PLS-DA and SVM methods. Eur. Food Res. Technol. 2019, 246, 527–537. [Google Scholar] [CrossRef]
- Du, W.; Zheng, J.; Li, W.; Liu, Z.; Wang, H.; Han, X. Efficient recognition and automatic sorting technology of waste textiles based on online near infrared spectroscopy and convolutional neural network. Resour. Conserv. Recy 2022, 180, 106157. [Google Scholar] [CrossRef]
- Wu, X.; Fang, Y.; Wu, B.; Liu, M. Application of near-infrared spectroscopy and fuzzy improved null linear discriminant analysis for rapid discrimination of milk brands. Foods 2023, 12, 3929. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Yan, Y.; Li, J.; Chen, X.; Jiang, H. Classification of tea quality levels using near-infrared spectroscopy based on CLPSO-SVM. Foods 2022, 11, 1658. [Google Scholar] [CrossRef]
- Ai, F.F.; Bin, J.; Zhang, Z.M.; Huang, J.H.; Wang, J.B.; Liang, Y.Z.; Yu, L.; Yang, Z.Y. Application of random forests to select premium quality vegetable oils by their fatty acid composition. Food Chem. 2014, 143, 472–478. [Google Scholar] [CrossRef]
- Malik, B.A.; Naqash, A.; Bhat, G.M. Backpropagation artificial neural network for determination of glucose concentration from near-infrared spectra. In Proceedings of the International Conference on Advances in Computing, 2016 Communications and Informatics (ICACCI), Jaipur, India, 21–24 September 2016; pp. 2688–2691. [Google Scholar]
- Zhang, Z.; Pu, Y.; Wei, Z.; Liu, H.; Zhang, D.; Zhang, B.; Zhang, Z.; Zhao, J.; Hu, J. Combination of interactance and transmittance modes of Vis/NIR spectroscopy improved the performance of PLS-DA model for moldy apple core. Infrared Phys. Techn. 2022, 126, 104366. [Google Scholar] [CrossRef]
- Bizerra Brito, A.L.; Rodrigues Brito, L.; Araújo Honorato, F.; Coelho Pontes, M.J.; Bezerra Lira Pontes, L.F. Classification of cereal bars using near infrared spectroscopy and linear discriminant analysis. Food Res. Int. 2013, 51, 924–928. [Google Scholar] [CrossRef]
- Egwom, O.J.; Hassan, M.; Tanimu, J.J.; Hamada, M.; Ogar, O.M. An LDA–SVM machine learning model for breast cancer classification. BioMedInformatics 2022, 2, 345–358. [Google Scholar] [CrossRef]
- Chen, R.C.; Dewi, C.; Huang, S.W.; Caraka, R.E. Selecting critical features for data classification based on machine learning methods. J. Big Data 2020, 7, 52. [Google Scholar] [CrossRef]
- Chandra, M.A.; Bedi, S.S. Survey on SVM and their application in image classification. Int. J. Inform. Techn. 2021, 13, 1–11. [Google Scholar] [CrossRef]
- He, S.; Wu, J.; Wang, D.; He, X. Predictive modeling of groundwater nitrate pollution and evaluating its main impact factors using random forest. Chemosphere 2022, 290, 133388. [Google Scholar] [CrossRef] [PubMed]
- Liang, N.; Sun, S.; Zhang, C.; He, Y.; Qiu, Z. Advances in infrared spectroscopy combined with artificial neural network for the authentication and traceability of food. Crit. Rev. Food Sci. 2022, 62, 2963–2984. [Google Scholar] [CrossRef] [PubMed]
- Padalkar, M.V.; Pleshko, N. Wavelength-dependent penetration depth of near infrared radiation into cartilage. Analyst 2015, 140, 2093–2100. [Google Scholar] [CrossRef] [PubMed]
- Silva, L.M.H.D.; Ribeiro, L.P.D.; Costa, B.C.; Silva, E.O.; Miranda, M.R.A.D. Monitoring vitamin C extraction using multivariate calibration models by NIR. Rev. Ciência Agronômica 2021, 52, e20196949. [Google Scholar]
- Raypah, M.E.; Omar, A.F.; Muncan, J.; Zulkurnain, M.; Abdul Najib, A.R. Identification of stingless bee honey adulteration using visible-near infrared spectroscopy combined with aquaphotomics. Molecules 2022, 27, 2324. [Google Scholar] [CrossRef]
- Xie, L.; Ye, X.; Liu, D.; Ying, Y. Prediction of titratable acidity, malic acid, and citric acid in bayberry fruit by near-infrared spectroscopy. Food Res. Int. 2011, 44, 2198–2204. [Google Scholar] [CrossRef]
- Wang, L.; Qu, J.J.; Hao, X.; Hunt Jr, E.R. Estimating dry matter content from spectral reflectance for green leaves of different species. Int. J. Remote Sens. 2011, 32, 7097–7109. [Google Scholar] [CrossRef]
- Ahmed, M.; Seraj, R.; Islam, S.M.S. The k-means algorithm: A comprehensive survey and performance evaluation. Electronics 2020, 9, 1295. [Google Scholar] [CrossRef]
- Kamalha, E.; Kiberu, J.; Nibikora, I.; Mwasiagi, J.I.; Omollo, E. Clustering and classification of cotton lint using principle component analysis, agglomerative hierarchical clustering, and K-means clustering. J. Nat. Fibers 2018, 15, 425–435. [Google Scholar] [CrossRef]
- Pan, S.; Zhang, X.; Xu, W.; Yin, J.; Gu, H.; Yu, X. Rapid on-site identification of geographical origin and storage age of tangerine peel by near-infrared spectroscopy. Spectrochim. Acta Part A-Mol. Biomol. Spectrosc. 2022, 271, 120936. [Google Scholar] [CrossRef]
- Efron, B.; Hastie, T.; Johnstone, I.; Tibshirani, R. Least angle regression. Ann. Stat. 2004, 32, 407–499. [Google Scholar] [CrossRef]
- Xing, Z.; Du, C.; Shen, Y.; Ma, F.; Zhou, J. A method combining FTIR-ATR and Raman spectroscopy to determine soil organic matter: Improvement of prediction accuracy using competitive adaptive reweighted sampling (CARS). Comput. Electron. Agric. 2021, 191, 106549. [Google Scholar] [CrossRef]
- Centner, V.; Massart, D.L.; de Noord, O.E.; de Jong, S.; Vandeginste, B.M.; Sterna, C. Elimination of uninformative variables for multivariate calibration. Anal. Chem. 1996, 68, 3851–3858. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, S.; Liu, W.; Yang, X.; Luo, J. Least-squares support vector machine and successive projection algorithm for quantitative analysis of cotton-polyester textile by near infrared spectroscopy. J. Near Infrared Spec. 2018, 26, 34–43. [Google Scholar] [CrossRef]
- Fan, F.; Changwei, Z.; Xiaojun, Z.; Di, W.; Zhi, T.; Yishen, X. Feature wavelength selection in near-infrared spectroscopy based on genetic algorithm. In Proceedings of the 2021 International Conference on Sensing, Measurement & Data Analytics in the era of Artificial Intelligence (ICSMD), Nanjing, China, 21–23 October 2021; pp. 1–5. [Google Scholar]
- Fernandes, E.A.; Sarriés, G.A.; Mazola, Y.T.; Lima, R.C.; Furlan, G.N.; Bacchi, M.A. Machine learning to support geographical origin traceability of Coffea Arabica. Adv. Artif. Intell. Mach. Learn. 2022, 2, 273–287. [Google Scholar] [CrossRef]
- Vo, S.A.; Scanlan, J.; Turner, P.; Ollington, R. Convolutional neural networks for individual identification in the Southern Rock Lobster supply chain. Food Control 2020, 118, 107419. [Google Scholar] [CrossRef]
- Hashimoto, H.; Kameda, S.; Maezawa, H.; Oshino, S.; Tani, N.; Khoo, H.M.; Yanagisawa, T.; Yoshimine, T.; Kishima, H.; Hirata, M. A swallowing decoder based on deep transfer learning: AlexNet classification of the intracranial electrocorticogram. Int. J. Neural Syst. 2021, 31, 2050056. [Google Scholar] [CrossRef]
- Abunadi, I.; Senan, E.M. Deep learning and machine learning techniques of diagnosis dermoscopy images for early detection of skin diseases. Electronics 2021, 10, 3158. [Google Scholar] [CrossRef]
- Gan, Y.; Yang, J.; Lai, W. Video object forgery detection algorithm based on VGG-11 convolutional neural network. In Proceedings of the 2019 International Conference on Intelligent Computing, Automation and Systems (ICICAS), Chongqing, China, 6–9 December 2019; pp. 575–580. [Google Scholar]
Origin | Number of Samples Before Removal | Number of Samples After Removal |
---|---|---|
XG | 100 | 95 |
XW | 100 | 95 |
XF | 100 | 99 |
ZG | 94 | 93 |
FJ | 96 | 96 |
Total | 490 | 478 |
Preprocessing Strategy | PCs | Training Set Acc (%) | Testing Set Acc (%) |
---|---|---|---|
No-preprocess | 10 | 81.41 | 79.16 |
SG | 9 | 78.80 | 72.92 |
MSC | 9 | 85.34 | 76.04 |
FD | 6 | 84.03 | 81.25 |
SG+MSC | 7 | 77.49 | 64.58 |
SG+FD | 8 | 89.79 | 84.38 |
MSC+FD | 6 | 86.13 | 77.08 |
SG+MSC+FD | 6 | 84.82 | 80.21 |
Model | Training Set Acc (%) | Testing Set | 10-Fold CV Acc (%) | |||
---|---|---|---|---|---|---|
Acc (%) | P (%) | R (%) | F1 (%) | |||
PLS-DA | 89.79 | 84.38 | 84.38 | 84.6 | 84.37 | 78.43 |
LDA | 77.75 | 69.79 | 70.45 | 69.44 | 69.11 | 72.34 |
SVM | 85.08 | 73.96 | 78.78 | 74.30 | 73.98 | 73.20 |
RF | 88.48 | 70.83 | 70.86 | 70.40 | 70.31 | 70.02 |
BPNN | 78.01 | 77.08 | 86.08 | 75.71 | 70.37 | 80.40 |
1DCNN | 98.43 | 97.92 | 98.00 | 97.95 | 97.90 | 97.50 |
Wavelength Selection Method | Number of Wavelengths | Training Set Acc (%) | Testing Set | 10-Fold CV Acc (%) | Time (s) | |||||
---|---|---|---|---|---|---|---|---|---|---|
Acc (%) | P (%) | R (%) | F1 (%) | Wavelength Selection Time | Modeling Time | Total Time | ||||
LAR | 600 | 95.03 | 94.80 | 95.09 | 95.02 | 95.02 | 94.98 | 35.1 | 7.3 | 42.4 |
CARS | 331 | 94.24 | 93.75 | 94.5 | 93.62 | 93.80 | 92.89 | 125.5 | 6.6 | 132.1 |
UVE | 75 | 89.27 | 86.46 | 86.55 | 85.87 | 85.63 | 87.88 | 320.3 | 10.7 | 331 |
SPA | 16 | 80.10 | 79.17 | 78.91 | 78.30 | 78.27 | 79.05 | 176.8 | 17.4 | 194.2 |
GA | 677 | 96.60 | 95.83 | 96.16 | 96.20 | 96.16 | 95.82 | 2359.2 | 7.2 | 2366.4 |
None | 1556 | 98.43 | 97.92 | 98.00 | 97.95 | 97.90 | 97.50 | 0 | 8 | 8 |
Data | Model | Training Set Acc (%) | Testing Set | |||
---|---|---|---|---|---|---|
Acc (%) | P (%) | R (%) | F1 (%) | |||
NIR Spectra | 1DCNN | 98.43 | 97.92 | 98.00 | 97.95 | 97.90 |
RGB Image | 2DCNN | 89.79 | 76.53 | 79.54 | 77.12 | 76.40 |
AlexNet | 90.56 | 81.63 | 81.51 | 81.14 | 80.99 | |
ResNet | 89.80 | 70.41 | 74.39 | 70.33 | 70.85 | |
VGG11 | 95.41 | 86.73 | 87.69 | 86.50 | 86.60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Ren, Z.; Zhao, C.; Liang, G. Geographical Origin Traceability of Navel Oranges Based on Near-Infrared Spectroscopy Combined with Deep Learning. Foods 2025, 14, 484. https://doi.org/10.3390/foods14030484
Li Y, Ren Z, Zhao C, Liang G. Geographical Origin Traceability of Navel Oranges Based on Near-Infrared Spectroscopy Combined with Deep Learning. Foods. 2025; 14(3):484. https://doi.org/10.3390/foods14030484
Chicago/Turabian StyleLi, Yue, Zhong Ren, Chunyan Zhao, and Gaoqiang Liang. 2025. "Geographical Origin Traceability of Navel Oranges Based on Near-Infrared Spectroscopy Combined with Deep Learning" Foods 14, no. 3: 484. https://doi.org/10.3390/foods14030484
APA StyleLi, Y., Ren, Z., Zhao, C., & Liang, G. (2025). Geographical Origin Traceability of Navel Oranges Based on Near-Infrared Spectroscopy Combined with Deep Learning. Foods, 14(3), 484. https://doi.org/10.3390/foods14030484