Assessment of Antioxidant Properties of Classic Energy Drinks in Comparison with Fruit Energy Drinks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.3. Soluble Solids Content
2.4. Analysis of Vitamin C
2.5. Antioxidant Capacity by DPPH Assay
2.6. Antioxidant Capacity by ABTS Assay
2.7. Total Polyphenols by Folin–Ciocalteu Assay
2.8. Total Anthocyanins
2.9. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Higgins, J.P.; Tuttle, T.D.; Higgins, C.L. Energy beverages: Content and safety. Mayo Clin. Proc. 2010, 85, 1033–1041. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Breda, J.J.; Whiting, S.H.; Encarnação, R.; Norberg, S.; Jones, R.; Reinap, M.; Jewell, J. Energy drink consumption in Europe: A review of the risks, adverse health effects, and policy options to respond. Front. Public Health 2014. [Google Scholar] [CrossRef] [PubMed]
- Nowak, D.; Jasionowski, A. Analysis of the consumption of caffeinated energy drinks among Polish adolescents. Int. J. Environ. Res. Public Health 2015, 12, 7910–7921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seifert, S.M.; Schaechter, J.L.; Hershorin, E.R.; Lipshultz, S.E. Health effects of energy drinks on children, adolescents, and young adults. Pediatrics 2011, 127, 511–528. [Google Scholar] [CrossRef] [Green Version]
- Temple, J.L. Caffeine use in children: What we know, what we have left to learn, and why we should worry. Neurosci. Biobehav. Rev. 2009, 33, 793–806. [Google Scholar] [CrossRef] [Green Version]
- Worthley, M.I.; Prabhu, A.; De Sciscio, P.; Schultz, C.; Sanders, P.; Willoughby, S.R. Detrimental effects of energy drink consumption on platelet and endothelial function. Am. J. Med. 2010, 123, 184–187. [Google Scholar] [CrossRef]
- Brown, I.J.; Stamler, J.; Van Horn, L.; Robertson, C.E.; Chan, Q.; Dyer, A.R.; Huang, C.C.; Rodriquez, B.L.; Zhao, L.; Daviqlus, M.L.; et al. Sugar-sweetened beverage, sugar intake of individuals, and their blood pressure: International study of macro/micronutrients and blood pressure. Hypertension 2011, 57, 695–701. [Google Scholar] [CrossRef] [Green Version]
- Grasser, E.K.; Yepuri, G.; Dulloo, A.G.; Montani, J.-P. Cardio-and cerebrovascular responses to the energy drink Red Bull in young adults: A randomized cross-over study. Eur. J. Nutr. 2014, 53, 1561–1571. [Google Scholar] [CrossRef] [Green Version]
- Turnbull, D.; Rodricks, J.V.; Mariano, G.F.; Chowdhury, F. Caffeine and cardiovascular health. Regul. Toxicol. Pharmacol. 2017, 89, 165–185. [Google Scholar] [CrossRef]
- McAllister, M.J.; Waldman, H.S.; Renteria, L.I.; Gonzalez, A.E.; Butawan, M.B.; Bloomer, R. Acute coffee ingestion with and without medium chain triglycerides decreases blood oxidative stress markers and increases ketone levels. Can. J. Physiol. Pharmacol. 2019. [Google Scholar] [CrossRef]
- Chau, Y.-P.; Au, P.C.M.; Li, G.H.Y.; Sing, C.-W.; Cheng, V.K.F.; Tan, K.C.B.; Kung, A.W.C.; Cheung, C.-L. Serum metabolome of coffee consumption and its association with bone mineral density: The Hong Kong osteoporosis study. J. Clin. Endocrinol. Metab. 2019. [Google Scholar] [CrossRef] [PubMed]
- Grasser, E.K.; Miles-Chan, L.J.; Charrière, N.; Loonam, C.R.; Dulloo, A.G.; Montani, J.-P. Energy drinks and their impact on the cardiovascular system: Potential mechanisms. Adv. Nutr. 2016, 7, 950–960. [Google Scholar] [CrossRef] [PubMed]
- González-Domínguez, R.; Mateos, R.M.; Lechuga-Sancho, A.M.; González-Cortés, J.J.; Corrales-Cuevas, M.; Rojas-Cots, J.A.; Segundo, C.; Schwarz, M. Synergic effects of sugar and caffeine on insulin-mediated metabolomic alterations after an acute consumption of soft drinks. Electrophoresis 2017, 38, 2313–2322. [Google Scholar] [CrossRef] [PubMed]
- Bermudez-Soto, M.J.; Tomas-Barberan, F.A. Evaluation of commercial red fruit juice concentrates as ingredients for antioxidant functional juices. Eur. Food Res. Technol. 2004, 219, 133–141. [Google Scholar] [CrossRef]
- Wu, X.; Beecher, G.R.; Holden, J.M.; Haytowitz, D.B.; Gebhardt, S.E.; Prior, R.L. Concentrations of anthocyanins in common foods in the United States and estimation of normal consumption. J. Agric. Food Chem. 2006, 54, 4069–4075. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Herrero, J.A.; Frutos, M.J. Colour and antioxidant capacity stability in grape, strawberry and plum peel model juices at different pHs and temperatures. Food Chem. 2014, 154, 199–204. [Google Scholar] [CrossRef]
- Sinha, M.; Manna, P.; Sil, P.C. Taurine protects the antioxidant defense system in the erythrocytes of cadmium treated mice. BMB Rep. 2008, 41, 657–663. [Google Scholar] [CrossRef]
- Masteikova, R.; Muselik, J.; Bernatoniene, J.; Bernatoniene, R. Antioxidative activity of Ginkgo, Echinacea, and Ginseng tinctures. Medicina 2007, 43, 306–309. [Google Scholar] [CrossRef] [Green Version]
- Rubio-Arraez, S.; Capella, J.V.; Castello, M.L.; Ortola, M.D. Physicochemical characteristics of citrus jelly with non cariogenic and functional sweeteners. J. Food Sci. Technol. 2016, 53, 3642–3650. [Google Scholar] [CrossRef] [Green Version]
- Polish Standard Committee. Produkty Spożywcze. Oznaczanie Zawartości Witaminy C. (Food Products. the Estimation of Vitamin C); Polish Norm PN-A-04019:1998; Polish Standard Committee: Warsaw, Poland, 1998. (In Polish)
- Hallmann, E.; Lipowski, J.; Marszałek, K.; Rembiałkowska, E. The seasonal variation in bioactive compounds content in juice from organic and non-organic tomatoes. Plant Food Hum. Nutr. 2013, 68, 171–176. [Google Scholar] [CrossRef] [Green Version]
- Yen, G.; Chen, H.Y. Antioxidant activity of various tea extract in relation to their antimutagenicity. J. Agric. Food Chem. 1995, 43, 27–32. [Google Scholar] [CrossRef]
- Apak, R.; Gorinstein, S.; Bohm, V.; Schaich, K.; Ozyurek, M.; Guclu, K. Methods of measurement and evaluation of natural antioxidant capacity/activity (IUPAC Technical Report). Pure Appl. Chem. 2013, 85, 957–998. [Google Scholar] [CrossRef] [Green Version]
- Kapci, B.; Neradova, E.; Cizkova, H.; Voldrich, M.; Rajchl, A.; Capanoglu, E. Investigating the antioxidant capacity of chokeberry (Aronia melanocarpa) products. J. Food Nutr. Res. 2013, 52, 219–229. [Google Scholar]
- Nowak, D.; Gośliński, M.; Wojtowicz, E. Comparative analysis of the antioxidant capacity of selected fruit juices and nectars: Chokeberry juice as a rich source of polyphenols. Int. J. Food Prop. 2016, 19, 1317–1324. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventos, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin–Ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar] [CrossRef]
- Lee, J.; Durst, R.W.; Wrolstad, R.E. Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: Collaborative study. J. AOAC Int. 2005, 88, 1269–1278. [Google Scholar]
- Samec, D.; Piljac-Zegarac, J. Fluctuations in the levels of antioxidant compounds and antioxidant capacity of ten small fruits during one year of frozen storage. Int. J. Food Prop. 2015, 18, 21–32. [Google Scholar] [CrossRef]
- De Abreu, W.C.; Barcelos, M.F.P.; Vilas Boas, E.V.B.; Da Silva, E.P. Total antioxidant activity of dried tomatoes marketed in Brazil. Int. J. Food Prop. 2014, 17, 639–649. [Google Scholar] [CrossRef]
- Jakobek, L.; Seruga, M. Influence of anthocyanins, flavonols and phenolic acids on the antiradical activity of berries and small fruits. Int. J. Food Prop. 2012, 15, 122–133. [Google Scholar] [CrossRef] [Green Version]
- Arts, M.J.; Haenen, G.R.; Voss, H.P.; Bast, A. Antioxidant capacity of reaction products limits the applicability of the Trolox Equivalent Antioxidant Capacity (TEAC) assay. Food Chem. Toxicol. 2004, 42, 45–49. [Google Scholar] [CrossRef]
- Diamantini, G.; Pignotti, S.; Antonini, E.; Chiarabini, A.; Angelino, D.; Ninfali, P. Assessment of antioxidant capacity of energy drinks, energy gels and sport drinks in comparison with coffee and tea. Int. J. Food Sci. Technol. 2015, 50, 240–248. [Google Scholar] [CrossRef]
- McLellan, T.M.; Lieberman, H.R. Do energy drinks contain active components other than caffeine? Nutr. Rev. 2012, 70, 730–744. [Google Scholar] [CrossRef]
- Witkowska, A.; Zujko, M.E.; Mirończuk-Chodakowska, I. Właściwości przeciwutleniające napojów energetyzujących (Antioxidant properties of energy drinks). Brom. Chem. Toksykol. 2011, 3, 355–360. [Google Scholar]
- Seeram, N.P.; Aviram, M.; Zhang, Y.; Henning, S.M.; Feng, L.; Dreher, M.; Heber, D. Comparison of antioxidant potency of commonly consumed polyphenol-rich beverages in the United States. J. Agric. Food Chem. 2008, 56, 1415–1422. [Google Scholar] [CrossRef]
- Rusaczonek, A.; Świderski, F.; Waszkiewicz-Robak, B. Antioxidant properties of tea and herbal infusions—A short report. Pol. J. Food Nutr. Sci. 2010, 60, 33–35. [Google Scholar]
- Zhang, M.; Izumi, I.; Kagamimori, S.; Sokejima, S.; Yamagami, T.; Liu, Z.; Qi, B. Role of taurine supplementation to prevent exercise-induced oxidative stress in healthy young men. Amino Acids 2004, 26, 203–207. [Google Scholar] [CrossRef]
- Davis, M.M.; Gance-Cleveland, B.; Hassink, S.; Johnson, R.; Paradis, G.; Resnicow, K. Recommendations for prevention of childhood obesity. Pediatrics 2007, 120, 229–253. [Google Scholar] [CrossRef] [Green Version]
- Clauson, K.A.; Shields, K.M.; McQueen, C.E.; Persad, N. Safety issues associated with commercially available energy drinks. Pharm. Today 2008, 14, 52–64. [Google Scholar] [CrossRef]
- Marshall, T.A.; Levy, S.M.; Broffitt, B.; Warren, J.J.; Eichenberger-Gilmore, J.M.; Burns, T.L.; Stumbo, P.J. Dental caries and beverage consumption in young children. Pediatrics 2003, 112, e184–e191. [Google Scholar] [CrossRef] [Green Version]
- Pinto, S.C.; Bandeca, M.C.; Silva, C.N.; Cavassim, R.; Borges, A.H.; Sampaio, J.E.C. Erosive potential of energy drinks on the dentine surface. BMC Res. Notes 2013. [Google Scholar] [CrossRef] [Green Version]
- Clapp, O.; Morgan, M.Z.; Fairchild, R.M. The top five selling UK energy drinks; implications for dental and general health. Br. Dent. J. 2019, 226, 493–497. [Google Scholar] [CrossRef]
- Higgins, J.; Yarlagadda, S.; Yang, B. Cardiovascular complications of energy drinks. Beverages 2015, 1, 104–126. [Google Scholar] [CrossRef] [Green Version]
- Nowak, D.; Gośliński, M.; Nowatkowska, K. The effect of acute consumption of energy drinks on blood pressure, heart rate and blood glucose in the group of young adults. Int. J. Environ. Res. Public Health 2018, 15, 544. [Google Scholar] [CrossRef] [Green Version]
- Ehlers, A.; Marakis, G.; Lampen, A.; Hirsch-Ernst, K.I. Risk assessment of energy drinks with focus on cardiovascular parameters and energy drink consumption in Europe. Food Chem. Toxicol. 2019, 130, 109–121. [Google Scholar] [CrossRef]
Sample | Kind of ED | Standard Ingredients | Extra Ingredients | Energy Per 100 mL (Kj) | Declared Caffeine Content (mg/Kg) | Declared Sugar Content (g/Kg) | pH | Soluble Solids Content (g/Kg) |
---|---|---|---|---|---|---|---|---|
C1 | classic | taurine, inositol, niacin, pantothenic acid, vitamin B6, B12, acidity regulator (sodium citrate and/or citric acid) | – | 192.6 | 320 | 108 | 3.35 c | 117.5 b |
C2 | classic | – | 184.2 | 320 | 103 | 3.22 c,d | 130.0 b | |
C3 | classic | – | 192.6 | 320 | 110 | 3.29 c | 125.0 b | |
C4 | classic | – | 192.6 | 320 | 110 | 3.34 c | 125.0 b | |
C5 | classic | – | 192.6 | 320 | 110 | 3.45 b | 125.0 b | |
C6 | classic | – | 192.6 | 320 | 110 | 3.31 c | 125.0 b | |
C7 | classic | – | 184.2 | 320 | 103 | 3.43 b | 120.0 b | |
C8 | classic | – | 192.6 | 320 | 110 | 3.30 c | 120.0 b | |
C9 | classic | – | 188.4 | 320 | 105 | 3.60 a | 117.5 b | |
C10 | classic | Guarana | 192.6 | 320 | 110 | 3.32 c | 130.0 b | |
C11 | classic | guarana, glucuronolactone | 188.4 | 480 | 100 | 3.30 c | 125.0 b | |
C12 | classic | – | 12.6 | 320 | <5 | 3.18 d | 20.0 c | |
C13 | classic | – | 16.7 | 320 | <1 | 3.48 b | 20.0 c | |
C14 | classic | – | 188.4 | 320 | 101 | 3.66 a | 120.0 b | |
F1 | fruit | taurine, inositol, niacin, pantothenic acid, vitamin B6, B12, acidity regulator (sodium citrate and/or citric acid) | guarana, anthocyanins, | 234.5 | 320 | 133 | 2.73 e | 145.0 a |
F2 | fruit | ginseng, carotenoids, pineapple juice (3%) | 192.6 | 320 | 110 | 2.54 e,f | 125.0 b | |
F3 | fruit | guarana, juices: apple (13.8%), black currant (4.3%), grape (0.9%), strawberry (0.5%), raspberry (0.5%), carrot and hibiscus concentrate | 188.4 | 320 | 108 | 3.32 c | 120.0 b | |
F4 | fruit | carotenoids, ascorbic acid | 192.6 | 320 | 110 | 3.27 c | 125.0 b | |
F5 | fruit | guarana, ginseng, apple, and ascorbic acids | 268.0 | 320 | 150 | 2.84 e | 160.0 a | |
F6 | fruit | guarana, apple, and pomegranate juices, carrot and hibiscus concentrate | 192.6 | 350 | 110 | 2.39 f | 115.0 b | |
F7 | fruit | guarana, ginseng, ascorbic acid, glucuronolactone | 251.2 | 320 | 140 | 2.34 f | 150.0 a | |
F8 | fruit | guarana, ginseng, acai, and goji juices, black tea extract, glucuronolactone | 41.9 | 320 | 210 | 3.60 a | 40.0 c | |
F9 | fruit | guarana, ginseng, apple, and citric acids, glucuronolactone | 251.2 | 320 | 140 | 2.32 f | 145.0 a | |
F10 | fruit | carotenoids, ascorbic acid | 201.0 | 150 | 130 | 2.80 e | 130.0 b |
Sample | Vitamin C (mg/Kg) | DPPH (mg/L) | ABTS (mg/L) | TP (mg/L) | TA (mg/L) |
---|---|---|---|---|---|
Classic energy drinks | |||||
C1 | 107.2 e | 73.0 ± 0.2 d | 109.5 ± 1.9 d | 158.0 ± 2.0 f,g | nd |
C2 | 106.9 e | 77.0 ± 0.2 d | 119.3 ± 2.0 d | 265.0 ± 2.4 d,e | nd |
C3 | 122.4 d,e | 83.0 ± 0.1 c,d | 131.1 ± 2.2 c,d | 290.0 ± 4.7 d | nd |
C4 | 75.9 f | 89.0 ± 0.3 c | 142.4 ± 3.4 c | 252.0 ± 2.5 e | nd |
C5 | 107.6 e | 99.0 ± 0.4 c | 157.4 ± 2.5 c | 276.0 ± 1.8 d | nd |
C6 | 76.7 f | 90.0 ± 0.3 c | 138.6 ± 1.8 c | 268.0 ± 3.2 d,e | nd |
C7 | 153.5 d | 94.0 ± 0.1 c | 145.7 ± 2.1 c | 250.0 ± 3.9 e | nd |
C8 | 81.1 f | 97.0 ± 0.2 c | 155.2 ± 3.2 c | 314.0 ± 1.6 d | nd |
C9 | 141.9 d | 72.0 ± 0.2 d | 113.8 ± 1.2 d | 432.0 ± 1.7 c | nd |
C10 | 142.4 d | 83.0 ± 0.1 c d | 132.8 ± 1.7 c d | 590.0 ± 10.6 b | nd |
C11 | 143.7 d | 76.0 ± 0.1 d | 120.8 ± 1.2 d | 523.0 ± 4.6 b | nd |
C12 | 83.7 f | 60.0 ± 0.3 d | 95.4 ± 1.0 d | 115.0 ± 1.8 h | nd |
C13 | 105.8 e | 67.0 ± 0.2 d | 107.2 ± 0.8 d | 138.0 ± 3.4 g | nd |
C14 | 111.6 e | 65.0 ± 0.1 d | 103.3 ± 1.2 d | 131.0 ± 2.5 g | nd |
Fruit energy drinks | |||||
F1 | – | 163.0 ± 0.1 b | 261.0 ± 3.8 b | 703.3 ± 13.2 a | 35.2 ± 2.0 a |
F2 | 301.3 b | 278.0 ± 1.4 a | 439.2 ± 12.0 a | 381.0 ± 2.0 c | nd |
F3 | – | 286.0 ± 3.4 a | 449.0 ± 11.4 a | 581.0 ± 5.8 b | 30.2 ± 2.0 a |
F4 | 359.0 b | 263.0 ± 0.9 a | 415.5 ± 8.2 a | 440.0 ± 9.1 c | nd |
F5 | 230.0 c | 175.0 ± 1.1 b | 278.2 ± 4.0 b | 202.0 ± 1.3 f | 9.6 ± 1.0 c |
F6 | – | 94.0 ± 0.4 c | 152.2 ± 2.0 c | 139.0 ± 2.6 g | 6.8 ± 1.0 c |
F7 | 520.2 a | 168.0 ± 0.5 b | 277.2 ± 4.2 b | 239.0 ± 4.4 e | nd |
F8 | – | 242.0 ± 1.0 a | 392.0 ± 7.2 a | 316.0 ± 3.5 d | 16.4 ± 1.0 b |
F9 | 155.1 d | 74.0 ± 0.3 d | 120.6 ± 1.9 d | 105.0 ± 5.4 h | nd |
F10 | 153.1 d | 116.0 ± 0.1 c | 189.1 ± 3.1 c | 289.0 ± 11.2 d | nd |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nowak, D.; Gośliński, M. Assessment of Antioxidant Properties of Classic Energy Drinks in Comparison with Fruit Energy Drinks. Foods 2020, 9, 56. https://doi.org/10.3390/foods9010056
Nowak D, Gośliński M. Assessment of Antioxidant Properties of Classic Energy Drinks in Comparison with Fruit Energy Drinks. Foods. 2020; 9(1):56. https://doi.org/10.3390/foods9010056
Chicago/Turabian StyleNowak, Dariusz, and Michał Gośliński. 2020. "Assessment of Antioxidant Properties of Classic Energy Drinks in Comparison with Fruit Energy Drinks" Foods 9, no. 1: 56. https://doi.org/10.3390/foods9010056
APA StyleNowak, D., & Gośliński, M. (2020). Assessment of Antioxidant Properties of Classic Energy Drinks in Comparison with Fruit Energy Drinks. Foods, 9(1), 56. https://doi.org/10.3390/foods9010056