Technological Properties and Consumer Acceptability of Bakery Products Enriched with Brewers’ Spent Grains
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Proximate Composition
2.3. Rheological Tests
2.4. Bread, Breadsticks and Pizza Preparation
2.5. Volume Measurements
2.6. Colour Measurement
2.7. Organoleptic Evaluation
2.8. Statistical Analysis
3. Results and Discussion
3.1. Effect of BSG on Dough Properties
3.2. Baking Quality
3.3. Consumer Acceptability
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fărcaş, A.C.; Socaci, S.A.; Mudura, E.; Dulf, F.V.; Vodnar, D.C.; Tofană, M.; Salanță, L.C. Exploitation of Brewing Industry Wastes to Produce Functional Ingredients. In Brewing Technology; Kanauchi, M., Ed.; IntechOpen: London, UK, 2017. [Google Scholar]
- Del Rio, J.C.; Prinsen, P.; Gutiérrez, A. Chemical composition of lipids in brewer’s spent grain: A promising source of valuable phytochemicals. J. Cereal Sci. 2013, 58, 248–254. [Google Scholar] [CrossRef] [Green Version]
- Lynch, K.M.; Steen, E.J.; Arendt, E.K. Brewers’ spent grain: A review with emphasis on food and health. J. Inst. Brew. 2016, 122, 553–568. [Google Scholar] [CrossRef]
- Mussatto, S.I.; Dragone, G.; Roberto, I.C. Brewers’ spent grain: Generation, characteristics and potential applications. J. Cereal Sci. 2006, 43, 1–14. [Google Scholar] [CrossRef]
- Kanauchi, O.; Mitsuyama, K.; Araki, Y. Development of a functional germinated barley foodstuff from brewers’ spent grain for the treatment of ulcerative colitis. J. Am. Soc. Brew. Chem. 2001, 59, 59–62. [Google Scholar]
- Barbosa-Pereira, L.; Bilbao, A.; Vilches, P.; Angulo, I.; Luis, J.; Fité, B.; Paseiro-Losada, P.; Cruz, J.M. Brewery waste as a potential source of phenolic compounds: Optimization of the extraction process and evaluation of antioxidant and antimicrobial activities. Food Chem. 2014, 145, 191–197. [Google Scholar] [CrossRef]
- Socaci, S.A.; Fărcaş, A.C.; Vodnar, D.C.; Tofana, M. Food wastes as valuable sources of bioactive molecules. In Superfood and Functional Food-The Development of Superfoods and Their Roles as Medicine; Shiomi, N., Waisundara, V., Eds.; Intechopen: London, UK, 2017. [Google Scholar]
- Fărcaş, A.C.; Tofană, M.; Socaci, S.A.; Mudura, E.; Stăncuta, S.; Salanță, L.; Muresan, V.J. Brewers’ spent grain—A new potential ingredient for functional foods. Agroaliment. Process Technol. 2014, 20, 137–141. [Google Scholar]
- Ktenioudaki, A.; Chaurin, V.; Reis, S.F.; Gallagher, E. Brewer’s spent grain as a functional ingredient for breadsticks. Int. J. Food Sci. Technol. 2012, 47, 1765–1771. [Google Scholar] [CrossRef] [Green Version]
- Nocente, F.; Taddei, F.; Galassi, E.; Gazza, L. Upcycling of brewers’ spent grain by production of dry pasta with higher nutritional potential. LWT-Food Sci. Technol. 2019, 114, 108421. [Google Scholar] [CrossRef]
- Öztürk, S.; Özboy, Ö.; Cavidoğlu, İ.; Köksel, H. Effects of Brewer’s Spent Grain on the Quality and Dietary Fibre Content of Cookies. J. Inst. Brew. 2012, 108, 23–27. [Google Scholar] [CrossRef]
- Waters, D.M.; Jacob, F.; Titze, J.; Arendt, E.K.; Zannini, E. Fibre, protein and mineral fortification of wheat bread through milled and fermented brewer’s spent grain enrichment. Eur. Food Res. Technol. 2012, 235, 767–778. [Google Scholar] [CrossRef]
- International Association for Cereal Science and Technology. ICC Standard Methods (Methods No. 104/1, 105/2, 110/1, 136); ICC: Vienna, Austria, 2003. [Google Scholar]
- Lee, S.C.; Prosky, L.; DeVries, J.W. Determination of total, soluble, and insoluble, dietary fibre in foods-enzymatic-gravimetric method, MES-TRIS buffer: Collaborative study. J. Assoc. Off. Anal. Chem. 1992, 75, 395–416. [Google Scholar]
- American Association of Cereal Chemistry. Approved Methods of Analysis, 10th ed.; The Association: St. Paul, MN, USA, 2003. [Google Scholar]
- Amoriello, T.; Carcea, M. Viscoelastic behavior of wheat dough with salt and a salt substitute studied by means of GlutoPeak®. Cereal Chem. 2020, 97, 216–225. [Google Scholar] [CrossRef]
- Moskowitz, H.R. Utilitarian benefits of magnitude estimation scaling fortesting product acceptability. In Selected Sensory Methods: Problems And Approaches to Measuring Hedonics; Kuznicki, J.T., Johnson, R.A., Rutkiewic, A.F., Eds.; American Society for Testing and Materials: Philadelphia, PA, USA, 1982. [Google Scholar]
- Stojceska, V.; Ainsworth, P. The effect of different enzymes on the quality of high-fibre enriched brewer’s spent grain breads. Food Chem. 2008, 110, 865–872. [Google Scholar] [CrossRef] [PubMed]
- Steinmacher, N.C.; Honna, F.A.; Gasparetto, A.V.; Anibal, D.; Grossmann, M.V.E. Bioconversion of brewer’s spent grains by reactive extrusion and their application in bread-making. LWT-Food Sci. Technol. 2012, 46, 542–547. [Google Scholar] [CrossRef]
- Tsen, C.C.; Weber, J.L.; Eyestone, W. Evaluation of distillers’ dried grain flour as a bread ingredient. Cereal Chem. 1983, 60, 295–297. [Google Scholar]
- Stojceska, V. Dietary Fiber from Brewer’s Spent Grain as a Functional Ingredient in Bread Making Technology. In Flour and Breads and Their Fortification in Health and Disease Prevention; Preedy, V.R., Watson, R.R., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 171–179. [Google Scholar]
- Skendi, A.; Biliaderis, C.G.; Papageorgiou, M.; Izydorczyk, M.S. Effects of two barley β-glucan isolates on wheat flour dough and bread properties. Food Chem. 2010, 119, 1159–1167. [Google Scholar] [CrossRef]
- Redaelli, R.; Del Frate, V.; Bellato, S.; Terracciano, G.; Ciccoritti, R.; Germeier, C.U.; Sgrulletta, D. Genetic and environmental variability in total and soluble β-glucan in European oat genotypes. J. Cereal Sci. 2013, 57, 193–199. [Google Scholar] [CrossRef]
- Amoriello, T.; Turfani, V.; Galli, V.; Mellara, F.; Carcea, M. Evaluation of a new viscometer performance in predicting the technological quality of soft wheat flour. Cereal Chem. 2016, 93, 364–368. [Google Scholar] [CrossRef]
- Rosell, C.M.; Santos, E.; Collar, C. Physical characterization of fiber-enriched bread doughs by dual mixing and temperature constraint using the Mixolab. Eur. Food Res. Technol. 2010, 231, 535–544. [Google Scholar] [CrossRef] [Green Version]
- Dhingra, D.; Michael, M.; Rajput, H.; Patil, R.T. Dietary fibre in foods: A review. J. Food Sci. Technol. 2012, 49, 255–266. [Google Scholar] [CrossRef] [Green Version]
- Sivam, A.S.; Sun-Waterhouse, D.; Quek, S.Y.; Perera, C.O. Properties of Bread Dough with Added Fiber Polysaccharides and Phenolic Antioxidants: A Review. J. Food Sci. 2010, 75, 163–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, M.; Du, J.; Zhang, Z.A.; Zhang, K.; Jin, Y. Optimization of brewer’s spent grain-enriched biscuits processing formula. J. Food Process Eng. 2014, 37, 122–130. [Google Scholar] [CrossRef]
- Miranda, M.Z.; Grossmann, M.V.E.; Nabeshima, E.H. Utilization of brewers’ spent grain for the production of snacks with fiber. 1. Physicochemical characteristics. Braz. Arch. Biol. Technol. 1994, 37, 483–493. [Google Scholar]
- Ktenioudaki, A.; Crofton, E.; Scannell, A.G.M.; Hannon, J.A.; Kilcawley, K.N.; Gallagher, E. Sensory properties and aromatic composition of baked snacks containing brewer’s spent grain. J. Cereal Sci. 2013, 57, 384–390. [Google Scholar] [CrossRef]
(A) | ||||
---|---|---|---|---|
BSG | C1_Control | C1_C95:5 | C1_C90:10 | |
Moisture (%) | 8.8 ± 0.2 | 14.0 ± 0.2 a | 13.7 ± 0.2 ab | 13.5 ± 0.2 b |
Protein (g/100 g) | 16.4 ± 0.2 | 10.1 ± 0.1 b | 10.5 ± 0.2 a | 10.7 ± 0.2 a |
Ash (g/100 g) | 4.16 ± 0.01 | 0.54 ± 0.01 c | 0.72 ± 0.01 b | 0.90 ± 0.01 a |
Lipids (g/100 g) | 8.2 ± 0.2 | 0.9 ± 0.1 c | 1.4 ± 0.1 b | 1.6 ± 0.1 a |
TDF (g/100 g) | 14.6 ± 0.2 | 2.3 ± 0.1 c | 3.4 ± 0.1 b | 4.1 ± 0.1 a |
W (10−4 J) | 158 ± 16 a | 138 ± 11 ab | 111 ± 10 b | |
P | 45 ± 6 a | 39 ± 3 ab | 33 ± 4 b | |
L | 142 ± 9 a | 125 ± 4 b | 123 ± 3 b | |
P/L | 0.32 ± 0.03 a | 0.31 ± 0.02 a | 0.27 ± 0.02 b | |
WA (%) | 54.7 ± 0.2 b | 54.1 ± 0.1 c | 55.3 ± 0.1 a | |
DS (min) | 3.0 ± 0.5 b | 1.2 ± 0.4 c | 4.2 ± 0.7 a | |
DT (min) | 17.3 ± 0.2 a | 3.3 ± 0.3 c | 4.5 ± 0.2 b | |
PMT (s) | 98 ± 3 a | 96 ± 4 a | 91 ± 2 a | |
BEM (BU) | 60 ± 3 b | 66 ± 2 a | 71 ± 4 a | |
(B) | ||||
C2_Control | C2_C95:5 | C2_C90:10 | ||
Moisture (%) | 13.5 ± 0.2 a | 13.3 ± 0.2 ab | 13.0 ± 0.2 b | |
Protein (g/100 g) | 12.0 ± 0.2 a | 12.3 ± 0.1 a | 12.4 ± 0.2 a | |
Ash (g/100 g) | 0.62 ± 0.01 c | 0.80 ± 0.01 b | 0.98 ± 0.01 a | |
Lipids (g/100 g) | 1.0 ± 0.1 c | 1.3 ± 0.1 b | 1.7 ± 0.1 a | |
TDF (g/100 g) | 2.2 ± 0.1 c | 3.0 ± 0.1 b | 3.9 ± 0.1 a | |
W (10−4 J) | 236 ± 18 a | 202 ± 9 b | 189 ± 5 c | |
P | 75 ± 5 a | 65 ± 5 ab | 58 ± 5 b | |
L | 86 ± 7 a | 80 ± 7 ab | 69 ± 7 b | |
P/L | 0.87 ± 0.03 a | 0.81 ± 0.03 b | 0.84 ± 0.03 ab | |
WA (%) | 54.0 ± 0.1 c | 57.2 ± 0.2 b | 58.9 ± 0.2 a | |
DS (min) | 20.0 ± 0.9 a | 6.4 ± 0.4 b | 4.5 ± 0.3 c | |
DT (min) | 18.5 ± 0.5 a | 8.5 ± 0.4 b | 3.5 ± 0.3 c | |
PMT (s) | 241 ± 5 a | 235 ± 3 a | 226 ± 2 b | |
BEM (BU) | 46 ± 3 b | 51 ± 3 b | 58 ± 2 a | |
(C) | ||||
C3_Control | C3_C95:5 | C3_C90:10 | ||
Moisture (%) | 13.0 ± 0.2 a | 12.8 ± 0.2 a | 12.7 ± 0.2 a | |
Protein (g/100 g) | 12.7 ± 0.4 a | 12.9 ± 0.2 a | 13.1 ± 0.2 a | |
Ash (g/100 g) | 0.52 ± 0.01 c | 0.70 ± 0.01 b | 0.88 ± 0.01 a | |
Lipids (g/100 g) | 1.0 ± 0.1 c | 1.4 ± 0.1 b | 1.7 ± 0.1 a | |
TDF (g/100 g) | 2.5 ± 0.1 c | 3.7 ± 0.1 b | 4.4 ± 0.1 a | |
W (10−4 J) | 267 ± 10 a | 240 ± 12 b | 219 ± 8 c | |
P | 75 ± 8 a | 60 ± 4 b | 55 ± 2 b | |
L | 119 ± 9 a | 110 ± 6 ab | 101 ± 4 b | |
P/L | 0.63 ± 0.03 a | 0.55 ± 0.02 b | 0.55 ± 0.01 b | |
WA (%) | 58.7 ± 0.1 b | 58.1 ± 0.1 c | 59.6 ± 0.1 a | |
DS (min) | 2.0 ± 0.6 c | 9.1 ± 0.5 b | 12.4 ± 0.8 a | |
DT (min) | 18.8 ± 0.4 a | 12.4 ± 0.3 c | 16.4 ± 0.3 b | |
PMT (s) | 85 ± 2 a | 79 ± 3 b | 71 ± 3 c | |
BEM (BU) | 68 ± 3 b | 75 ± 1 a | 81 ± 3 a |
Specific Volume (mL/g) | ||
---|---|---|
C1 | Control | 2.83 ± 0.02 a |
C95:5 | 2.78 ± 0.04 a | |
C90:10 | 2.85 ± 0.03 a | |
C2 | Control | 3.03 ± 0.02 a |
C95:5 | 2.80 ± 0.06 b | |
C90:10 | 2.81 ± 0.02 b | |
C3 | Control | 2.99 ± 0.03 a |
C95:5 | 2.86 ± 0.04 b | |
C90:10 | 2.66 ± 0.06 c |
(A) | |||||
---|---|---|---|---|---|
C1_Control | C1_C95:5 | C1_C90:10 | |||
Bread | Crust | L* | 51.6 ± 1.9 a | 61.5 ± 3.2 b | 53.8 ± 3.4 a |
a* | 12.7 ± 0.7 a | 5.6 ± 1.5 b | 7.3 ± 1.2 b | ||
b* | 29.3 ± 2.5 a | 25.3 ± 1.3 b | 25.2 ± 0.3 b | ||
Crumb | L* | 73.5 ± 0.4 a | 56.9 ± 1.8 b | 51.8 ± 1.0 c | |
a* | 0.8 ± 0.1 a | 3.1 ± 0.2 b | 3.8 ± 0.2 c | ||
b* | 16.0 ± 0.1 a | 17.4 ± 0.5 b | 18.3 ± 0.3 c | ||
Breadsticks | Crust | L* | 76.4 ± 1.5 a | 70.4 ± 2.8 b | 62.1 ± 1.5 c |
a* | 0.4 ± 0.2 a | 3.1 ± 0.7 b | 4.8 ± 0.5 c | ||
b* | 22.2 ± 1.2 a | 16.1 ± 1.9 b | 17.8 ± 1.4 b | ||
Pizza | Crust | L* | 77.7 ± 1.3 a | 60.0 ± 1.2 b | 56.2 ± 2.9 c |
a* | −0.7 ± 0.1 a | 4.7 ± 0.5 b | 5.7 ± 1.0 b | ||
b* | 20.1 ± 1.3 a | 18.1 ± 1.9 a | 18.0 ± 0.9 a | ||
(B) | |||||
C2_Control | C2_C95:5 | C2_C90:10 | |||
Bread | Crust | L* | 50.8 ± 0.8 a | 60.3 ± 2.1 b | 53.7 ± 2.9 a |
a* | 12.3 ± 0.6 a | 6.1 ± 1.2 b | 7.2 ± 0.8 b | ||
b* | 29.1 ± 1.8 a | 25.3 ± 1.1 b | 24.6 ± 0.9 b | ||
Crumb | L* | 70.9 ± 0.5 a | 53.8 ± 1.7 b | 48.7 ± 0.9 c | |
a* | 0.4 ± 0.1 a | 3.2 ± 0.2 b | 4.2 ± 0.2 c | ||
b* | 15.5 ± 0.2 a | 17.0 ± 0.3 b | 18.1 ± 0.3 c | ||
Breadsticks | Crust | L* | 78.3 ± 1.6 a | 60.9 ± 3.4 b | 59.1 ± 1.0 b |
a* | 1.1 ± 0.2 a | 5.4 ± 0.3 b | 6.1 ± 0.2 c | ||
b* | 17.7 ± 0.6 a | 20.1 ± 1.3 b | 17.5 ± 0.4 a | ||
Pizza | Crust | L* | 72.0 ± 1.3 a | 61.0 ± 1.4 b | 54.1 ± 4.2 c |
a* | 1.7 ± 0.3 a | 4.3 ± 0.3 b | 6.1 ± 0.7 c | ||
b* | 22.4 ± 0.7 a | 17.7 ± 1.9 b | 17.5 ± 1.0 b | ||
(C) | |||||
C3_Control | C3_C95:5 | C3_C90:10 | |||
Bread | Crust | L* | 50.2 ± 2.1 a | 59.5 ± 2.6 b | 53.4 ± 3.0 a |
a* | 11.8 ± 0.7 a | 6.6 ± 0.8 b | 7.1 ± 0.6 b | ||
b* | 28.2 ± 1.1 a | 25.2 ± 1.1 b | 23.1 ± 1.6 b | ||
Crumb | L* | 68.8 ± 0.4 a | 52.9 ± 1.3 b | 44.0 ± 0.4 c | |
a* | 0.5 ± 0.1 a | 3.0 ± 0.2 b | 4.5 ± 0.3 c | ||
b* | 14.4 ± 0.2 a | 17.2 ± 0.2 b | 17.4 ± 0.3 b | ||
Breadsticks | Crust | L* | 79.0 ± 2.2 a | 63.6 ± 3.0 b | 55.1 ± 2.6 c |
a* | 0.7 ± 0.2 a | 4.2 ± 0.5 b | 6.9 ± 0.5 c | ||
b* | 19.1 ± 1.2 a | 17.3 ± 0.8 a | 17.6 ± 0.5 a | ||
Pizza | Crust | L* | 73.2 ± 1.9 a | 56.3 ± 5.1 b | 53.2 ± 2.2 b |
a* | 0.9 ± 0.2 a | 5.0 ± 1.5 b | 6.1 ± 0.6 b | ||
b* | 19.8 ± 1.4 a | 17.2 ± 2.4 ab | 16.7 ± 1.1 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amoriello, T.; Mellara, F.; Galli, V.; Amoriello, M.; Ciccoritti, R. Technological Properties and Consumer Acceptability of Bakery Products Enriched with Brewers’ Spent Grains. Foods 2020, 9, 1492. https://doi.org/10.3390/foods9101492
Amoriello T, Mellara F, Galli V, Amoriello M, Ciccoritti R. Technological Properties and Consumer Acceptability of Bakery Products Enriched with Brewers’ Spent Grains. Foods. 2020; 9(10):1492. https://doi.org/10.3390/foods9101492
Chicago/Turabian StyleAmoriello, Tiziana, Francesco Mellara, Vincenzo Galli, Monica Amoriello, and Roberto Ciccoritti. 2020. "Technological Properties and Consumer Acceptability of Bakery Products Enriched with Brewers’ Spent Grains" Foods 9, no. 10: 1492. https://doi.org/10.3390/foods9101492
APA StyleAmoriello, T., Mellara, F., Galli, V., Amoriello, M., & Ciccoritti, R. (2020). Technological Properties and Consumer Acceptability of Bakery Products Enriched with Brewers’ Spent Grains. Foods, 9(10), 1492. https://doi.org/10.3390/foods9101492