Effects of Preservative Agents on Quality Attributes of Dry-Cured Fermented Sausages
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microorganisms
2.2. Inocula Setting
2.3. Experimental Design
2.3.1. Dual-Culture Assay
2.3.2. Pilot Plant Assay
2.4. Physico-Chemical Analysis
2.5. Instrumental Texture
2.6. Instrumental Colour
2.7. Volatile Compounds Analysis
2.8. Sensory Evaluation
2.9. Statistical Analysis
3. Results and Discussion
3.1. In Vitro Effect of the Biocontrol Agents on the Growth of Beneficial Microorganisms
3.2. Effect of Biocontrol Agents on the Dry-Cured Fermented Sausages Characteristics
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Andrade, M.J.; Córdoba, J.J.; Casado, E.M.; Córdoba, M.G.; Rodríguez, M. Effect of selected strains of Debaryomyces hansenii on the volatile compound production of dry fermented sausage “salchichón”. Meat Sci. 2010, 85, 256–264. [Google Scholar] [CrossRef] [PubMed]
- Bruna, J.M.; Hierro, E.M.; De La Hoz, L.; Mottram, D.S.; Fernández, M.; Ordóñez, J.A. Changes in selected biochemical and sensory parameters as affected by the superficial inoculation of Penicillium camemberti on dry fermented sausages. Int. J. Food Microbiol. 2003, 85, 111–125. [Google Scholar] [CrossRef]
- Casquete, R.; Benito, M.J.; Martín, A.; Ruiz-Moyano, S.; Hernández, A.; Córdoba, M.G. Effect of autochthonous starter cultures in the production of “salchichón”, a traditional Iberian dry-fermented sausage, with different ripening processes. LWT Food Sci. Technol. 2011, 44, 1562–1571. [Google Scholar] [CrossRef]
- Pleadin, J.; Malenica, M.; Vah, N.; Milone, S.; Safti, L. Survey of aflatoxin B1 and ochratoxin A occurrence in traditional meat products coming from Croatian households and markets. Food Control 2015, 52, 71–77. [Google Scholar] [CrossRef]
- Zadravec, M.; Vahčić, N.; Brnić, D.; Markov, K.; Frece, J.; Beck, R.; Lešić, T.; Pleadin, J. A study of surface moulds and mycotoxins in Croatian traditional dry-cured meat products. Int. J. Food Microbiol. 2020, 317, 108459. [Google Scholar] [CrossRef]
- Markov, K.; Pleadin, J.; Bevardi, M.; Vahčić, N.; Sokolić-Mihalak, D.; Frece, J. Natural occurrence of aflatoxin B1, ochratoxin A and citrinin in Croatian fermented meat products. Food Control 2013, 34, 312–317. [Google Scholar] [CrossRef]
- Peromingo, B.; Rodríguez, M.; Núñez, F.; Silva, A.; Rodríguez, A. Sensitive determination of cyclopiazonic acid in dry-cured ham using a QuEChERS method and UHPLC—MS/MS. Food Chem. 2018, 263, 275–282. [Google Scholar] [CrossRef]
- Asensio, M.A.; Núñez, F.; Delgado, J.; Bermúdez, E. Control of toxigenic molds in food processing. In Microbial Food Safety and Preservation Techniques; Rai, V.R., Bai, A.J., Eds.; CRC Press: Boca Raton, FL, USA, 2014; pp. 329–357. [Google Scholar]
- Román, S.; Sánchez-Siles, L.M.; Siegrist, M. The importance of food naturalness for consumers: Results of a systematic review. Trends Food Sci. Technol. 2017, 67, 44–57. [Google Scholar] [CrossRef]
- Sánchez-Montero, L.; Córdoba, J.J.; Alía, A.; Peromingo, B.; Núñez, F. Effect of Spanish smoked paprika “Pimentón de La Vera” on control of ochratoxin A and aflatoxins production on a dry-cured meat model system. Int. J. Food Microbiol. 2019, 308, 108303. [Google Scholar] [CrossRef]
- Álvarez, M.; Rodríguez, A.; Núñez, F.; Silva, A.; Andrade, M.J. In vitro antifungal effects of spices on ochratoxin A production and related gene expression in Penicillium nordicum on a dry-cured fermented sausage medium. Food Control 2020, 114, 107222. [Google Scholar] [CrossRef]
- Álvarez, M.; Rodríguez, A.; Peromingo, B.; Núñez, F.; Rodríguez, M. Enterococcus faecium: A promising protective culture to control growth of ochratoxigenic moulds and mycotoxin production in dry-fermented sausages. Mycotoxin Res. 2020, 36, 137–145. [Google Scholar] [CrossRef] [PubMed]
- Cebrián, E.; Rodríguez, M.; Peromingo, B.; Bermúdez, E.; Núñez, F. Efficacy of the combined protective cultures of Penicillium chrysogenum and Debaryomyces hansenii for the control of Ochratoxin A hazard in dry-cured ham. Toxins 2019, 11, 710. [Google Scholar] [CrossRef] [Green Version]
- Peromingo, B.; Andrade, M.J.; Delgado, J.; Sánchez-Montero, L.; Núñez, F. Biocontrol of aflatoxigenic Aspergillus parasiticus by native Debaryomyces hansenii in dry-cured meat products. Food Microbiol. 2019, 82, 269–276. [Google Scholar] [CrossRef]
- Delgado, J.; Peromingo, B.; Rodríguez, A.; Rodríguez, M. Biocontrol of Penicillium griseofulvum to reduce cyclopiazonic acid contamination in dry-fermented sausages. Int. J. Food Microbiol. 2019, 293, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Delgado, J.; Acosta, R.; Rodríguez-Martín, A.; Bermúdez, E.; Núñez, F.; Asensio, M.A. Growth inhibition and stability of PgAFP from Penicillium chrysogenum against fungi common on dry-ripened meat products. Int. J. Food Microbiol. 2015, 205, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Herrero, A.M.; Ordóñez, J.A.; de Avila, R.; Herranz, B.; de la Hoz, L.; Cambero, M.I. Breaking strength of dry fermented sausages and their correlation with texture profile analysis (TPA) and physico-chemical characteristics. Meat Sci. 2007, 77, 331–338. [Google Scholar] [CrossRef] [PubMed]
- Mendonça, R.C.; Gouvêa, D.M.; Hungaro, H.M.; Sodré, A.D.F.; Querol-Simon, A. Dynamics of the yeast flora in artisanal country style and industrial dry cured sausage (yeast in fermented sausage). Food Control 2013, 29, 143–148. [Google Scholar] [CrossRef] [Green Version]
- Dos Santos Cruxen, C.E.; Funck, G.D.; Haubert, L.; da Silva Dannenberg, G.; de Lima Marques, J.; Chaves, F.C.; da Silva, W.P.; Fiorentini, Â.M. Selection of native bacterial starter culture in the production of fermented meat sausages: Application potential, safety aspects, and emerging technologies. Food Res. Int. 2019, 122, 371–382. [Google Scholar] [CrossRef]
- Drosinos, E.H.; Paramithiotis, S.; Kolovos, G.; Tsikouras, I.; Metaxopoulos, I. Phenotypic and technological diversity of lactic acid bacteria and staphylococci isolated from traditionally fermented sausages in Southern Greece. Food Microbiol. 2007, 24, 260–270. [Google Scholar] [CrossRef]
- Sidira, M.; Kandylis, P.; Kanellaki, M.; Kourkoutas, Y. Effect of curing salts and probiotic cultures on the evolution of flavor compounds in dry-fermented sausages during ripening. Food Chem. 2016, 201, 334–338. [Google Scholar] [CrossRef]
- Magistà, D.; Susca, A.; Ferrara, M.; Logrieco, A.F. Penicillium species: Crossroad between quality and safety of cured meat production. Curr. Opin. Food Sci. 2017, 17, 36–40. [Google Scholar] [CrossRef]
- Magan, N.; Lacey, J. Effect of water activity, temperature and substrate on interactions between field and storage fungi. Trans. Br. Mycol. Soc. 1984, 82, 83–93. [Google Scholar] [CrossRef]
- Ruiz-Moyano, S.; Martín, A.; Benito, M.J.; Aranda, E.; Casquete, R.; Córdoba, M.G. Safety and functional aspects of preselected enterococci for probiotic use in Iberian dry-fermented sausages. J. Food Sci. 2009, 74, 398–404. [Google Scholar] [CrossRef] [PubMed]
- Álvarez, M.; Núñez, F.; Delgado, J.; Andrade, M.J.; Rodríguez, M.; Rodríguez, A. Competitiveness of three biocontrol candidates against ochratoxigenic Penicillium nordicum under dry-cured meat environmental and nutritional conditions. Fungal Biol. 2020. [Google Scholar] [CrossRef]
- AOAC. Moisture in Malt Gravimetric Method (935.29), 17th ed.; AOAC: Gaithersburg, MD, USA, 2000. [Google Scholar]
- Bourne, M.C. Texture profile analysis. Food Technol. 1978, 32, 62–66. [Google Scholar]
- Hein, K.A.; Jaeger, S.R.; Tom Carr, B.; Delahunty, C.M. Comparison of five common acceptance and preference methods. Food Qual. Prefer. 2008, 19, 651–661. [Google Scholar] [CrossRef]
- Rantsiou, K.; Cocolin, L. New developments in the study of the microbiota of naturally fermented sausages as determined by molecular methods: A review. Int. J. Food Microbiol. 2006, 108, 255–267. [Google Scholar] [CrossRef] [PubMed]
- Núñez, F.; Lara, M.S.; Peromingo, B.; Delgado, J.; Sánchez-Montero, L.; Andrade, M.J. Selection and evaluation of Debaryomyces hansenii isolates as potential bioprotective agents against toxigenic penicillia in dry-fermented sausages. Food Microbiol. 2015, 46, 114–120. [Google Scholar] [CrossRef]
- Delgado, J.; Owens, R.A.; Doyle, S.; Asensio, M.A.; Núñez, F. Increased chitin biosynthesis contributes to the resistance of Penicillium polonicum against the antifungal protein PgAFP. Appl. Microbiol. Biotechnol. 2016, 371–383. [Google Scholar] [CrossRef] [Green Version]
- Da Cruz Cabral, L.; Delgado, J.; Andrade, M.J.; Rodríguez, M.; Rodríguez, A. Detection of changes in mould cell wall stress-related gene expression by a novel reverse transcription real-time PCR method. Int. J. Food Microbiol. 2018, 275, 17–23. [Google Scholar] [CrossRef]
- Lücke, F.-K. Utilization of microbes to process and preserve meat. Meat Sci. 2000, 56, 105–115. [Google Scholar] [CrossRef]
- Patrignani, F.; Iucci, L.; Vallicelli, M.; Guerzoni, M.E.; Gardini, F.; Lanciotti, R. Role of surface-inoculated Debaryomyces hansenii and Yarrowia lipolytica strains in dried fermented sausage manufacture. Part 1: Evaluation of their effects on microbial evolution, lipolytic and proteolytic patterns. Meat Sci. 2007, 75, 676–686. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Chen, Q.; Wen, R.; Wang, Y.; Qin, L.; Kong, B. Quality characteristics and flavor profile of Harbin dry sausages inoculated with lactic acid bacteria and Staphylococcus xylosus. LWT Food Sci. Technol. 2019, 114, 108392. [Google Scholar] [CrossRef]
- Collell, C.; Gou, P.; Arnau, J.; Muñoz, I.; Comaposada, J. NIR technology for on-line determination of superficial aw and moisture content during the drying process of fermented sausages. Food Chem. 2012, 135, 1750–1755. [Google Scholar] [CrossRef]
- Martín, A.; Colín, B.; Aranda, E.; Benito, M.J.; Córdoba, M.G. Characterization of Micrococcaceae isolated from Iberian dry-cured sausages. Meat Sci. 2007, 75, 696–708. [Google Scholar] [CrossRef]
- Martín-Sánchez, A.M.; Chaves-López, C.; Sendra, E.; Sayas, E.; Fenández-López, J.; Pérez-Álvarez, J.Á. Lipolysis, proteolysis and sensory characteristics of a Spanish fermented dry-cured meat product (salchichón) with oregano essential oil used as surface mold inhibitor. Meat Sci. 2011, 89, 35–44. [Google Scholar] [CrossRef]
- Cano-García, L.; Belloch, C.; Flores, M. Impact of Debaryomyces hansenii strains inoculation on the quality of slow dry-cured fermented sausages. Meat Sci. 2014, 96, 1469–1477. [Google Scholar] [CrossRef] [Green Version]
- Bruna, J.; Fernández, M.; Hierro, E.; Ordóñez, J.; de la Hoz, L. Combined use of Pronase E and a fungal extract (Penicillium aurantiogriseum) to potentiate the sensory characteristics of dry fermented sausages. Meat Sci. 2000, 54, 135–145. [Google Scholar] [CrossRef]
- Rubio, B.; Martínez, B.; Sánchez, M.J.; Dolores García-Cachán, M.; Rovira, J.; Jaime, I. Study of the shelf life of a dry fermented sausage “salchichon” made from raw material enriched in monounsaturated and polyunsaturated fatty acids and stored under modified atmospheres. Meat Sci. 2007, 76, 128–137. [Google Scholar] [CrossRef]
- Corral, S.; Belloch, C.; López-Díez, J.J.; Salvador, A.; Flores, M. Yeast inoculation as a strategy to improve the physico-chemical and sensory properties of reduced salt fermented sausages produced with entire male fat. Meat Sci. 2017, 123, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Benito, M.J.; Córdoba, J.J.; Alonso, M.; Asensio, M.A.; Núñez, F. Hydrolytic activity of Penicillium chrysogenum Pg222 on pork myofibrillar proteins. Int. J. Food Microbiol. 2003, 89, 155–161. [Google Scholar] [CrossRef]
- Pérez-Alvarez, J.A.; Sayas-Barberá, M.E.; Fernández-López, J.; Aranda-Catalá, V. Physicochemical characteristics of Spanish-type dry-cured sausage. Food Res. Int. 1999, 32, 599–607. [Google Scholar] [CrossRef]
- Latorre-Moratalla, M.L.; Bosch-Fusté, J.; Bover-Cid, S.; Aymerich, T.; Vidal-Carou, M.C. Contribution of enterococci to the volatile profile of slightly-fermented sausages. LWT Food Sci. Technol. 2011, 44, 145–152. [Google Scholar] [CrossRef]
- Iacumin, L.; Osualdini, M.; Bovolenta, S.; Boscolo, D.; Chiesa, L.; Panseri, S.; Comi, G. Microbial, chemico-physical and volatile aromatic compounds characterization of Pitina PGI, a peculiar sausage-like product of North East Italy. Meat Sci. 2020, 163, 108081. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Carrascal, J.; Ventanas, J.; Cava, R.; Andrés, A.I.; García, C. Texture and appearance of dry cured ham as affected by fat content and fatty acid composition. Food Res. Int. 2000, 33, 91–95. [Google Scholar] [CrossRef]
- Pothakos, V.; Devlieghere, F.; Villani, F.; Björkroth, J.; Ercolini, D. Lactic acid bacteria and their controversial role in fresh meat spoilage. Meat Sci. 2015, 109, 66–74. [Google Scholar] [CrossRef] [PubMed]
- Sunesen, L.O.; Trihaas, J.; Stahnke, L.H. Volatiles in a sausage surface model-influence of Penicillium nalgiovense, Pediococcus pentosaceus, ascorbate, nitrate and temperature. Meat Sci. 2004, 66, 447–456. [Google Scholar] [CrossRef]
- Ruiz, J.; Ventanas, J.; Cava, R.; Andrés, A.; García, C. Volatile compounds of dry-cured Iberian ham as affected by the length of the curing process. Meat Sci. 1999, 52, 19–27. [Google Scholar] [CrossRef]
- Corral, S.; Salvador, A.; Belloch, C.; Flores, M. Improvement the aroma of reduced fat and salt fermented sausages by Debaromyces hansenii inoculation. Food Control 2015, 47, 526–535. [Google Scholar] [CrossRef] [Green Version]
Parameters | Batches | ||||
---|---|---|---|---|---|
C a | E | D | P | M | |
pH | 5.76 ± 0.01 | 5.62 ± 0.11 * | 6.08 ± 0.08 * | 5.81 ± 0.14 | 5.78 ± 0.06 |
aw | 0.86 ± 0.00 | 0.85 ± 0.00 * | 0.86 ± 0.00 * | 0.86 ± 0.00 * | 0.85 ± 0.00 * |
Moisture (%) | 37.99 ± 1.08 | 37.72 ± 1.09 | 38.00 ± 2.23 | 35.60 ± 2.34 | 37.18 ± 0.67 |
Hardness (N) | 216.95 ± 27.50 | 203.49 ± 21.11 | 232.38 ± 9.21 | 211.69 ± 15.40 | 165.01 ± 40.15 |
Adhesiveness (N/s) | −9.85 ± 1.22 | −11.41 ± 1.27 | −11.61 ± 1.03 | −10.97 ± 0.74 | −10.80 ± 3.37 |
Springiness | 0.74 ± 0.06 | 0.70 ± 0.09 | 0.80 ± 0.07 | 0.66 ± 0.03 * | 0.75 ± 0.16 |
Cohesiveness | 0.61 ± 0.00 | 0.62 ± 0.00 | 0.61 ± 0.00 | 0.59 ± 0.00 * | 0.62 ± 0.00 |
Chewiness(N) | 100.76 ± 15.84 | 89.94 ± 18.63 | 115.62 ± 10.42 | 82.70 ± 7.67 | 78.02 ± 26.50 |
L * | 42.68 ± 0.31 | 42.33 ± 2.95 | 45.24 ± 1.57 * | 45.38 ± 3.08 * | 45.35 ± 5.21 |
a * | 19.99 ± 2.39 | 19.21 ± 0.58 | 20.67 ± 1.42 | 18.31 ± 1.2 | 16.34 ± 2.0 * |
b * | 6.74 ± 0.89 | 5.83 ± 0.21 | 6.88 ± 0.92 | 5.85 ± 0.89 | 4.43 ± 0.78 * |
Origin/Compound | Id b | Batches c | ||||
---|---|---|---|---|---|---|
C | E | D | P | M | ||
Lipid oxidation | ||||||
1-propanol | MS | n.d. d | 0.07 * | n.d. | n.d. | n.d |
1-hexanol | MS | 2.25 | 6.43 | n.d. * | 5.24 | 2.41 |
2-heptanol | MS | 0.18 | n.d. * | 0.15 | 0.17 | 0.16 |
Hexanal | MS/Rf | 1.63 | 8.25 | 0.45 * | 3.32 | 1.63 |
Heptanal | MS/Rf | n.d. | 0.71 * | n.d. | 0.42 * | n.d. |
Octane | MS | 0.16 | n.d. * | n.d. * | 0.22 | 0.15 |
2-heptanone | MS | 0.66 | 0.47 | 0.91 | 1.01 | n.d. * |
4-heptanone | MS | n.d. | n.d. | 0.14 * | n.d. | 1.52 * |
2-octanone | MS | 0.10 | n.d. * | 0.08 * | n.d. * | 0.17 |
3-octanone | MS | 0.13 | 0.60 * | n.d. * | 0.31 | 0.26 * |
2,3-octanedione | MS | n.d. | 0.22 * | n.d. | n.d. | n.d. |
Hexanoic acid | MS | 0.88 | 2.18 | 0.52 * | 1.10 | 0.40 * |
Octanoic acid | MS | 0.39 | 0.41 | 0.44 | 0.19 * | 0.34 |
Nonanoic acid | MS | n.d. | 0.28 * | 0.27 * | n.d. | n.d. |
1-octen-3-ol | MS | 1.87 | 4.42 | 0.92 * | 2.75 | 1.47 |
2-nonanone | MS | 0.19 | n.d. * | 0.19 | 0.35 | 0.27 |
Carbohydrate fermentation | ||||||
Acetoin | MS | 1.40 | 2.40 | 1.97 | 2.39 | 0.90 |
Amino acid catabolism | ||||||
2-methylpropanal | MS/Rf | 0.14 | n.d. * | 0.08 | n.d. * | n.d. * |
2-methyl-1-propanol | MS | n.d. | 0.17 * | 0.19 * | 0.17 * | 0.18 * |
3-methylbutanal | MS/Rf | 0.14 | 0.22 | 0.34 * | 0.09 * | 0.23 |
2-methylbutanal | MS/Rf | n.d. | n.d. | 0.09 * | n.d. | 0.07 * |
3-methyl-1-butanol | MS | 1.56 | 1.17 | 2.02 | 1.29 | 1.64 |
2-methyl-1-butanol | MS | 0.28 | 0.26 | 0.28 | 0.24 | 0.27 |
2-methylpropanoic acid | MS | 0.34 | 0.29 | 0.40 | 0.16 * | 0.41 |
2-methylbutanoic acid | MS | 0.23 | 0.21 | 0.20 | 0.13 | 0.28 |
3-methylbutanoic acid | MS | 0.46 | n.d. * | 0.84 * | 0.29 | 0.49 |
2-ethyl-1-hexanol | MS | 0.25 | 0.32 | n.d. * | n.d. * | n.d. * |
Phenylethyl alcohol | MS | 0.22 | n.d. * | 0.25 | 0.22 | 0.20 |
Spices | ||||||
Thujene | MS | 0.32 | 0.27 | 0.35 * | 0.22 * | 0.27 |
α-pinene | MS | 2.25 | 2.40 | 2.60 | 1.69 | 1.67 * |
β-pinene | MS | 3.63 | 3.37 | 4.22 | 3.07 | 2.58 * |
α-phellandrene | MS | 0.57 | 0.41 | 0.60 | 0.40 * | 0.46 * |
β-phellandrene | MS | 0.74 | 0.60 | 1.03 | 0.37 * | 0.38 |
3-carene | MS | 7.63 | 7.00 | 8.92 | 5.87 | 4.91 * |
o-cymene | MS | 1.03 | 1.61 | 1.06 | 1.06 | 0.93 |
D-limonene | MS | 4.71 | 4.11 | 5.40 | 3.88 | 3.18 * |
γ-terpinene | MS | 0.15 | 0.26 * | 0.21 * | 0.11 * | 0.10 * |
L-terpinen-4-ol | MS | 0.48 | 0.40 * | 0.57 * | 0.42 | 0.40 * |
α-terpineol | MS | 0.18 | 0.17 | 0.23 * | 0.17 | 0.17 |
Safrole | MS | 0.11 | 0.10 * | 0.13 * | 0.09 * | 0.10 |
Caryophyllene | MS | 0.77 | 0.77 | 0.98 | 0.65 | 0.68 |
Myristicin | MS | 0.59 | 0.50 | 0.79 | 0.42 | 0.47 |
Test | Batch a | Rank Sums | p-Value b |
---|---|---|---|
Preference ranking | C | 52 | 0.329 |
E | 70 | ||
D | 71 | ||
P | 67 | ||
M | 70 | ||
Intensity of odor | C | 69 | 0.656 |
E | 66 | ||
D | 69 | ||
P | 56 | ||
M | 70 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Álvarez, M.; Andrade, M.J.; García, C.; Rondán, J.J.; Núñez, F. Effects of Preservative Agents on Quality Attributes of Dry-Cured Fermented Sausages. Foods 2020, 9, 1505. https://doi.org/10.3390/foods9101505
Álvarez M, Andrade MJ, García C, Rondán JJ, Núñez F. Effects of Preservative Agents on Quality Attributes of Dry-Cured Fermented Sausages. Foods. 2020; 9(10):1505. https://doi.org/10.3390/foods9101505
Chicago/Turabian StyleÁlvarez, Micaela, María J. Andrade, Carmen García, Juan J. Rondán, and Félix Núñez. 2020. "Effects of Preservative Agents on Quality Attributes of Dry-Cured Fermented Sausages" Foods 9, no. 10: 1505. https://doi.org/10.3390/foods9101505
APA StyleÁlvarez, M., Andrade, M. J., García, C., Rondán, J. J., & Núñez, F. (2020). Effects of Preservative Agents on Quality Attributes of Dry-Cured Fermented Sausages. Foods, 9(10), 1505. https://doi.org/10.3390/foods9101505