Cytotoxicity and Genome Characteristics of an Emetic Toxin-Producing Bacillus cereus Group sp. Isolated from Raw Milk
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sources of B. cereus Group Isolates
2.2. PCR Analysis
2.3. Biochemical Tests of cesA-Positive B. cereus Group Colonies
2.4. 16S rRNA Gene Sequencing
2.5. Cytotoxicity Test
2.5.1. Preparation of Heat-Treated Culture Supernatants from B. cereus Group Isolates
2.5.2. Cytotoxicity Assay
2.6. Genome Analysis of a cesA-Positive B. cereus Group Isolate
2.6.1. Genome Sequencing, Assembly and Annotation
2.6.2. Analysis of the Major Functions of CSB98 in Comparison to Related Strains
2.6.3. Analysis of Virulence Factors, Antibiotic Resistance and Secondary Metabolites
2.6.4. Analysis of Strain Relatedness
3. Results and Discussion
3.1. Screening of B. cereus Group and Emetic B. cereus Group Species in Raw Milk
3.2. Biochemical and Genetic Characterisation of cesA-Positive B. cereus Group Isolates
3.3. Cytotoxicity of cesA-Positive B. cereus Group Isolates to Caco-2 and HepG2 Cells
3.4. Characterisation of the Bacillus sp. CSB98 Genome
3.5. Comparison of the Primary Functions of CSB98 with Related Strains
3.6. Analysis of the Virulence Factors
3.7. Analysis of Secondary Metabolites
3.8. Analysis of Strain Relatedness
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Granum, P.E.; Lund, T. Bacillus cereus and its food poisoning toxins. FEMS Microbiol. Lett. 1997, 157, 223–228. [Google Scholar] [CrossRef] [PubMed]
- Dietrich, R.; Jessberger, N.; Ehling-Schulz, M.; Märtlbauer, E.; Granum, P.E. The food poisoning toxins of Bacillus cereus. Toxins 2021, 13, 98. [Google Scholar] [CrossRef]
- Agata, N.; Ohta, M.; Mori, M.; Isobe, M. A novel dodecadepsipeptide, cereulide, is an emetic toxin of Bacillus cereus. FEMS Microbiol. Lett. 1995, 129, 17–19. [Google Scholar] [CrossRef] [PubMed]
- Ehling-Schulz, M.; Fricker, M.; Grallert, H.; Rieck, P.; Wagner, M.; Scherer, S. Cereulide synthetase gene cluster from emetic Bacillus cereus: Structure and location on a mega virulence plasmid related to Bacillus anthracis toxin plasmid pXO1. BMC Microbiol. 2006, 6, 20. [Google Scholar] [CrossRef]
- Wang, J.; Ding, T.; Oh, D.H. Effect of temperatures on the growth, toxin production, and heat resistance of Bacillus cereus in cooked rice. Foodborne Pathog. Dis. 2014, 11, 133–137. [Google Scholar] [CrossRef]
- Rajkovic, A.; Uyttendaele, M.; Vermeulen, A.; Andjelkovic, M.; Fitz-James, I.; in’t-Veld, P.; Denon, Q.; Verhé, R.; Debevere, J. Heat resistance of Bacillus cereus emetic toxin, cereulide. Lett. Appl. Microbiol. 2008, 46, 536–541. [Google Scholar] [CrossRef] [PubMed]
- Kelly, A.L.; Waldron, D.S.; Datta, N.; O’Shea, N. Heat exchangers, pasteurizers and UHT equipment—Design and Operation. In Encyclopedia of Dairy Sciences, 3rd ed.; McSweeney, P.L.H., McNamara, J.P., Eds.; Academic Press: London, UK, 2022; Volume 3, pp. 321–335. ISBN 9780128187678. [Google Scholar] [CrossRef]
- Bava, L.; Zucali, M.; Sandrucci, A.; Brasca, M.; Vanoni, L.; Zanini, L.; Tamburini, A. Effect of cleaning procedure and hygienic condition of milking equipment on bacterial count of bulk tank milk. J. Dairy Res. 2011, 78, 211–219. [Google Scholar] [CrossRef]
- Burke, N.; Zacharski, K.A.; Southern, M.; Hogan, P.; Ryan, M.P.; Adley, C.C. The Dairy Industry: Process, Monitoring, Standards, and Quality. Descriptive Food Science. 2018. Available online: https://www.intechopen.com/chapters/63169 (accessed on 2 December 2024).
- Rouzeau-Szynalski, K.; Stollewerk, K.; Messelhaeusser, U.; Ehling-Schulz, M. Why be serious about emetic Bacillus cereus: Cereulide production and industrial challenges. Food Microbiol. 2020, 85, 103279. [Google Scholar] [CrossRef]
- Magnusson, M.; Christiansson, A.; Svensson, B. Bacillus cereus spores during housing of dairy cows: Factors affecting contamination of raw milk. J. Dairy Sci. 2007, 90, 2745–2754. [Google Scholar] [CrossRef]
- Chitov, T.; Dispan, R.; Kasinrerk, W. Incidence and diarrheagenic potential of Bacillus cereus in pasteurized milk and cereal products in Thailand. J. Food Saf. 2008, 28, 467–481. [Google Scholar] [CrossRef]
- Yang, S.; Wang, Y.; Liu, Y.; Jia, K.; Zhang, Z.; Dong, Q. Cereulide and emetic Bacillus cereus: Characterizations, impacts and public precautions. Foods 2023, 12, 833. [Google Scholar] [CrossRef]
- Tirloni, E.; Stella, S.; Celandroni, F.; Mazzantini, D.; Bernardi, C.; Ghelardi, E. Bacillus cereus in dairy products and production plants. Foods 2022, 11, 2572. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Wang, Y.; Ren, F.; Wang, X.; Zhang, W.; Pei, X.; Dong, Q. The sources of Bacillus cereus contamination and their association with cereulide production in dairy and cooked rice processing lines. Food Qual. Saf. 2023, 7, 1–14. [Google Scholar] [CrossRef]
- Svensson, B.; Monthan, A.; Shaheen, R.; Andersson, M.A.; Salkinoja-Salonen, M.; Christiansson, A. Occurrence of emetic toxin-producing Bacillus cereus in the dairy production chain. Int. Dairy J. 2006, 16, 740–749. [Google Scholar] [CrossRef]
- DIN EN ISO 21871:2006-04; Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Determination of Low Numbers of Presumptive Bacillus cereus—Most Probable Number Technique and Detection Method. Available online: https://www.iso.org/standard/36015.html (accessed on 20 November 2023).
- Tallent, S.M.; Knollhof, A.; Rhodehamel, E.J.; Harmon, S.M.; Bennett, R.W. Bacteriological Analytical Manual (BAM) Chapter 14: Bacillus cereus. Available online: https://www.fda.gov/food/laboratory-methods-food/bam-chapter-14-Bacillus-cereus (accessed on 20 November 2023).
- Pheepakpraw, J.; Sinchao, C.; Chitov, T. Detection of Bacillus cereus group and emetic Bacillus cereus group strains in milk using multiplex polymerase chain reaction. J. Sci. Agric. Technol. 2023, 4, 8–13. [Google Scholar] [CrossRef]
- Ausubel, F.M.; Brent, R.; Kingston, R.E.; Moore, D.D.; Seidman, J.G.; Smith, J.A.; Struhl, K. Short Protocols in Molecular Biology, 4th ed.; Wiley: New York, NY, USA, 1999; pp. 2-12–2-13. [Google Scholar]
- Oliwa-Stasiak, K.; Molnar, C.I.; Arshak, K.; Bartoszcze, M.; Adley, C.C. Development of a PCR assay for identification of the Bacillus cereus group species. J. Appl. Microbiol. 2010, 108, 266–273. [Google Scholar] [CrossRef]
- Yang, I.C.; Shih, D.Y.; Huang, T.P.; Huang, Y.P.; Wang, J.Y.; Pan, T.M. Establishment of a novel multiplex PCR assay and detection of toxigenic strains of the species in the Bacillus cereus group. J. Food Prot. 2005, 68, 2123–2130. [Google Scholar] [CrossRef]
- Frank, J.A.; Reich, C.I.; Sharma, S.; Weisbaum, J.S.; Wilson, B.A.; Olsen, G.J. Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl. Environ. Microbiol. 2008, 74, 2461–2470. [Google Scholar] [CrossRef] [PubMed]
- Finlay, W.; Logan, N.; Sutherland, A. Bacillus cereus emetic toxin production in relation to dissolved oxygen tension and sporulation. Food Microbiol. 2002, 19, 423–430. [Google Scholar] [CrossRef]
- Pheepakpraw, J.; Kaewkod, T.; Konkit, M.; Krongdang, S.; Jantakee, K.; Praphruet, R.; Bovonsombut, S.; Panya, A.; Tragoolpua, Y.; Logan, N.A.; et al. Intraspecific diversity and pathogenicity of Bacillus thuringiensis isolates from an emetic illness. Toxins 2023, 15, 89. [Google Scholar] [CrossRef] [PubMed]
- Panya, A.; Sawasdee, N.; Songprakhon, P.; Tragoolpua, Y.; Rotarayanont, S.; Choowongkomon, K.; Yenchitsomanus, P.T. A synthetic bioactive peptide derived from the Asian medicinal plant Acacia catechu binds to dengue virus and inhibits cell entry. Viruses 2020, 12, 1267. [Google Scholar] [CrossRef] [PubMed]
- Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data. Available online: http://www.bioinformatics.babraham.ac.uk/projects/fastqc (accessed on 10 October 2023).
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [PubMed]
- Wick, R.R.; Judd, L.M.; Gorrie, C.L.; Holt, K.E. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput. Biol. 2017, 13, e1005595. [Google Scholar] [CrossRef] [PubMed]
- Tatusova, T.; DiCuccio, M.; Badretdin, A.; Chetvernin, V.; Nawrocki, E.P.; Zaslavsky, L.; Lomsadze, A.; Pruitt, K.D.; Borodovsky, M.; Ostell, J. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 2016, 44, 6614–6624. [Google Scholar] [CrossRef] [PubMed]
- Aziz, R.K.; Bartels, D.; Best, A.A.; DeJongh, M.; Disz, T.; Edwards, R.A.; Formsma, K.; Gerdes, S.; Glass, E.M.; Kubal, M.; et al. The RAST server: Rapid annotations using subsystems technology. BMC Genom. 2008, 8, 75. [Google Scholar] [CrossRef] [PubMed]
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016; ISBN 978-3-319-24277-4. Available online: https://ggplot2.tidyverse.org (accessed on 4 December 2023).
- Liu, B.; Zheng, D.; Zhou, S.; Chen, L.; Yang, J. VFDB 2022: A general classification scheme for bacterial virulence factors. Nucleic Acids Res. 2022, 50, D912–D917. [Google Scholar] [CrossRef] [PubMed]
- Alcock, B.P.; Huynh, W.; Chalil, R.; Smith, K.W.; Raphenya, A.R.; Wlodarski, M.A.; Edalatmand, A.; Petkau, A.; Syed, S.A.; Tsang, K.K.; et al. CARD 2023: Expanded curation, support for machine learning, and resistome prediction at the comprehensive antibiotic resistance database. Nucleic Acids Res. 2023, 51, D690–D699. [Google Scholar] [CrossRef] [PubMed]
- Blin, K.; Shaw, S.; Augustijn, H.E.; Reitz, Z.L.; Biermann, F.; Alanjary, M.; Fetter, A.; Terlouw, B.R.; Metcalf, W.W.; Helfrich, E.J.N.; et al. antiSMASH 7.0: New and improved predictions for detection, regulation, chemical structures and visualisation. Nucleic Acids Res. 2023, 51, W46–W50. [Google Scholar] [CrossRef] [PubMed]
- Meier-Kolthoff, J.P.; Göker, M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat. Commun. 2019, 10, 2182. [Google Scholar] [CrossRef]
- Meier-Kolthoff, J.P.; Auch, A.F.; Klenk, H.P.; Göker, M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform. 2013, 14, 60. [Google Scholar] [CrossRef] [PubMed]
- Lefort, V.; Desper, R.; Gascuel, O. FastME 2.0: A comprehensive, accurate, and fast distance-based phylogeny inference program. Mol. Biol. Evol. 2015, 32, 2798–2800. [Google Scholar] [CrossRef] [PubMed]
- Farris, J.S. Estimating phylogenetic trees from distance matrices. Am. Nat. 1972, 106, 645–667. [Google Scholar] [CrossRef]
- Letunic, I.; Bork, P. Interactive Tree of Life (iTOL) v6: Recent updates to the phylogenetic tree display and annotation tool. Nucleic Acids Res. 2024, 52, W78–W82. [Google Scholar] [CrossRef] [PubMed]
- Lee, I.; Ouk Kim, Y.; Park, S.C.; Chun, J. OrthoANI: An improved algorithm and software for calculating average nucleotide identity. Int. J. Syst. Evol. Microbiol. 2016, 66, 1100–1103. [Google Scholar] [CrossRef] [PubMed]
- Seemann, T. Snippy: Rapid Haploid Variant Calling and Core SNP Phylogeny. 2015. Available online: https://github.com/tseemann/snippy (accessed on 21 January 2025).
- Torii, T.; Ohkubo, Y. Distribution of cereulide-producing Bacillus cereus in raw milk in Hokkaido, Japan, and evaluation of cereulide production. Int. Dairy J. 2023, 144, 105693. [Google Scholar] [CrossRef]
- Cui, Y.; Liu, X.; Dietrich, R.; Märtlbauer, E.; Cao, J.; Ding, S.; Zhu, K. Characterization of Bacillus cereus isolates from local dairy farms in China. FEMS Microbiol. Lett. 2016, 363, fnw096. [Google Scholar] [CrossRef]
- Owusu-Kwarteng, J.; Wuni, A.; Akabanda, F.; Tano-Debrah, K.; Jespersen, L. Prevalence, virulence factor genes and antibiotic resistance of Bacillus cereus sensu lato isolated from dairy farms and traditional dairy products. BMC Microbiol. 2017, 17, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Carroll, L.M.; Wiedmann, M.; Kovac, J. Proposal of a taxonomic nomenclature for the Bacillus cereus group which reconciles genomic definitions of bacterial species with clinical and industrial phenotypes. mBio 2020, 11, e00034-20. [Google Scholar] [CrossRef]
- Ehling-Schulz, M.; Lereclus, D.; Koehler, T.M. The Bacillus cereus group: Bacillus species with pathogenic potential. Microbiol. Spectr. 2019, 7, 1–35. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Lai, Q.; Goker, M.; Meier-Kolthoff, J.P.; Wang, M.; Sun, Y.; Wang, L.; Shao, Z. Genomic insights into the taxonomic status of the Bacillus cereus group. Sci. Rep. 2015, 5, 14082. [Google Scholar] [CrossRef] [PubMed]
- Elzi, M.V.; Mallard, K.; Droz, S.; Bodmer, T. Polyphasic approach for identifying Bacillus spp. J. Clin. Microbiol. 2005, 43, 1010. [Google Scholar] [CrossRef]
- ISO 10993-5:2009; Biological Evaluation of Medical Devices—Part 5: Tests for In Vitro Cytotoxicity. International Organization for Standardization: Geneva, Switzerland, 2009.
- Rajkovic, A.; Grootaert, C.; Butorac, A.; Cucu, T.; De Meulenaer, B.; van Camp, J.; Bracke, M.; Uyttendaele, M.; Bačun-Družina, V.; Cindrić, M. Sub-emetic toxicity of Bacillus cereus toxin cereulide on cultured human enterocyte-like Caco-2 cells. Toxins 2014, 6, 2270–2290. [Google Scholar] [CrossRef] [PubMed]
- Beisl, J.; Pahlke, G.; Ehling-Schulz, M.; Del Favero, G.; Marko, D. Cereulide and deoxynivalenol increase LC3 protein levels in HepG2 liver cells. Toxins 2022, 14, 151. [Google Scholar] [CrossRef] [PubMed]
- Decleer, M.; Jovanovic, J.; Vakula, A.; Udovicki, B.; Agoua, R.E.K.; Madder, A.; De Saeger, S.; Rajkovic, A. Oxygen consumption rate analysis of mitochondrial dysfunction caused by Bacillus cereus cereulide in Caco-2 and HepG2 cells. Toxins 2018, 10, 266. [Google Scholar] [CrossRef]
- Andersson, M.A.; Hakulinen, P.; Honkalampi-Hämäläinen, U.; Hoornstra, D.; Lhuguenot, J.C.; Mäki-Paakkanen, J.; Savolainen, M.; Severin, I.; Stammati, A.L.; Turco, L.; et al. Toxicological profile of cereulide, the Bacillus cereus emetic toxin, in functional assays with human, animal and bacterial cells. Toxicon 2007, 49, 351–367. [Google Scholar] [CrossRef]
- Naranjo, M.; Denayer, S.; Botteldoorn, N.; Delbrassinne, L.; Veys, J.; Waegenaere, J.; Sirtaine, N.; Driesen, R.B.; Sipido, K.R.; Mahillon, J.; et al. Sudden death of a young adult associated with Bacillus cereus food poisoning. J. Clin. Microbiol. 2011, 49, 4379–4381. [Google Scholar] [CrossRef] [PubMed]
- Mahler, H.; Pasi, A.; Kramer, J.M.; Schulte, P.; Scoging, A.C.; Bär, W.; Krähenbühl, S. Fulminant liver failure in association with the emetic toxin of Bacillus cereus. N. Engl. J. Med. 1997, 336, 1142–1148. [Google Scholar] [CrossRef] [PubMed]
- Ivanova, N.; Sorokin, A.; Anderson, I.; Galleron, N.; Candelon, B.; Kapatral, V.; Bhattacharyya, A.; Reznik, G.; Mikhailova, N.; Lapidus, A.; et al. Genome sequence of Bacillus cereus and comparative analysis with Bacillus anthracis. Nature 2003, 423, 87–91. [Google Scholar] [CrossRef]
- NCBI-NIH. Bacillus cereus ATCC 14579. 2024. Available online: https://www.ncbi.nlm.nih.gov/bioproject/1034111 (accessed on 18 December 2024).
- Chang, T.; Rosch, J.W.; Gu, Z.; Hakim, H.; Hewitt, C.; Gaur, A.; Wu, G.; Hayden, R.T. Whole-genome characterization of Bacillus cereus associated with specific disease manifestations. Infect. Immun. 2018, 86, e00574-17. [Google Scholar] [CrossRef]
- Zhou, Q.; Li, G.; Cui, Y.; Xiang, J.; Zhu, S.; Li, S.; Huang, J.; Wang, Y.; Liu, Y.; Zhou, L. Genomic characterization of Bacillus cereus isolated from food poisoning cases revealed the mechanism of toxin production. Front. Microbiol. 2024, 14, 1238799. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.H.; Chen, Y.; Yan, F.; Fan, Z.H.; Guo, J.H. Whole-genome sequence of Bacillus cereus AR156, a potential biocontrol agent with high soilborne disease biocontrol efficacy and plant growth promotion. Genome Announc. 2017, 5, e00886-17. [Google Scholar] [CrossRef] [PubMed]
- Ehling-Schulz, M.; Svensson, B.; Guinebretiere, M.H.; Lindbäck, T.; Andersson, M.; Schulz, A.; Fricker, M.; Christiansson, A.; Granum, P.E.; Märtlbauer, E.; et al. Emetic toxin formation of Bacillus cereus is restricted to a single evolutionary lineage of closely related strains. Microbiology 2005, 151, 183–197. [Google Scholar] [CrossRef]
- Ramarao, N.; Sanchis, V. The pore-forming haemolysins of Bacillus cereus: A review. Toxins 2013, 5, 1119–1139. [Google Scholar] [CrossRef] [PubMed]
- Stenfors-Arnesen, L.P.; Fagerlund, A.; Granum, P.E. From soil to gut: Bacillus cereus and its food poisoning toxins. FEMS Microbiol. Rev. 2008, 32, 579–606. [Google Scholar] [CrossRef] [PubMed]
- Guillemet, E.; Cadot, C.; Tran, S.L.; Guinebretière, M.H.; Lereclus, D.; Ramarao, N. The InhA metalloproteases of Bacillus cereus contribute concomitantly to virulence. J. Bacteriol. 2010, 192, 286–294. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.J.; Li, L.; Yu, J.; Hu, H.Y.; Liu, Z.X.; Jiang, W.J.; Xu, W.; Guo, X.P.; Wang, F.S.; Sheng, J.Z. Imaging of Escherichia coli K5 and glycosaminoglycan precursors via targeted metabolic labeling of capsular polysaccharides in bacteria. Sci. Adv. 2023, 9, eade4770. [Google Scholar] [CrossRef] [PubMed]
- Soni, R.; Nanjani, S.; Keharia, H. Genome analysis reveals probiotic propensities of Paenibacillus polymyxa HK4. Genomics 2021, 113 Pt 2, 861–873. [Google Scholar] [CrossRef]
- Slamti, L.; Lereclus, D. Specificity and polymorphism of the PlcR-PapR quorum-sensing system in the Bacillus cereus group. J. Bacteriol. 2005, 187, 1182–1187. [Google Scholar] [CrossRef]
- Thomas, M.S.; Wigneshweraraj, S. Regulation of virulence gene expression. Virulence 2014, 5, 832–834. [Google Scholar] [CrossRef]
- Thompson, M.K.; Keithly, M.E.; Harp, J.; Cook, P.D.; Jagessar, K.L.; Sulikowski, G.A.; Armstrong, R.N. Structural and chemical aspects of resistance to the antibiotic fosfomycin conferred by FosB from Bacillus cereus. Biochemistry 2013, 52, 7350–7362. [Google Scholar] [CrossRef]
- Cormican, M.; Morris, D.; Corbett-Feeney, G.; Flynn, J. Extended spectrum beta-lactamase production and fluorquinolone resistance in pathogens associated with community acquired urinary tract infection. Diagn. Microbiol. Infect. Dis. 1998, 32, 317–319. [Google Scholar] [CrossRef]
- Fiedler, G.; Schneider, C.; Igbinosa, E.O.; Kabisch, J.; Brinks, E.; Becker, B.; Stoll, D.A.; Cho, G.S.; Huch, M.; Franz, C.M.A.P. Antibiotics resistance and toxin profiles of Bacillus cereus-group isolates from fresh vegetables from German retail markets. BMC Microbiol. 2019, 19, 250. [Google Scholar] [CrossRef]
- Deleu, M.; Paquot, M.; Nylander, T. Effect of fengycin, a lipopeptide produced by Bacillus subtilis, on model biomembranes. Biophys. J. 2008, 94, 2667–2679. [Google Scholar] [CrossRef]
- Ji, S.; Tian, Y.; Li, J.; Xu, G.; Zhang, Y.; Chen, S.; Chen, Y.; Tang, X. Complete genome sequence of Bacillus cereus Z4, a biocontrol agent against tobacco black shank, isolated from the Western Pacific Ocean. Genomics 2023, 72, 101071. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.H.; Koumoutsi, A.; Scholz, R.; Eisenreich, A.; Schneider, K.; Heinemeyer, I.; Morgenstern, B.; Voss, B.; Hess, W.R.; Reva, O.; et al. Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42. Nat. Biotechnol. 2007, 25, 1007–1014. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Biswas, S.; Berg, M.G.; Antapli, C.M.; Xie, F.; Wang, Q.; Tang, M.C.; Tang, G.L.; Zhang, L.; Dreyfuss, G.; et al. Genomics-guided discovery of thailanstatins A, B, and C As pre-mRNA splicing inhibitors and antiproliferative agents from Burkholderia thailandensis MSMB43. J. Nat. Prod. 2013, 76, 685–693. [Google Scholar] [CrossRef]
- Diale, M.O.; Kayitesi, E.; Serepa-Dlamini, M.H. Genome in silico and in vitro analysis of the probiotic properties of a bacterial endophyte, Bacillus paranthracis strain MHSD3. Front. Genet. 2021, 12, 672149. [Google Scholar] [CrossRef] [PubMed]
- Hazarika, D.J.; Bora, S.S.; Naorem, R.S.; Sharma, D.; Boro, R.C.; Barooah, M. Genomic insights into Bacillus subtilis MBB3B9 mediated aluminium stress mitigation for enhanced rice growth. Sci. Rep. 2023, 13, 16467. [Google Scholar] [CrossRef] [PubMed]
- Carroll, L.M.; Wiedmann, M.; Mukherjee, M.; Nicholas, D.C.; Mingle, L.A.; Dumas, N.B.; Cole, J.A.; Kovac, J. Characterization of emetic and diarrheal Bacillus cereus strains from a 2016 foodborne outbreak using whole-genome sequencing: Addressing the microbiological, epidemiological, and bioinformatic challenges. Front. Microbiol. 2019, 10, 144. [Google Scholar] [CrossRef] [PubMed]
- Carroll, L.M.; Matle, I.; Kovac, J.; Cheng, R.A.; Wiedmann, M. Laboratory misidentifications resulting from taxonomic changes to Bacillus cereus group species, 2018–2022. Emerg. Infect. Dis. 2022, 28, 1877–1881. [Google Scholar] [CrossRef] [PubMed]
Target Gene | Primer | Reference | PCR Product Size (bp) | Primer Sequence (5′ to 3′) |
---|---|---|---|---|
cesA | cesA F | [19] | 996 | CCG CCA GCT AGA TGA AAA AGA |
cesA R | ATC ACT TTC GGC GTG ATA CC | |||
motB | motB F | [21] | 575 | ATC GCC TCG TTG GAT GAC GA |
motB R | CTG CAT ATC CTA CCG CAG CTA | |||
its | its F | [22] | 185 | AAT TTG TAT GGG CCT ATA GCT CAG CT |
Its R | TTT AAA ATA GCT TTT TGG TGG AGC CT |
Classification | Positive Reaction | Negative Reaction |
---|---|---|
Monosaccharides | D-ribose, D-glucose, D-fructose | D-arabinose, L-arabinose, D-xylose, L-xylose, D-lyxose, D-galactose, D-mannose, L-sorbose, L-rhamnose, D-tagatose, D-fucose, L-fucose |
Disaccharides | D-cellobiose, D-maltose, D-saccharose (sucrose), D-trehalose, D-turanose | D-lactose, D-melibiose, gentiobiose |
Trisaccharides | - | D-melezitose, D-raffinose |
Polysaccharides | - | Inulin, amidon (starch), glycogen |
Sugar alcohols | Glycerol | erythritol, D-adonitol, dulcitol, inositol, D-mannitol, D-sorbitol, xylitol, D-arabitol, L-arabitol |
Amino sugars and sugar derivatives | N-acetyl-glucosamine, potassium gluconate | Potassium 2-keto-gluconate, potassium 5-keto-gluconate |
Methyl glycosides (methylated sugars) | - | Methyl-β-D-xylopyranoside, methyl-α-D-mannopyranoside, methyl-α-D-glucopyranoside |
Glycosides and complex sugars | Arbutin, esculin ferric citrate, salicin | Amygdalin |
Genome Information | Value |
---|---|
Genome assembly based on Unicycler | |
Number of contigs | 157 |
N50 (bp) | 277,966 |
Total length (bp) | 5,472,779 |
Genome annotation based on PGAP | |
GC content (%) | 35.5 |
Protein coding sequence (CDS) | 5478 |
The number of rRNA (5S, 16S, 23S) | 3, 1, 1 |
The number of tRNA | 73 |
ncRNA | 5 |
Pseudogenes (total) | 174 |
Class No. | Classification * | Virulence Factor | Related Gene |
---|---|---|---|
1 | Gastrointestinal-related toxins | Cereulide | cesA, cesB, cesC, cesD, cesH, cesP, cesT |
Non-haemolytic enterotoxin (Nhe) | nheA, nheB, nheC | ||
2 | Cytolysins | Anthrolysin O | alo |
Haemolysin III | hlyIII | ||
3 | Enzymes | Immune inhibitor A metalloproteinase | inhA |
Phosphatidylcholine-preferring phospholipase C (PC-PLC) | plcA | ||
Phosphatidylinositol-specific phospholipase C (PI-PLC) | piplC | ||
Sphingomyelinase (SMase) | sph | ||
4 | Immune evasion | Polysaccharide capsule | Undetermined |
5 | Iron acquisition | Bacillibactin | dhbA, dhbB, ahbC, dhbE, dhbF |
Heme-acquisition leucine-rich repeat protein (Hal) | hal | ||
Iron-regulated leucine-rich surface protein (IlsA) | ilsA | ||
6 | Regulation | PIcR-PapR quorum sensing | papR, pIcR |
7 | Antibiotic resistance | Class A Bacillus cereus Bc beta-lactamase (BcI) | bcI |
Subclass B1 Bacillus cereus Bc beta-lactamase (BcII) | bclI | ||
Fosfomycin thiol transferase (FosB) | fosB |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pheepakpraw, J.; Sinchao, C.; Sutheeworapong, S.; Sattayawat, P.; Panya, A.; Tragoolpua, Y.; Chitov, T. Cytotoxicity and Genome Characteristics of an Emetic Toxin-Producing Bacillus cereus Group sp. Isolated from Raw Milk. Foods 2025, 14, 485. https://doi.org/10.3390/foods14030485
Pheepakpraw J, Sinchao C, Sutheeworapong S, Sattayawat P, Panya A, Tragoolpua Y, Chitov T. Cytotoxicity and Genome Characteristics of an Emetic Toxin-Producing Bacillus cereus Group sp. Isolated from Raw Milk. Foods. 2025; 14(3):485. https://doi.org/10.3390/foods14030485
Chicago/Turabian StylePheepakpraw, Jintana, Chanita Sinchao, Sawannee Sutheeworapong, Pachara Sattayawat, Aussara Panya, Yingmanee Tragoolpua, and Thararat Chitov. 2025. "Cytotoxicity and Genome Characteristics of an Emetic Toxin-Producing Bacillus cereus Group sp. Isolated from Raw Milk" Foods 14, no. 3: 485. https://doi.org/10.3390/foods14030485
APA StylePheepakpraw, J., Sinchao, C., Sutheeworapong, S., Sattayawat, P., Panya, A., Tragoolpua, Y., & Chitov, T. (2025). Cytotoxicity and Genome Characteristics of an Emetic Toxin-Producing Bacillus cereus Group sp. Isolated from Raw Milk. Foods, 14(3), 485. https://doi.org/10.3390/foods14030485