The Use of Less Conventional Meats or Meat with High pH Can Lead to the Growth of Undesirable Microorganisms during Natural Meat Fermentation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Acquisition
2.2. Enumeration and Isolation of Microorganisms
2.3. pH and aw Measurements
2.4. Classification and Identification of Bacterial Isolates through (GTG)5-PCR Fingerprinting of Genomic DNA
2.5. Statistics
3. Results
3.1. The Effect of Meat Quality as Reflected in Initial pH Values on the Bacterial Community Dynamics during Fermentation of Pork Mince
3.2. Alpha- and Beta-Diversity of the Pork Mince Fermentation Processes
3.3. The Effect of Less Conventional Meat Types on the Bacterial Community Dynamics during Fermentation
3.4. Alpha- and Beta-Diversity of the Less Conventional Meat Fermentation Processes
3.5. Beta-Diversity of the Entire Dataset of Meat Types
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Leroy, F.; Aymerich, T.; Champomier-Vergès, M.C.; Cocolin, L.; De Vuyst, L.; Flores, M.; Leroi, F.; Leroy, S.; Talon, R.; Vogel, R.F.; et al. Fermented meats (and the symptomatic case of the Flemish food pyramid): Are we heading towards the vilification of a valuable food group? Int. J. Food Microbiol. 2018, 274, 67–70. [Google Scholar] [CrossRef] [Green Version]
- Belleggia, L.; Milanović, V.; Ferrocino, I.; Cocolin, L.; Haouet, M.N.; Scuota, S.; Maoloni, A.; Garofalo, C.; Cardinali, F.; Aquilanti, L.; et al. Is there any still undisclosed biodiversity in Ciauscolo salami? A new glance into the microbiota of an artisan production as revealed by high-throughput sequencing. Meat Sci. 2020, 165, 108128. [Google Scholar] [CrossRef] [Green Version]
- Morot-Bizot, S.C.; Leroy, S.; Talon, R. Staphylococcal community of a small unit manufacturing traditional dry fermented sausages. Int. J. Food Microbiol. 2006, 108, 210–217. [Google Scholar] [CrossRef]
- Cocolin, L.; Dolci, P.; Rantsiou, K.; Urso, R.; Cantoni, C.; Comi, G. Lactic acid bacteria ecology of three traditional fermented sausages produced in the north of Italy as determined by molecular methods. Meat Sci. 2009, 82, 125–132. [Google Scholar] [CrossRef]
- Fontana, C.; Gazzola, S.; Cocconcelli, P.S.; Vignolo, G. Population structure and safety aspects of Enterococcus strains isolated from artisanal dry fermented sausages produced in Argentina. Lett. Appl. Microbiol. 2009, 49, 411–414. [Google Scholar] [CrossRef]
- Coloretti, F.; Chiavari, C.; Poeta, A.; Succi, M.; Tremonte, P.; Grazia, L. Hidden sugars in the mixture: Effects on microbiota and the sensory characteristics of horse meat sausage. Food Sci. Technol. 2019, 106, 22–28. [Google Scholar] [CrossRef]
- Geeraerts, W.; De Vuyst, L.; Leroy, F. Mapping the dominant microbial species diversity at expiration date of raw meat and processed meats from equine origin, an underexplored meat ecosystem, in the Belgian retail. Int. J. Food Microbiol. 2019, 289, 189–199. [Google Scholar] [CrossRef]
- Settanni, L.; Barbaccia, P.; Bonanno, A.; Ponte, M.; Di Gerlando, R.; Franciosi, E.; Di Grigoli, A.; Gaglio, R. Evolution of indigenous starter microorganisms and physicochemical parameters in spontaneously fermented beef, horse, wild boar and pork salamis produced under controlled conditions. Food Microbiol. 2020, 87, 103385. [Google Scholar] [CrossRef]
- Soriano, A.; Cruz, B.; Gómez, L.; Mariscal, C.; Ruiz, A.G. Proteolysis, physicochemical characteristics and free fatty acid composition of dry sausages made with deer (Cervus elaphus) or wild boar (Sus scrofa) meat: A preliminary study. Food Chem. 2006, 96, 173–184. [Google Scholar] [CrossRef]
- Lachowicz, K.; Żochowska-Kujawska, J.; Gajowiecki, L.; Sobczak, M.; Kotowicz, M.; Żych, A. Effects of wild boars meat of different season of shot addition on texture of finely ground model pork and beef sausages. Electron. J. Pol. Agric. Univ. 2008, 11, 1–8. [Google Scholar]
- Chakanya, C.; Arnaud, E.; Muchenje, V.; Hoffman, L.C. Fermented meat sausages from game and venison: What are the opportunities and limitations? J. Sci. Food Agric. 2018, 2018, 1–9. [Google Scholar] [CrossRef]
- Maksimovic, A.Z.; Zunabovic-Pichler, M.; Kos, I.; Mayrhofer, S.; Hulak, N.; Domig, K.J.; Mrkonjic Fuka, Μ. Microbiological hazards and potential of spontaneously fermented game meat sausages: A focus on lactic acid bacteria diversity. Food Sci. Technol. 2018, 89, 418–426. [Google Scholar] [CrossRef]
- Ranucci, D.; Roila, R.; Miraglia, D.; Arcangeli, C.; Vercillo, F.; Bellucci, S.; Branciari, R. Microbial, chemical-physical, rheological and organoleptic characterisation of roe deer (Capreolus capreolus) salami. Ital. J. Food Saf. 2019, 8, 8195. [Google Scholar] [CrossRef]
- Fuka, M.M.; Tanuwidjaja, I.; Maksimovic, A.Z.; Zunabovic-Pichler, M.; Kublik, S.; Hulak, N.; Domig, K.J.; Schloter, M. Bacterial diversity of naturally fermented game meat sausages: Sources of new starter cultures. Food Sci. Technol. 2020, 118, 108782. [Google Scholar]
- Stavropoulou, D.A.; Filippou, P.; De Smet, S.; De Vuyst, L.; Leroy, F. Effect of temperature and pH on the community dynamics of coagulase-negative staphylococci during spontaneous meat fermentation in a model system. Food Microbiol. 2018, 76, 180–188. [Google Scholar] [CrossRef]
- Laranjo, M.; Potes, M.E.; Elias, M. Role of starter cultures on the safety of fermented meat products. Front. Μicrobiol. 2019, 10, 853. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Wang, S.; Zhao, H. Unraveling microbial community diversity and succession of Chinese Sichuan sausages during spontaneous fermentation by high throughput sequencing. J. Food Sci. Technol. 2019, 56, 3254–3263. [Google Scholar] [CrossRef]
- Comi, G.; Muzzin, A.; Corazzin, M.; Iacumin, L. Lactic acid bacteria: Variability due to different pork breeds, breeding systems and fermented sausage production technology. Foods 2020, 9, 338. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Wen, X.; Wen, Z.; Chen, S.; Wang, L.; Wei, X. Evaluation of the biogenic amines formation and degradation abilities of Lactobacillus curvatus from Chinese bacon. Front. Microbiol. 2018, 9, 1015. [Google Scholar] [CrossRef] [Green Version]
- Barbieri, F.; Montanari, C.; Gardini, F.; Tabanelli, G. Biogenic amine production by lactic acid bacteria: A review. Foods 2019, 8, 17. [Google Scholar] [CrossRef] [Green Version]
- Dos Santos Cruxen, C.E.; Funck, G.D.; Haubert, L.; da Silva Dannenberg, G.; de Lima Marques, J.; Chaves, F.C.; Padilha da Silva, W.; Fiorentini, Â.M. Selection of native bacterial starter culture in the production of fermented meat sausages: Application potential, safety aspects, and emerging technologies. Food Res. Int. 2019, 122, 371–382. [Google Scholar] [CrossRef] [PubMed]
- Van der Veken, D.; Benhachemi, R.; Charmpi, C.; Ockerman, L.; Poortmans, M.; Van Reckem, E.; Michiels, C.; Leroy, F. Exploring the ambiguous status of coagulase-negative staphylococci in the biosafety of fermented meats: The case of antibacterial activity versus biogenic amine formation. Microorganisms 2020, 8, 167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Reckem, E.; Geeraerts, W.; Charmpi, C.; Van der Veken, D.; De Vuyst, L.; Leroy, F. Exploring the link between the geographical origin of European fermented foods and the diversity of their bacterial communities: The case of fermented meats. Front. Microbiol. 2019, 10, 2302. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Sun, F.; Zheng, D.; Kong, B.; Liu, Q. Complex starter culture combined with vacuum packaging reduces biogenic amine formation and delays the quality deterioration of dry sausage during storage. Food Control. 2019, 100, 58–66. [Google Scholar] [CrossRef]
- Leroy, F.; Scholliers, P.; Amilien, V. Elements of innovation and tradition in meat fermentation: Conflicts and synergies. Int. J. Food Microbiol. 2015, 212, 2–8. [Google Scholar] [CrossRef]
- Cocolin, L.; Gobbetti, M.; Neviani, E.; Daffonchio, D. Ensuring safety in artisanal food microbiology. Nat. Microbiol. 2016, 1, 1. [Google Scholar] [CrossRef]
- Charmpi, C.; Van der Veken, D.; Van Reckem, E.; De Vuyst, L.; Leroy, F. Raw meat quality and salt levels affect the bacterial species diversity and community dynamics during the fermentation of pork mince. Food Microbiol. 2020, 89, 103434. [Google Scholar] [CrossRef]
- Braem, G.; De Vliegher, S.; Supré, K.; Haesebrouck, F.; Leroy, F.; De Vuyst, L. (GTG)5-PCR fingerprinting for the classification and identification of coagulase-negative Staphylococcus species from bovine milk and teat apices: A comparison of type strains and field isolates. Vet. Microbiol. 2011, 147, 67–74. [Google Scholar] [CrossRef]
- Heikens, E.; Fleer, A.; Paauw, A.; Florijn, A.; Fluit, A.C. Comparison of genotypic and phenotypic methods for species-level identification of clinical isolates of coagulase-negative staphylococci. J. Clin. Microbiol. 2005, 43, 2286–2290. [Google Scholar] [CrossRef] [Green Version]
- Berthier, F.; Ehrlich, S.D. Rapid species identification within two groups of closely related lactobacilli using PCR primers that target the 16S/23S rRNA spacer region. FEMS Microbiol. Lett. 1998, 161, 97–106. [Google Scholar] [CrossRef] [Green Version]
- Urso, R.; Comi, G.; Cocolin, L. Ecology of lactic acid bacteria in Italian fermented sausages: Isolation, identification and molecular characterization. Syst. Appl. Microbiol. 2006, 29, 671–680. [Google Scholar] [CrossRef] [PubMed]
- Harrell, F.E., Jr.; Dupont, C. Hmisc: Harrell Miscellaneous. R Package Version 4.4-0. 2020. Available online: https://CRAN.R-project.org/package=Hmisc (accessed on 10 August 2020).
- Oksanen, J.; Blanchet, F.G.; Friendly, M.; Kindt, R.; Legendre, P.; O’hara, R.B.; Simpson, G.L.; Solymos, P.; Stevens, M.H.H.; Wagner, H. Vegan: Community Ecology Package. R Package Version 2.5-4*. 2018. Available online: https://CRAN.R-project.org/package=vegan (accessed on 14 February 2019).
- Hervé, M. RVAideMemoire: Testing and Plotting Procedures for Biostatistics. R Package Version 0.9-73. 2019. Available online: https://CRAN.R-project.org/package=RVAideMemoire (accessed on 17 February 2019).
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018. [Google Scholar]
- Garriga, M.; Aymerich, T. The microbiology of fermentation and ripening. In Handbook of Fermented Meat and Poultry; Toldrà, F., Hui, Y.H., Astiasarán, I., Nip, W.K., Sebranek, J.G., Silveira, E.T.F., Stahnke, L.H., Talon, R., Eds.; John Wiley Sons: Chichester, UK, 2007; pp. 99–105. [Google Scholar]
- Shaffer, N.; Wainwright, R.B.; Middaugh, J.P.; Tauxe, R.V. Botulism among Alaska natives. The role of changing food preparation and consumption practices. West. J. Med. 1990, 153, 390–393. [Google Scholar] [PubMed]
- Wouters, D.; Grosu-Tudor, S.; Zamfir, M.; De Vuyst, L. Bacterial community dynamics, lactic acid bacteria species diversity and metabolite kinetics of traditional Romanian vegetable fermentations. J. Sci. Food Agric. 2013, 93, 749–760. [Google Scholar] [CrossRef] [PubMed]
- Ramanzin, M.; Amici, A.; Casoli, C.; Esposito, L.; Lupi, P.; Marsico, G.; Mattiello, S.; Olivieri, O.; Ponzetta, M.P.; Russo, C.; et al. Meat from wild ungulates: Ensuring quality and hygiene of an increasing resource. Ital. J. Anim. Sci. 2010, 9, e61. [Google Scholar]
- Rivera-Reyes, M.; Campbell, J.A.; Cutter, C.N. Pathogen reductions associated with traditional processing of landjäger. Food Control. 2017, 73, 768–774. [Google Scholar] [CrossRef] [Green Version]
- Aquilanti, L.; Garofalo, C.; Osimani, A.; Clementi, F. Ecology of lactic acid bacteria and coagulase-negative cocci in fermented dry sausages manufactured in Italy and other Mediterranean countries: An overview. Int. Food Res. J. 2016, 23, 429–445. [Google Scholar]
- Montanari, C.; Barbieri, F.; Magnani, M.; Grazia, L.; Gardini, F.; Tabanelli, G. Phenotypic diversity of Lactobacillus sakei strains. Front. Microbiol. 2018, 9, 2003. [Google Scholar] [CrossRef]
- Iacumin, L.; Osualdini, M.; Bovolenta, S.; Boscolo, D.; Chiesa, L.; Panseri, S.; Comi, G. Microbial, chemico-physical and volatile aromatic compounds characterization of Pitina PGI, a peculiar sausage-like product of North East Italy. Meat Sci. 2020, 163, 108081. [Google Scholar] [CrossRef]
- Latorre-Moratalla, M.L.; Bover-Cid, S.; Bosch-Fusté, J.; Vidal-Carou, M.C. Influence of technological conditions of sausage fermentation on the aminogenic activity of L. curvatus CTC273. Food Microbiol. 2012, 29, 43–48. [Google Scholar] [CrossRef]
- Torović, L.; Gusman, V.; Kvrgić, S. Biogenic amine and microbiological profile of Serbian dry fermented sausages of artisanal and industrial origin and associated health risk. Food Add. Contam. Part B 2020, 13, 64–71. [Google Scholar] [CrossRef]
- Greppi, A.; Ferrocino, I.; La Storia, A.; Rantsiou, K.; Ercolini, D.; Cocolin, L. Monitoring of the microbiota of fermented sausages by culture independent rRNA based approaches. Int. J. Food Microbiol. 2015, 212, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Pisacane, V.; Callegari, M.L.; Puglisi, E.; Dallolio, G.; Rebecchi, A. Microbial analyses of traditional Italian salami reveal microorganisms transfer from the natural casing to the meat matrix. Int. J. Food Microbiol. 2015, 207, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Carrizosa, E.; Benito, M.J.; Ruiz-Moyano, S.; Hernández, A.; del Carmen Villalodos, M.; Martín, A.; de Guía Córdoba, M. Bacterial communities of fresh goat meat packaged in modified atmosphere. Food Microbiol. 2017, 65, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Widerström, M. Significance of Staphylococcus epidermidis in health care-associated infections, from contaminant clinically relevant pathogen: This is a wake-up call! J. Clin. Microbiol. 2016, 54, 1679–1681. [Google Scholar] [CrossRef] [Green Version]
- Barros, E.M.; Ceotto, H.; Bastos, M.C.F.; dos Santos, K.R.N.; Giambiagi-deMarval, M. Staphylococcus haemolyticus as an important hospital pathogen and carrier of methicillin resistance genes. J. Clin. Microbiol. 2012, 50, 166–168. [Google Scholar] [CrossRef] [Green Version]
- Sánchez Mainar, M.; Leroy, F. Process-driven bacterial community dynamics are key to cured meat colour formation by coagulase-negative staphylococci via nitrate reductase or nitric oxide synthase activities. Int. J. Food Microbiol. 2015, 212, 60–66. [Google Scholar] [CrossRef]
- Osman, K.; Badr, J.; Al-Maary, K.S.; Moussa, I.M.; Hessain, A.M.; Girah, Z.; Abo-shama, U.H.; Orabi, A.; Saad, A. Prevalence of the antibiotic resistance genes in coagulase-positive-and negative-Staphylococcus in chicken meat retailed to consumers. Front. Microbiol. 2016, 7, 1846. [Google Scholar] [CrossRef] [Green Version]
- Mama, O.M.; Ruiz-Ripa, L.; Lozano, C.; González-Barrio, D.; Ruiz-Fons, J.F.; Torres, C. High diversity of coagulase negative staphylococci species in wild boars, with low antimicrobial resistance rates but detection of relevant resistance genes. Comp. Immunol. Microbiol. Infect. Dis. 2019, 64, 125–129. [Google Scholar] [CrossRef]
- Van Ba, H.; Seo, H.W.; Seong, P.N.; Kang, S.M.; Cho, S.H.; Kim, Y.S.; Park, B.Y.; Moon, S.S.; Kang, S.J.; Choi, Y.M.; et al. The fates of microbial populations on pig carcasses during slaughtering process, on retail cuts after slaughter, and intervention efficiency of lactic acid spraying. Int. J. Food Microbiol. 2019, 294, 10–17. [Google Scholar] [CrossRef]
- Lizaso, G.; Chasco, J.; Beriain, M.J. Microbiological and biochemical changes during ripening of salchichon, a Spanish dry cured sausage. Food Microbiol. 1999, 16, 219–228. [Google Scholar] [CrossRef]
- Holck, A.; Axelsson, L.; McLeod, A.; Rode, T.M.; Heir, E. Health and safety considerations of fermented sausages. J. Food Qual. 2017, 2017, 9753894. [Google Scholar] [CrossRef] [Green Version]
- Bino, E.; Lauková, A.; Kandričáková, A.; Nemcová, R. Assessment of biofilm formation by faecal strains of Enterococcus hirae from different species of animals. Pol. J. Vet. Sci. 2018, 21, 747–754. [Google Scholar] [PubMed]
- Ben Said, L.; Jouini, A.; Fliss, I.; Torres, C.; Klibi, N. Antimicrobial resistance genes and virulence gene encoding intimin in Escherichia coli and Enterococcus isolated from wild rabbits (Oryctolagus cuniculus) in Tunisia. Acta Vet. Hung. 2019, 67, 477–488. [Google Scholar] [CrossRef] [PubMed]
- Lauková, A.; Strompfová, V.; Szabóová, R.; Bónai, A.; Matics, Z.; Kovács, M.; Simonová, M.P. Enterococci from pannon white rabbits: Detection, identification, biofilm, and screening for virulence factors. World Rabbit Sci. 2019, 27, 31–39. [Google Scholar] [CrossRef] [Green Version]
- Laslo, É.; György, É.; Czikó, A. Meat starter cultures: Isolation and characterization of lactic acid bacteria from traditional sausages. Acta Univ. Sapientiae Aliment. 2019, 12, 54–69. [Google Scholar] [CrossRef] [Green Version]
- Jeong, D.W.; Lee, J.H. Complete genome sequence of Staphylococcus succinus 14BME20 isolated from a traditional Korean fermented soybean food. Genome Announc. 2017, 5, e01731-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeong, D.W.; Jeong, K.; Lee, H.; Kim, C.T.; Heo, S.; Oh, Y.; Heo, G.; Lee, J.H. Effects of Enterococcus faecium and Staphylococcus succinus starters on the production of volatile compounds during doenjang fermentation. Food Sci. Technol. 2020, 122, 108996. [Google Scholar] [CrossRef]
- Franco-Duarte, R.; Černáková, L.; Kadam, S.; Kaushik, K.S.; Salehi, B.; Bevilacqua, A.; Corbo, M.R.; Antolak, H.; Dybka-Stępień, K.; Leszczewicz, M.; et al. Advances in chemical and biological methods to identify microorganisms—from past to present. Microorganisms 2019, 7, 130. [Google Scholar] [CrossRef] [Green Version]
- Castaño, A.; García Fontán, M.C.; Fresno, J.M.; Tornadijo, M.E.; Carballo, J. Survival of Enterobacteriaceae during processing of Chorizo de cebolla, a Spanish fermented sausage. Food Contr. 2002, 13, 107–115. [Google Scholar] [CrossRef]
- He, Z.; Chen, H.; Wang, X.; Lin, X.; Ji, C.; Li, S.; Liang, H. Effects of different temperatures on bacterial diversity and volatile flavor compounds during the fermentation of suancai, a traditional fermented vegetable food from northeastern China. Food Sci. Technol. 2020, 118, 108773. [Google Scholar] [CrossRef]
- Doulgeraki, A.I.; Paramithiotis, S.; Nychas, G.J.E. Characterization of the Enterobacteriaceae community that developed during storage of minced beef under aerobic or modified atmosphere packaging conditions. Int. J. Food Microbiol. 2011, 145, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Saenz-García, C.E.; Castañeda-Serrano, P.; Mercado Silva, E.M.; Alvarado, C.Z.; Nava, G.M. Insights into the identification of the specific spoilage organisms in chicken meat. Foods 2020, 9, 225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Time (days) | Sample | pH | SD | MRS Agar Counts (log(cfu/g)) | SD | MSA Counts (log(cfu/g)) | SD | RAPID’Entero Agar Counts (log(cfu/g)) | SD |
---|---|---|---|---|---|---|---|---|---|
0 | 1 | 6.02 a | 0.01 | 5.76 | 0.60 | 3.70 | 0.30 | 3.93 | 0.26 |
2 | 5.99 a | 0.02 | 5.12 | 0.36 | 3.90 | 0.10 | 4.02 | 0.10 | |
3 | 5.85 a,b | 0.01 | 4.19 | 0.50 | 4.32 | 0.28 | 3.86 | 0.18 | |
4 | 5.80 a,b | 0.01 | 4.27 | 0.45 | 3.89 | 0.15 | 3.75 | 0.50 | |
5 | 5.72 b | 0.01 | 4.6 | 0.30 | 3.81 | 0.11 | 3.00 | 0.30 | |
6 | 5.62 b | 0.01 | 4.97 | 0.45 | 4.57 | 0.50 | 2.77 | 0.15 | |
7 | 1 | 5.90 a | 0.01 | 8.27 | 0.25 | 5.40 | 0.22 | 5.80 a | 0.41 |
2 | 5.78 a | 0.01 | 8.33 | 0.18 | 5.85 | 0.25 | 5.33 a | 0.22 | |
3 | 5.65 a | 0.01 | 8.47 | 0.22 | 6.37 | 0.46 | 3.79 b | 0.42 | |
4 | 5.56 a | 0.01 | 8.12 | 0.15 | 5.43 | 0.20 | 3.90 b | 0.21 | |
5 | 5.24 b | 0.01 | 7.91 | 0.20 | 5.68 | 0.32 | 3.10 b | 0.45 | |
6 | 5.21 b | 0.01 | 8.84 | 0.71 | 5.80 | 0.64 | 2.60 b | 0.33 |
Bacterial Species | Gene | Identity (%) | Accession Number |
---|---|---|---|
Carnobacterium spp. | 16S rRNA | 99 | NR_113798.1, NR_042093.1 |
Latilactobacillus curvatus | 16S rRNA | 100 | NR_114915.1 |
Latilactobacillus sakei | 16S rRNA | 100 | NR_113821.1, NR_115172.1 |
Lactiplantibacillus plantarum | 16S rRNA | 100 | NR_104573.1 |
Lactococcus lactis | 16S rRNA | 100 | NR_113925.1 |
Leuconostoc carnosum | 16S rRNA | 100 | NR_040811.1 |
Leuconostoc mesenteroides | 16S rRNA | 99 | NR_157602.1 |
Weissella fabalis | 16S rRNA | 98 | NR_108858.1 |
Brochothrix thermosphacta | 16S rRNA | 100 | NR_113587.1 |
Macrococcus caseolyticus | 16S rRNA, tuf | 98 | NR_119262.1, AP009484.1 |
Corynebacterium variabilis | 16S rRNA | 100 | NR_025314.1 |
Enterococcus faecium | rpoB | 100 | CP021885.1, NR_115764.1 |
Enterococcus hirae | rpoB, tuf | 100 | CP003504.1, CP023011.2 |
Staphylococcus xylosus | rpoB, tuf | 99 | CP008724.1, CP031275.1 |
Staphylococcus equorum | rpoB | 100 | CP013980.1 |
Staphylococcus saprophyticus | rpoB | 100 | CP022093.2, CP014113.2 |
Staphylococcus epidermidis | rpoB | 99 | CP009046.1 |
Staphylococcus vitulinus | rpoB, tuf | 100 | HM352960.1, KY011914.1 |
Staphylococcus capitis | rpoB | 99 | CP007601.1 |
Staphylococcus haemolyticus | rpoB | 99 | CP013911.1 |
Staphylococcus succinus | rpoB | 100 | CP018199.1 |
Staphylococcus pasteuri | tuf | 99 | CP017463.1 |
Staphylococcus hyicus | rpoB | 99 | CP008747.1 |
Staphylococcus aureus | rpoB | 99 | AP017922.1 |
Bacillus safensis | rpoB | 100 | CP018197.1 |
Serratia proteamaculans | rpoA | 100 | CP000826.1 |
Serratia liquefaciens | rpoA | 100 | CP033893.1, CP014017.2 |
Hafnia alvei | rpoA | 100 | CP015379.1 |
Hafnia paralvei | rpoA | 99 | CP014031.2 |
Rahnella aquatilis | rpoA | 99 | CP003244.1 |
Lelliotia amnigena | rpoA | 99 | CP015774.2 |
Citrobacter sp. | rpoA | 99 | CP022049.2 |
Proteus bulgari | rpoA | 100 | CP033736.1 |
Enterobacter sp. | rpoA | 100 | CP041062.1 |
Klebsiella sp. | rpoA | 99 | CP011077.1 |
Pantoea agglomerans | rpoA | 99 | CP016889.1 |
Pseudomonas sp. | 16S rRNA | 99 | NR_148763.1 |
Kurthia sp. | 16S rRNA | 100 | NR_118296.1 |
Time (days) | Sample | pH | SD | MRS Agar Counts (log(cfu/g)) | SD | MSA Counts (log(cfu/g)) | SD | RAPID’Entero Agar Counts | SD |
---|---|---|---|---|---|---|---|---|---|
0 | Hare | 5.94 | 0.15 | 5.28 | 0.59 | 3.26 | 0.33 | 5.55 | 0.80 |
Wild duck | 5.84 | 0.12 | 7.56 | 0.75 | 3.78 | 0.37 | 7.67 | 1.43 | |
Wild boar | 5.82 | 0.02 | 6.64 | 0.07 | 3.84 | 0.50 | 6.72 | 1.74 | |
Beef | 5.67 | 0.06 | 4.28 | 0.08 | 3.97 | 0.04 | 4.08 | 0.01 | |
Horse | 5.54 | 0.03 | 4.65 | 0.98 | 4.40 | 0.39 | 4.33 | 0.29 | |
Wild deer | 5.51 | 0.03 | 5.59 | 0.35 | 3.86 | 0.37 | 4.03 | 0.13 | |
7 | Hare | 5.52 | 0.08 | 8.79 | 0.06 | 1.76 | 2.53 | 5.41 | 0.55 |
Wild duck | 5.96 | 0.26 | 9.07 | 0.24 | 4.78 | 1.57 | 7.12 | 2.84 | |
Wild boar | 5.95 | 0.75 | 8.68 | 0.12 | 5.66 | 0.04 | 6.36 | 3.21 | |
Beef | 5.27 | 0.17 | 7.72 | 0.55 | 6.03 | 0.91 | 2.68 | 0.46 | |
Horse | 5.05 | 0.04 | 8.20 | 0.10 | 4.89 | 0.06 | 3.01 | 0.02 | |
Wild deer | 5.10 | 0.01 | 7.88 | 0.54 | 4.90 | 0.08 | 2.73 | 0.42 |
Meat Type | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|
1. Beef | |||||||||
2. Hare | 0.079 | ||||||||
3. High-pH pork | 0.047 | 0.079 | |||||||
4. Horse | 0.047 | 0.105 | 0.047 | ||||||
5. Low-pH pork | 0.183 | 0.047 | 0.047 | 0.238 | |||||
6. Moderate-pH pork | 0.130 | 0.079 | 0.105 | 0.047 | 0.310 | ||||
7. Wild boar | 0.047 | 0.183 | 0.047 | 0.047 | 0.047 | 0.047 | |||
8. Wild deer | 0.047 | 0.047 | 0.047 | 0.183 | 0.047 | 0.047 | 0.047 | ||
9. Wild duck | 0.047 | 0.047 | 0.047 | 0.047 | 0.047 | 0.047 | 0.047 | 0.047 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Charmpi, C.; Van Reckem, E.; Sameli, N.; Van der Veken, D.; De Vuyst, L.; Leroy, F. The Use of Less Conventional Meats or Meat with High pH Can Lead to the Growth of Undesirable Microorganisms during Natural Meat Fermentation. Foods 2020, 9, 1386. https://doi.org/10.3390/foods9101386
Charmpi C, Van Reckem E, Sameli N, Van der Veken D, De Vuyst L, Leroy F. The Use of Less Conventional Meats or Meat with High pH Can Lead to the Growth of Undesirable Microorganisms during Natural Meat Fermentation. Foods. 2020; 9(10):1386. https://doi.org/10.3390/foods9101386
Chicago/Turabian StyleCharmpi, Christina, Emiel Van Reckem, Nikoleta Sameli, David Van der Veken, Luc De Vuyst, and Frédéric Leroy. 2020. "The Use of Less Conventional Meats or Meat with High pH Can Lead to the Growth of Undesirable Microorganisms during Natural Meat Fermentation" Foods 9, no. 10: 1386. https://doi.org/10.3390/foods9101386
APA StyleCharmpi, C., Van Reckem, E., Sameli, N., Van der Veken, D., De Vuyst, L., & Leroy, F. (2020). The Use of Less Conventional Meats or Meat with High pH Can Lead to the Growth of Undesirable Microorganisms during Natural Meat Fermentation. Foods, 9(10), 1386. https://doi.org/10.3390/foods9101386