The Effect of Roasting on the Protein Profile and Antiradical Capacity of Flaxseed Meal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Standards and Reagents
2.3. Chemical Composition Analysis
2.4. Electrophoretic Protein Separation (SDS-PAGE)
2.5. Maillard Reaction Product Analysis (Browning Index)
2.6. Antiradical Capacity—ORAC_FL Assay
2.7. Statistical Analyses
3. Results and Discussion
3.1. Effect of Flaxseed Roasting on Protein Profile
3.2. Effect of Flaxseed Roasting on the Formation of Free and Bound-To-Protein Maillard Reaction Product (MRP)
3.3. Effect of Flaxseed Roasting on Antiradical Capacity (ORAC_FL)
3.4. Relationship between Protein Profile, MRP, and Antiradical Capacity after Flaxseed Roasting
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Goyal, A.; Sharma, V.; Upadhyay, N.; Gill, S.; Sihag, M. Flax and flaxseed oil: An ancient medicine and modern functional food. J. Food Sci. Technol. 2014, 51, 1633–1653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rabetafika, H.N.; van Remoortel, V.; Danthine, S.; Paquot, M.; Blecker, C. Flaxseed proteins: Food uses and health benefits. Int. J. Food Sci. Technol. 2011, 46, 221–228. [Google Scholar] [CrossRef]
- Bekhit, A.E.-D.A.; Shavandi, A.; Jodjaja, T.; Birch, J.; Teh, S.; Ahmed, I.A.M.; Al-Juhaimi, F.Y.; Saeedi, P.; Bekhit, A.A. Flaxseed: Composition, detoxification, utilization, and opportunities. Biocatal. Agric. Biotechnol. 2018, 13, 129–152. [Google Scholar] [CrossRef]
- Marambe, H.K.; Wanasundara, J.P.D. Chapter 8—Protein from Flaxseed (Linum usitatissimum L.). In Sustainable Protein Sources; Nadathur, S.R., Wanasundara, J.P.D., Scanlin, L.B.T.-S.P.S., Eds.; Academic Press: San Diego, CA, USA, 2017; pp. 133–144. ISBN 978-0-12-802778-3. [Google Scholar]
- Oomah, B.D.; Mazza, G. Flaxseed proteins—A review. Food Chem. 1993, 48, 109–114. [Google Scholar] [CrossRef]
- Madhusudhan, K.T.; Singh, N. Isolation and characterization of a small molecular weight protein of linseed meal. Phytochemistry 1985, 24, 2507–2509. [Google Scholar] [CrossRef]
- Marcone, M.F.; Kakuda, Y.; Yada, R.Y. Salt soluble seed globulins of various dicotyledonous and monocotyledonous plants I. Isolation/purification and characterization. Food Chem. 1998, 62, 27–47. [Google Scholar] [CrossRef]
- Youle, R.J.; Huang, A.H.C. Occurrence of low molecular weight and high cysteine conteining albumin storage proteins in oilseeds of diverse species. Am. J. Bot. 1981, 68, 44–48. [Google Scholar] [CrossRef]
- Shim, Y.Y.; Gui, B.; Arnison, P.G.; Wang, Y.; Reaney, M.J.T. Flaxseed (Linum usitatissimum L.) bioactive compounds and peptide nomenclature: A review. Trends Food Sci. Technol. 2014, 38, 5–20. [Google Scholar] [CrossRef] [Green Version]
- Alaswad, A.A.; Krishnan, H.B. Immunological investigation for the presence of lunasin, a chemopreventive soybean peptide, in the seeds of diverse plants. J. Agric. Food Chem. 2016, 64, 2901–2909. [Google Scholar] [CrossRef]
- Borgmeyer, J.R.; Smith, C.E.; Huynh, K.Q. Isolation and characterization of a 25 kDa antifungal protein from flax seeds. Biochem. Biophys. Res. Commun. 1992, 187, 480–487. [Google Scholar] [CrossRef]
- Wu, S.; Wang, X.; Qi, W.; Guo, Q. Bioactive protein/peptides of flaxseed: A review. Trends Food Sci. Technol. 2019, 92, 184–193. [Google Scholar] [CrossRef]
- Tehrani, M.H.H.; Batal, R.; Kamalinejad, M.; Mahbubi, A. Extraction and purification of flaxseed proteins and studying their antibacterial activities. J. Plant Sci. 2014, 2, 70–76. [Google Scholar]
- Okinyo-Owiti, D.P.; Dong, Q.; Ling, B.; Jadhav, P.D.; Bauer, R.; Maley, J.M.; Reaney, M.J.T.; Yang, J.; Sammynaiken, R. Evaluating the cytotoxicity of flaxseed orbitides for potential cancer treatment. Toxicol. Rep. 2015, 2, 1014–1018. [Google Scholar] [CrossRef] [Green Version]
- Nwachukwu, I.D.; Aluko, R.E. Physicochemical and emulsification properties of flaxseed (Linum usitatissimum) albumin and globulin fractions. Food Chem. 2018, 255, 216–225. [Google Scholar] [CrossRef] [PubMed]
- Kaushik, P.; Dowling, K.; McKnight, S.; Barrow, C.J.; Wang, B.; Adhikari, B. Preparation, characterization and functional properties of flax seed protein isolate. Food Chem. 2016, 197, 212–220. [Google Scholar] [CrossRef] [PubMed]
- Tirgar, M.; Silcock, P.; Carne, A.; Birch, E.J. Effect of extraction method on functional properties of flaxseed protein concentrates. Food Chem. 2017, 215, 417–424. [Google Scholar] [CrossRef]
- Yu, X.; Huang, S.; Nie, C.; Deng, Q.; Zhai, Y.; Shen, R. Effects of atmospheric pressure plasma jet on the physicochemical, functional, and antioxidant properties of flaxseed protein. J. Food Sci. 2020, 85, 2010–2019. [Google Scholar] [CrossRef] [PubMed]
- Juodeikiene, G.; Zadeike, D.; Trakselyte-Rupsiene, K.; Gasauskaite, K.; Bartkiene, E.; Lele, V.; Viskelis, P.; Bernatoniene, J.; Ivanauskas, L.; Jakstas, V. Functionalisation of flaxseed proteins assisted by ultrasonication to produce coatings enriched with raspberries phytochemicals. LWT Food Sci. Technol. 2020, 124, 109180. [Google Scholar] [CrossRef]
- Bashir, S.; Yaseen, M.; Sharma, V.; Purohit, S.R.; Barak, S.; Mudgil, D. Rheological and textural properties of gluten free cookies based on pearl millet and flaxseed. Biointerface Res. Appl. Chem. 2020, 10, 6565–6576. [Google Scholar]
- Sanmartin, C.; Taglieri, I.; Venturi, F.; Macaluso, M.; Zinnai, A.; Tavarini, S.; Botto, A.; Serra, A.; Conte, G.; Flamini, G.; et al. Flaxseed cake as a tool for the improvement of nutraceutical and sensorial features of sourdough bread. Foods 2020, 9, 204. [Google Scholar] [CrossRef] [Green Version]
- Kurt, Ş.; Ceylan, H.G. Effects of flaxseed and pH on the emulsion properties of beef by using a model system. Turk. J. Agric. Food Sci. Technol. 2018, 6, 78–83. [Google Scholar] [CrossRef] [Green Version]
- Kaur, P.; Waghmare, R.; Kumar, V.; Prasad, R.; Kaur, S.; Gat, Y. Recent advances in utilization of flaxseed as potential source for value addition. OCL 2018, 25, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Tuncel, N.B.; Uygur, A.; Yüceer, Y.K. The effects of infrared roasting on HCN content, chemical composition and storage stability of flaxseed and flaxseed oil. J. Am. Oil Chem. Soc. 2017, 94, 877–884. [Google Scholar] [CrossRef]
- Werner, C. Methods for roasting oilseed, and roasted oilseed products. U.S. Patent 2008/0274247 A1, 1–6 November 2008. [Google Scholar]
- Szydłowska-Czerniak, A.; Tymczewska, A.; Momot, M.; Włodarczyk, K. Optimization of the microwave treatment of linseed for cold-pressing linseed oil—Changes in its chemical and sensory qualities. LWT Food Sci. Technol. 2020, 126, 109317. [Google Scholar] [CrossRef]
- Wroniak, M.; Rękas, A.; Siger, A.; Janowicz, M. Microwave pretreatment effects on the changes in seeds microstructure, chemical composition and oxidative stability of rapeseed oil. LWT Food Sci. Technol. 2016, 68, 634–641. [Google Scholar] [CrossRef]
- Waszkowiak, K.; Siger, A.; Rudzińska, M.; Bamber, W. Effect of roasting on flaxseed oil quality and stability. J. Am. Oil Chem. Soc. 2020, 97, 637–649. [Google Scholar] [CrossRef]
- Waszkowiak, K.; Mikołajczak, B.; Kmiecik, D. Changes in oxidative stability and protein profile of flaxseeds resulting from thermal pre-treatment. J. Sci. Food Agric. 2018, 98, 5459–5469. [Google Scholar] [CrossRef]
- Waszkowiak, K.; Mikołajczak, B.; Gliszczyńska-Świgło, A.; Niedźwiedzińska, K. Effect of thermal pre-treatment on the phenolic and protein profiles and oil oxidation dynamics of golden flaxseeds. Int. J. Food Sci. Technol. 2020, 55, 1272–1280. [Google Scholar] [CrossRef]
- Herchi, W.; Ben Ammar, K.; Bouali, I.; Bou Abdallah, I.; Guetet, A.; Boukhchina, S. Heating effects on physicochemical characteristics and antioxidant activity of flaxseed hull oil (Linum usitatissimum L). Food Sci. Technol. 2016, 36, 97–102. [Google Scholar] [CrossRef] [Green Version]
- AOCS Official Method 991.43 (32.1.17). Total, soluble, and insoluble dietary fiber in foods. Enzymatic-gravimetric method, MES-TRIS buffer. In AOAC Official Methods of Analysis; AOAC International: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Kahsai, O. Methods for preparing and compositions comprising plant seed-based omega-3 fatty acids. U.S. Patent 2014/0170287 A1, 19 June 2014. [Google Scholar]
- Waszkowiak, K.; Rudzińska, M. Effect of flaxseed meals and extracts on lipid stability in a stored meat product. J. Am. Oil Chem. Soc. 2014, 91, 979–987. [Google Scholar] [CrossRef] [Green Version]
- Waszkowiak, K.; Gliszczyńska-Świgło, A.; Barthet, V.; Skręty, J. Effect of extraction method on the phenolic and cyanogenic glucoside profile of flaxseed extracts and their antioxidant capacity. J. Am. Oil Chem. Soc. 2015, 92, 1609–1619. [Google Scholar] [CrossRef] [PubMed]
- ISO 665:2000. Oilseeds—Determination of Moisture and Volatile Matter Content (Last Reviewed in 2012); ISO: Geneva, Switzerland, 2012. [Google Scholar]
- ISO 5983-2:2009. Animal Feeding Stuffs—Determination of Nitrogen Content and Calculation of Crude Protein Content—Part 2: Block Digestion and Steam Distillation Method; ISO: Geneva, Switzerland, 2009. [Google Scholar]
- ISO 659:2009. Oilseeds—Determination of Oil Content (Reference method); ISO: Geneva, Switzerland, 2009. [Google Scholar]
- Palombo, R.; Gertler, A.; Saguy, I. A simplified method for determination of browning in dairy powders. J. Food Sci. 1984, 49, 1609–1613. [Google Scholar] [CrossRef]
- Morales, F.J.; van Boekel, M.A.J.S. A study on advanced Maillard reaction in heated casein/sugar solutions: Colour formation. Int. Dairy J. 1998, 8, 907–915. [Google Scholar] [CrossRef]
- Ou, B.; Hampsch-Woodill, M.; Prior, R.L. Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. J. Agric. Food Chem. 2001, 49, 4619–4626. [Google Scholar] [CrossRef] [PubMed]
- Waszkowiak, K.; Gliszczyńska-Świgło, A. Binary ethanol–water solvents affect phenolic profile and antioxidant capacity of flaxseed extracts. Eur. Food Res. Technol. 2016, 242, 777–786. [Google Scholar] [CrossRef] [Green Version]
- Kotecka-Majchrzak, K.; Sumara, A.; Fornal, E.; Montowska, M. Proteomic analysis of oilseed cake: A comparative study of species-species proteins and peptides extracted from ten seed species. J. Sci. Food Agric. 2020, in press. [Google Scholar] [CrossRef]
- Davis, P.J.; Williams, S.C. Protein modification by thermal processing. Allergy 1998, 53, 102–105. [Google Scholar] [CrossRef]
- Yu, P. Protein secondary structures (a-helix and b-sheet) at a cellular level and protein fractions in relation to rumen degradation behaviours of protein: A new approach. Br. J. Nutr. 2005, 94, 655–665. [Google Scholar] [CrossRef]
- Liu, J.; Shim, Y.Y.; Poth, A.G.; Reaney, M.J.T. Conlinin in flaxseed (Linum usitatissimum L.) gum and its contribution to emulsification properties. Food Hydrocoll. 2016, 52, 963–971. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.Y.; Qian, H.; Yao, W.R. Melanoidins produced by the Maillard reaction: Structure and biological activity. Food Chem. 2011, 128, 573–584. [Google Scholar] [CrossRef]
- Cämmerer, B.; Kroh, L.W. Shelf life of linseeds and peanuts in relation to roasting. LWT Food Sci. Technol. 2009, 42, 545–549. [Google Scholar] [CrossRef]
- Epaminondas, P.S.; Araujo, K.L.G.V.; Nascimento, J.A.; Silva, M.C.D.; Rosenhaim, R.; Soledade, L.E.B.; Queiroz, N.; Souza, A.L.; Santos, I.M.G.; Souza, A.G. Influence of toasting and the seed variety on the physico-chemical and thermo-oxidative characteristics of the flaxseed oil. J. Therm. Anal. Calorim. 2011, 106, 545–550. [Google Scholar] [CrossRef]
- Bekedam, E.K.; Loots, M.J.; Schols, H.A.; van Boekel, M.A.J.S.; Smit, G. Roasting effects on formation mechanisms of coffee brew melanoidins. J. Agric. Food Chem. 2008, 56, 7138–7145. [Google Scholar] [CrossRef] [PubMed]
- Bastos, D.M.; Monaro, É.; Siguemoto, É.; Séfora, M. Maillard reaction products in processed food: Pros and cons. Food Ind. Process. Methods Equip. 2012, 15, 282–300. [Google Scholar]
Band | Protein ≈ MW (kDa) | Flaxseed Cultivar | Thermal Treatment | |||
---|---|---|---|---|---|---|
Untreated | Roasted | |||||
160 °C | 180 °C | 200 °C | ||||
Protein contribution (%) | ||||||
1a | 53 | Szafir | 10.10 a ± 0.25 | 9.65 b ± 0.13 | 8.16 d ± 0.12 | 8.68 c ± 0.12 |
Oliwin | 14.82 a ± 0.28 | 13.37 b ± 0.06 | 14.25 a ± 0.38 | 10.46 c ± 0.25 | ||
Jantarol | 13.62 c ± 0.03 | 13.71 c ± 0.04 | 15.80 a ± 0.14 | 14.39 b ± 0.13 | ||
2a | 45 | Szafir | 13.48 a ± 0.14 | 12.40 b ± 0.05 | 10.32 c ± 0.28 | 7.57 d ± 0.11 |
Oliwin | 9.28 a ± 0.27 | 4.34 b ± 0.04 | 9.10 a ± 0.13 | 4.40 b ± 0.41 | ||
Jantarol | 11.80 a ± 0.55 | 11.64 a ± 0.52 | 11.20 a ± 0.59 | 3.29 b ± 0.37 | ||
3a | 31 | Szafir | 8.65 d ± 0.22 | 19.29 a ± 0.10 | 18.12 b ± 0.54 | 17.23 c ± 0.05 |
Oliwin | 9.62 c ± 0.21 | 18.81 a ± 0.04 | 11.85 b ± 0.04 | 18.96 a ± 0.31 | ||
Jantarol | 13.48 d ± 0.22 | 15.67 c ± 0.10 | 17.56 b ± 0.40 | 23.29 a ± 0.50 | ||
4a | 19 | Szafir | 15.03 d ± 0.25 | 24.94 c ± 0.34 | 29.53 b ± 1.34 | 41.02 a ± 0.36 |
Oliwin | 12.82 d ± 0.33 | 25.21 c ± 0.22 | 26.70 b ± 0.11 | 46.84 a ± 0.31 | ||
Jantarol | 17.31 d ± 0.09 | 18.96 c ± 0.07 | 27.18 b ± 0.43 | 42.31 a ± 0.54 | ||
5a | 17 | Szafir | 3.58 a ± 0.09 | 2.13 b ± 0.04 | 1.40 c ± 0.43 | 0.00 d ± 0.00 |
Oliwin | 4.04 a ± 0.18 | 2.41 b ± 0.02 | 4.13 a ± 0.20 | 0.00 c ± 0.00 | ||
Jantarol | 4.67 a ± 0.00 | 3.21 c ± 0.02 | 4.12 b ± 0.24 | 0.00 d ± 0.00 | ||
6a | 13 | Szafir | 25.88 a ± 0.52 | 4.61 b ± 0.16 | 0.20 c ± 0.01 | 0.00 c ± 0.00 |
Oliwin | 28.54 a ± 0.06 | 10.33 b ± 0.24 | 3.74 c ± 0.13 | 0.00 d ± 0.00 | ||
Jantarol | 19.06 a ± 0.09 | 16.92 b ± 0.35 | 2.71 c ± 0.09 | 0.00 d ± 0.00 | ||
7a | 12 | Szafir | 4.50 c ± 0.06 | 5.04 b ± 0.11 | 6.02 a ± 0.26 | 3.86 d ± 0.13 |
Oliwin | 3.42 b ± 0.15 | 3.99 b ± 0.03 | 5.62 a ± 0.02 | 3.55 b ± 0.41 | ||
Jantarol | 3.48 d ± 0.02 | 4.34 b ± 0.03 | 4.73 a ± 0.03 | 4.06 c ± 0.04 | ||
8a | 11 | Szafir | 8.85 c ± 0.24 | 13.21 a b ± 0.39 | 12.39 b ± 0.52 | 13.57 a ± 0.18 |
Oliwin | 7.04 a ± 0.13 | 10.38 b ± 0.01 | 12.71 a ± 0.11 | 10.41 b ± 0.31 | ||
Jantarol | 5.32 d ± 0.09 | 6.17 c ± 0.04 | 7.31 b ± 0.17 | 8.00 a ± 0.09 | ||
Proteins at MW range | ||||||
Ia | >55 | Szafir | 1.54 a ± 0.02 | 1.29 b ± 0.01 | 0.00 c ± 0.00 | 0.00 c ± 0.00 |
Oliwin | 2.44 a ± 0.05 | 2.19 b ± 0.13 | 0.00 c ± 0.00 | 0.00 c ± 0.00 | ||
Jantarol | 2.07 a ± 0.01 | 1.32 b ± 0.13 | 0.00 c ± 0.00 | 0.00 c ± 0.00 | ||
IIa | 54–16 | Szafir | 59.03 d ± 0.00 | 75.86 c ± 0.33 | 81.41 b ± 0.78 | 82.58 a ± 0.06 |
Oliwin | 58.57 d ± 0.10 | 73.13 c ± 0.34 | 77.93 b ± 0.22 | 86.06 a ± 0.10 | ||
Jantarol | 70.07 d ± 0.01 | 71.27 c ± 0.40 | 85.26 b ± 0.11 | 87.94 a ± 0.14 | ||
IIIa | 15–10 | Szafir | 39.45 a ± 0.00 | 22.86 b ± 0.34 | 18.61 c ± 0.79 | 17.42 d ± 0.06 |
Oliwin | 39.00 a ± 0.08 | 24.69 b ± 0.21 | 22.07 c ± 0.22 | 13.96 d ± 0.10 | ||
Jantarol | 27.86 a ± 0.02 | 27.42 b ± 0.29 | 14.74 c ± 0.11 | 12.06 d ± 0.14 |
Band | Protein ≈ MW (kDa) | Flaxseed Cultivar | Thermal Treatment | |||
---|---|---|---|---|---|---|
Untreated | Roasted | |||||
160 °C | 180 °C | 200 °C | ||||
Protein contribution (%) | ||||||
1b | 32 | Szafir | 21.59 a ± 0.52 | 17.90 b ± 0.80 | 15.71 c ± 0.67 | 6.88 d ± 0.27 |
Oliwin | 30.82 a ± 1.17 | 27.13 b ± 0.63 | 24.47 c ± 0.13 | 20.08 d ± 0.77 | ||
Jantarol | 26.31 a ± 1.24 | 26.65 a ± 0.12 | 25.61 a ± 0.04 | 20.96 b ± 0.01 | ||
2b | 27 | Szafir | 9.15 b ± 0.54 | 8.86 b ± 0.24 | 10.71 a ± 0.29 | 4.99 c ± 0.14 |
Oliwin | 10.15 c ± 1.43 | 11.59 b,c ± 0.48 | 13.09 a,b ± 0.24 | 14.19 a ± 0.93 | ||
Jantarol | 11.61 d ± 1.30 | 13.15 b ± 0.01 | 15.01 a ± 0.07 | 15.73 a ± 0.10 | ||
3b | 20 | Szafir | 9.99 a ± 0.11 | 5.60 c ± 0.12 | 6.90 b ± 0.11 | 0.00 d ± 0.00 |
Oliwin | 8.39 a ± 0.02 | 7.12 b ± 0.15 | 6.78 c ± 0.01 | 4.71 d ± 0.05 | ||
Jantarol | 7.57 b ± 0.04 | 8.20 a ± 0.05 | 7.42 c ± 0.04 | 0.00 d ± 0.00 | ||
4b | 17 | Szafir | 20.04 c ± 0.02 | 20.80 c ± 0.53 | 41.33 b ± 0.58 | 63.76 a ± 0.04 |
Oliwin | 22.14 d ± 0.04 | 28.70 c ± 0.08 | 37.85 b ± 0.00 | 52.24 a ± 0.02 | ||
Jantarol | 23.07 d ± 0.13 | 27.68 c ± 0.10 | 33.60 b ± 0.32 | 49.48 a ± 0.25 | ||
5b | 15 | Szafir | 2.76 a ± 0.00 | 1.81 b ± 0.04 | 1.37 c ± 0.01 | 0.00 d ± 0.00 |
Oliwin | 2.69 a ± 0.06 | 0.00 b ± 0.00 | 0.00 b ± 0.00 | 0.00 b ± 0.00 | ||
Jantarol | 3.37 a ± 0.07 | 1.02 b ± 0.00 | 0.00 c ± 0.00 | 0.00 c ± 0.00 | ||
6b | 11 | Szafir | 20.60 b ± 0.35 | 24.96 a ± 0.06 | 10.61 d ± 0.38 | 11.8 c ± 0.08 |
Oliwin | 10.38 b ± 0.07 | 13.96 a ± 0.41 | 8.54 c ± 0.07 | 5.58 d ± 0.06 | ||
Jantarol | 11.56 a ± 0.02 | 11.77 a ± 0.35 | 8.78 b ± 0.08 | 4.45 c ± 0.04 | ||
Proteins at MW range | ||||||
Ib | >36 | Szafir | 4.99 b ± 0.03 | 3.29 d ± 0.06 | 6.49 a ± 0.21 | 4.61 c ± 0.03 |
Oliwin | 6.84 a ± 0.06 | 4.81 c ± 0.05 | 5.91 b ± 0.14 | 2.63 d ± 0.03 | ||
Jantarol | 6.63 a ± 0.01 | 3.69 c ± 0.01 | 5.01 b ± 0.06 | 6.11 a ± 0.06 | ||
IIb | 35–17 | Szafir | 63.15 c ± 0.12 | 53.36 d ± 1.20 | 75.23 b ± 0.08 | 83.51 a ± 0.12 |
Oliwin | 71.68 d ± 0.38 | 75.28 c ± 0.07 | 82.75 b ± 0.14 | 91.79 a ± 0.09 | ||
Jantarol | 75.33 d ± 0.04 | 78.37 c ± 0.21 | 82.27 b ± 0.31 | 89.45 a ± 0.12 | ||
IIIb | 16–10 | Szafir | 29.39 b ± 0.08 | 39.33 a ± 0.22 | 14.40 c ± 0.42 | 11.81 d ± 0.08 |
Oliwin | 21.01 a ± 0.30 | 18.26 b ± 0.03 | 11.35 c ± 0.01 | 5.58 d ± 0.06 | ||
Jantarol | 16.96 a ± 0.05 | 17.13 a ± 0.23 | 12.73 b ± 0.25 | 4.45 c ± 0.04 |
Flaxseed Cultivar | Thermal Treatment | p | |||
---|---|---|---|---|---|
Untreated | Roasted | ||||
160 °C | 180 °C | 200 °C | |||
Szafir | 136.05 ± 0.87 d,C | 85.99 ± 1.81 c,B | 57.94 ± 2.98 a,A | 70.17 ± 2.06 b,B | <0.0001 |
Oliwin | 100.82 ± 1.73 c,A | 59.75 ± 5.14 a,A | 56.92 ± 2.15 a,A | 62.03 ± 2.52 a,A | <0.0001 |
Jantarol | 130.70 ± 4.23 c,B | 88.26 ± 3.65 b,B | 69.74 ± 7.30 a,B | 71.95 ± 5.84 a,B | <0.0001 |
p | <0.0001 | <0.0001 | 0.0069 | 0.0121 |
Variabilities | Correlation Coefficient r | |||||
---|---|---|---|---|---|---|
17 kDa R | 13 kDa NR | 19 kDa NR | ORAC_FL | MRP-F | MRP-B | |
13 kDa NR | −0.746 ** | - | - | - | - | - |
19 kDa NR | 0.905 *** | −0.853 *** | - | - | - | - |
ORAC_FL | −0.618 * | 0.806 ** | −0.657 * | - | - | - |
MRP-F | 0.829 ** | −0.608 * | 0.745 ** | −0.343 NS | - | - |
MRP-B | 0.879 *** | −0.632 * | 0.837 ** | −0.437 NS | 0.731 ** | - |
Roasting | 0.694 * | −0.914 *** | 0.781 ** | −0.894 *** | 0.497 NS | 0.584 * |
Cultivar | −0.091 NS | 0.080 NS | −0.046 NS | 0.041 NS | −0.235 NS | −0.235 NS |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Waszkowiak, K.; Mikołajczak, B. The Effect of Roasting on the Protein Profile and Antiradical Capacity of Flaxseed Meal. Foods 2020, 9, 1383. https://doi.org/10.3390/foods9101383
Waszkowiak K, Mikołajczak B. The Effect of Roasting on the Protein Profile and Antiradical Capacity of Flaxseed Meal. Foods. 2020; 9(10):1383. https://doi.org/10.3390/foods9101383
Chicago/Turabian StyleWaszkowiak, Katarzyna, and Beata Mikołajczak. 2020. "The Effect of Roasting on the Protein Profile and Antiradical Capacity of Flaxseed Meal" Foods 9, no. 10: 1383. https://doi.org/10.3390/foods9101383
APA StyleWaszkowiak, K., & Mikołajczak, B. (2020). The Effect of Roasting on the Protein Profile and Antiradical Capacity of Flaxseed Meal. Foods, 9(10), 1383. https://doi.org/10.3390/foods9101383