Can a Corn-Derived Biosurfactant Improve Colour Traits of Wine? First Insight on Its Application during Winegrape Skin Maceration versus Oenological Tannins
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Standards
2.2. Grape Samples
2.3. Standard Chemical Parameters
2.4. Total Extraction of Phenolic Compounds from Berry Skins
2.5. Oenological Tannins and Biosurfactant
2.6. Skin Simulated Maceration
2.7. Phenolic Composition Determination
2.8. Colour Characteristics Determination
2.9. Statistical Analysis
3. Results and Discussion
3.1. Grape Characterization
3.2. Colour Parameters Evolution during Skin Maceration
3.3. Anthocyanin Content and Profile during Skin Maceration
3.4. Phenolic Composition at the End of Maceration
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kassara, S.; Kennedy, J.A. Relationship between red wine grade and phenolics. 2. Tannin composition and size. J. Agric. Food Chem. 2011, 59, 8409–8412. [Google Scholar] [CrossRef]
- Fulcrand, H.; Dueñas, M.; Salas, E.; Cheynier, V. Phenolic reactions during winemaking and aging. Am. J. Enol. Vitic. 2006, 57, 289–297. [Google Scholar]
- González-Neves, G.; Gil, G.; Barreiro, L. Influence of grape variety on the extraction of anthocyanins during the fermentation on skins. Eur. Food Res. Technol. 2008, 226, 1349–1355. [Google Scholar] [CrossRef]
- Morata, A.; Loira, I.; Heras, J.M.; Callejo, M.J.; Tesfaye, W.; González, C.; Suárez-Lepe, J.A. Yeast influence on the formation of stable pigments in red winemaking. Food Chem. 2016, 197, 686–691. [Google Scholar] [CrossRef] [PubMed]
- Cagnasso, E.; Rolle, L.; Caudana, A.; Garbi, V. Relationship between grape phenolic maturity and red wine phenolic composition. Ital. J. Food Sci. 2008, 20, 365–380. [Google Scholar]
- Versari, A.; Boulton, R.B.; Parpinello, G.P. A comparison of analytical methods for measuring the color components of red wines. Food Chem. 2008, 106, 397–402. [Google Scholar] [CrossRef]
- Bautista-Ortín, A.B.; Martínez-Hernández, A.; Ruiz-García, Y.; Gil-Muñoz, R.; Gómez-Plaza, E. Anthocyanins influence tannin–cell wall interactions. Food Chem. 2016, 206, 239–248. [Google Scholar] [CrossRef]
- Gil-Muñoz, R.; Fernández-Fernández, J.I.; Vila-López, R.; Martinez-Cutillas, A. Anthocyanin profile in Monastrell grapes in six different areas from Denomination of Origen Jumilla during ripening stage. Int. J. Food Sci. Technol. 2010, 45, 1870–1877. [Google Scholar] [CrossRef]
- Río Segade, S.; Torchio, F.; Giacosa, S.; Ricauda Aimonino, D.; Gay, P.; Lambri, M.; Dordoni, R.; Gerbi, V.; Rolle, L. Impact of several pre-treatments on the extraction of phenolic compounds in winegrape varieties with different anthocyanin profiles and skin mechanical properties. J. Agric. Food Chem. 2014, 62, 8437–8451. [Google Scholar] [CrossRef]
- Ristic, R.; Bindon, K.; Francis, L.I.; Herderich, M.J.; Iland, P.G. Flavonoids and C13-norisoprenoids in Vitis vinifera L. cv. Shiraz: Relationships between grape and wine composition, wine colour and wine sensory properties. Aust. J. Grape Wine Res. 2010, 16, 369–388. [Google Scholar] [CrossRef]
- García-Estévez, I.; Alcalde-Eon, C.; Puente, V.; Escribano-Bailón, M.T. Enological tannin effect on red wine color and pigment composition and relevance of the yeast fermentation products. Molecules 2017, 22, 2046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paissoni, M.A.; Río Segade, S.; Carrero-Carralero, C.; Montanini, C.; Giacosa, S.; Rolle, L. Role of anthocyanin traits on the impact of oenological tannins addition in the first stage of red winegrape skin simulated maceration. Food Chem. 2020, 320, 126633. [Google Scholar] [CrossRef] [PubMed]
- Vignault, A.; González-Centeno, M.R.; Pascual, O.; Gombau, J.; Jourdes, M.; Moine, V.; Iturmendi, N.; Canals, J.M.; Zamora, F.; Teissedre, P.L. Chemical characterization, antioxidant properties and oxygen consumption rate of 36 commercial oenological tannins in a model wine solution. Food Chem. 2018, 268, 210–219. [Google Scholar] [CrossRef]
- Venter, P.B.; Sisa, M.; van der Merwe, M.J.; Bonnet, S.L.; van der Westhuizen, J.H. Analysis of commercial proanthocyanidins. Part 1: The chemical composition of quebracho (Schinopsis lorentzii and Schinopsis balansae) heartwood extract. Phytochemistry 2012, 73, 95–105. [Google Scholar] [CrossRef] [PubMed]
- Venter, P.B.; Senekal, N.D.; Amra-Jordaan, M.; Bonnet, S.L.; van der Westhuizen, J.H. Analysis of commercial proanthocyanidins. Part 2: An electrospray mass spectrometry investigation into the chemical composition of sulfited quebracho (Schinopsis lorentzii and Schinopsis balansae) heartwood extract. Phytochemistry 2012, 78, 156–169. [Google Scholar] [CrossRef]
- Versari, A.; Du Toit, W.; Parpinello, G.P. Oenological tannins: A review. Aust. J. Grape Wine Res. 2013, 19, 1–10. [Google Scholar] [CrossRef]
- MohdMaidin, N.; Oruna-Concha, M.J.; Jauregi, P. Surfactant TWEEN20 provides stabilisation effect on anthocyanins extracted from red grape pomace. Food Chem. 2019, 271, 224–231. [Google Scholar] [CrossRef]
- De, S.; Malik, S.; Ghosh, A.; Saha, R.; Saha, B. A review on natural surfactants. RSC Adv. 2015, 5, 65757–65767. [Google Scholar] [CrossRef]
- Paulino, B.N.; Pessôa, M.G.; Mano, M.C.R.; Molina, G.; Neri-Numa, I.A.; Pastore, G.M. Current status in biotechnological production and applications of glycolipid biosurfactants. Appl. Microbiol. Biotechnol. 2016, 100, 10265–10293. [Google Scholar] [CrossRef]
- Campos, J.M.; Stamford, T.L.M.; Sarubbo, L.A. Production of a bioemulsifier with potential application in the food industry. Appl. Biochem. Biotechnol. 2014, 172, 3234–3252. [Google Scholar] [CrossRef]
- López-Prieto, A.; Rodríguez-López, L.; Rincón-Fontán, M.; Moldes, A.B.; Cruz, J.M. Effect of biosurfactant extract obtained from the corn-milling industry on probiotic bacteria in drinkable yogurt. J. Sci. Food Agric. 2019, 99, 824–830. [Google Scholar] [CrossRef]
- Rodríguez-López, L.; Vecino, X.; Barbosa-Pereira, L.; Moldes, A.B.; Cruz, J.M. A multifunctional extract from corn steep liquor: Antioxidant and surfactant activities. Food Funct. 2016, 7, 3724–3732. [Google Scholar] [CrossRef] [PubMed]
- Vecino, X.; Barbosa-Pereira, L.; Devesa-Rey, R.; Cruz, J.M.; Moldes, A.B. Optimization of extraction conditions and fatty acid characterization of Lactobacillus pentosus cell-bound biosurfactant/bioemulsifier. J. Sci. Food Agric. 2015, 95, 313–320. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-López, L.; Rincón-Fontán, M.; Vecino, X.; Cruz, J.M.; Moldes, A.B. Extraction, separation and characterization of lipopeptides and phospholipids from corn steep water. Sep. Purif. Technol. 2020, 248, 117076. [Google Scholar] [CrossRef]
- Le Bourvellec, C.; Le Quere, J.M.; Renard, C.M.G.C. Impact of noncovalent interactions between apple condensed tannins and cell walls on their transfer from fruit to juice: Studies in model suspensions and application. J. Agric. Food Chem. 2007, 55, 7896–7904. [Google Scholar] [CrossRef] [PubMed]
- Le Bourvellec, C.; Guyot, S.; Renard, C.M.G.C. Non-covalent interaction between procyanidins and apple cell wall material. Part 1. Effect of some environmental parameters. Biochim. Biophys. Acta 2004, 1672, 192–202. [Google Scholar] [CrossRef]
- Rodríguez-López, L.; Rincón-Fontán, M.; Vecino, X.; Cruz, J.M.; Moldes, A.B. Biological surfactants vs. polysorbates: Comparison of their emulsifier and surfactant properties. Tenside Surf. Det. 2018, 55, 273–280. [Google Scholar]
- Fournand, D.; Vicens, A.; Sidhoum, L.; Souquet, J.M.; Moutounet, M.; Cheynier, V. Accumulation and extractability of grape skin tannins and anthocyanins at different advanced physiological stages. J. Agric. Food Chem. 2006, 54, 7331–7338. [Google Scholar] [CrossRef] [PubMed]
- OIV. Compendium of International Methods of Analysis of Wines and Musts; International Organisation of Vine and Wine: Paris, France, 2016. [Google Scholar]
- Giordano, M.; Rolle, L.; Zeppa, G.; Gerbi, V. Chemical and volatile composition of three Italian sweet white Passito wines. J. Int. Sci. Vigne Vin 2009, 43, 159–170. [Google Scholar] [CrossRef] [Green Version]
- Saint-Criq, N.; Vivas, N.; Glories, Y. Maturité phénolique: Définition et contrôle. Rev. Fr. Oenol. 1998, 173, 22–25. [Google Scholar]
- Mattia, A.; Merker, R. Regulation of probiotic substances as ingredients in foods: Premarket approval or “generally recognized as safe” notification. Clin. Infect. Dis. 2008, 46 (Suppl. 2), S115–S118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez-López, L.; Rincón-Fontán, M.; Vecino, X.; Cruz, J.M.; Moldes, A. Ionic behavior assessment of surface-active compounds from corn steep liquor by exchange resins. J. Surfact. Deterg. 2017, 20, 207–217. [Google Scholar] [CrossRef] [Green Version]
- Petrozziello, M.; Torchio, F.; Piano, F.; Giacosa, S.; Ugliano, M.; Bosso, A.; Rolle, L. Impact of increasing levels of oxygen consumption on the evolution of color, phenolic, and volatile compounds of Nebbiolo wines. Front. Chem. 2018, 6, 137. [Google Scholar] [CrossRef]
- Di Stefano, R.; Cravero, M.C. Metodi per lo studio dei polifenoli dell’uva. Riv. Vitic. Enol. 1991, 44, 37–45. [Google Scholar]
- Harbertson, J.F.; Picciotto, E.A.; Adams, D.O. Measurement of polymeric pigments in grape berry extracts and wines using a protein precipitation assay combined with bisulfite bleaching. Am. J. Enol. Vitic. 2003, 54, 301–306. [Google Scholar]
- Boulton, R. The copigmentation of anthocyanins and its role in the color of red wine: A critical review. Am. J. Enol. Vitic. 2001, 52, 67–87. [Google Scholar]
- Kassambara, A.; Mundt, F. Factoextra: Extract and Visualize the Results of Multivariate Data Analyses. R Package Version 1.0.7. 2020. Available online: https://CRAN.R-project.org/package=factoextra (accessed on 25 November 2020).
- Rolle, L.; Río Segade, S.; Torchio, F.; Giacosa, S.; Cagnasso, E.; Marengo, F.; Gerbi, V. Influence of grape density and harvest date on changes in phenolic composition, phenol extractability indices, and instrumental texture properties during ripening. J. Agric. Food Chem. 2011, 59, 8796–8805. [Google Scholar] [CrossRef]
- Rolle, L.; Torchio, F.; Giacosa, S.; Río Segade, S.; Cagnasso, E.; Gerbi, V. Assessment of physicochemical differences in Nebbiolo grape berries from different production areas and sorted by flotation. Am. J. Enol. Vitic. 2012, 63, 195–204. [Google Scholar] [CrossRef]
- Mattivi, F.; Guzzon, R.; Vrhovsek, U.; Stefanini, M.; Velasco, R. Metabolite profiling of grape: Flavonols and anthocyanins. J. Agric. Food Chem. 2006, 54, 7692–7702. [Google Scholar] [CrossRef]
- Heredia, F.J.; Francia-Aricha, E.M.; Rivas-Gonzalo, J.C.; Vicario, I.M.; Santos-Buelga, C. Chromatic characterization of anthocyanins from red grapes—I. pH effect. Food Chem. 1998, 63, 491–498. [Google Scholar] [CrossRef]
- Cheng, H.D.; Jiang, X.H.; Sun, Y.; Wang, J. Color image segmentation: Advances and prospects. Pattern Recogn. 2001, 34, 2259–2281. [Google Scholar] [CrossRef]
- Río Segade, S.; Paissoni, M.A.; Vilanova, M.; Gerbi, V.; Rolle, L.; Giacosa, S. Phenolic composition influences the effectiveness of fining agents in vegan-friendly red wine production. Molecules 2020, 25, 120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martínez, J.A.; Melgosa, M.; Pérez, M.M.; Hita, E.; Negueruela, A.I. Note. Visual and instrumental color evaluation in red wines. Food Sci. Technol. Int. 2001, 7, 439–444. [Google Scholar] [CrossRef]
- Negueruela, A.I.; Echávarri, J.F.; Pérez, M.M. A study of correlation between enological colorimetric indexes and CIE colorimetric parameters in red wines. Am. J. Enol. Vitic. 1995, 46, 353–356. [Google Scholar]
- Parker, M.; Smith, P.A.; Birse, M.; Francis, I.L.; Kwiatkowski, M.J.; Lattey, K.A.; Liebich, B.; Herderich, M.J. The effect of pre- and post-ferment additions of grape derived tannin on Shiraz wine sensory properties and phenolic composition. Aust. J. Grape Wine Res. 2007, 13, 30–37. [Google Scholar] [CrossRef]
- Canuti, V.; Puccioni, S.; Giovani, G.; Salmi, M.; Rosi, I.; Bertuccioli, M. Effect of oenotannin addition on the composition of Sangiovese wines from grapes with different characteristics. Am. J. Enol. Vitic. 2012, 63, 220–231. [Google Scholar] [CrossRef]
- Río Segade, S.; Giacosa, S.; Gerbi, V.; Rolle, L. Berry skin thickness as main texture parameter to predict anthocyanin extractability in winegrapes. LWT Food Sci. Technol. 2011, 44, 392–398. [Google Scholar] [CrossRef]
- Hernández-Hierro, J.M.; Quijada-Morín, N.; Martínez-Lapuente, L.; Guadalupe, Z.; Ayestarán, B.; Rivas-Gonzalo, J.C.; Escribano-Bailón, M.T. Relationship between skin cell wall composition and anthocyanin extractability of Vitis vinifera L. cv. Tempranillo at different grape ripeness degree. Food Chem. 2014, 146, 41–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheynier, V.; Souquet, J.M.; Kontek, A.; Moutounet, M. Anthocyanin degradation in oxidising grape musts. J. Sci. Food Agric. 1994, 66, 283–288. [Google Scholar] [CrossRef]
- Sarni, P.; Fulcrand, H.; Souillol, V.; Souquet, J.M.; Cheynier, V. Mechanisms of anthocyanin degradation in grape must-like model solutions. J. Sci. Food Agric. 1995, 69, 385–391. [Google Scholar] [CrossRef]
- Romero-Cascales, I.; Fernández-Fernández, J.I.; López-Roca, J.M.; Gómez-Plaza, E. The maceration process during winemaking extraction of anthocyanins from grape skins into wine. Eur. Food Res. Technol. 2005, 221, 163–167. [Google Scholar] [CrossRef]
- Río Segade, S.; Pace, C.; Torchio, F.; Giacosa, S.; Gerbi, V.; Rolle, L. Impact of maceration enzymes on skin softening and relationship with anthocyanin extraction in wine grapes with different anthocyanin profiles. Food Res. Int. 2015, 71, 50–57. [Google Scholar] [CrossRef]
- Gil-Muñoz, R.; Moreno-Pérez, A.; Vila-López, R.; Fernández-Fernández, J.I.; Martínez-Cutillas, A.; Gómez-Plaza, E. Influence of low temperature prefermentative techniques on chromatic and phenolic characteristics of Syrah and Cabernet Sauvignon wines. Eur. Food Res. Technol. 2009, 228, 777–788. [Google Scholar] [CrossRef]
- Fernandes, A.; Oliveira, J.; Teixeira, N.; Mateus, N.; De Freitas, V. A review of the current knowledge of red wine colour. OENO One 2017, 51, 1–15. [Google Scholar]
- Pascual, O.; Vignault, A.; Gombau, J.; Navarro, M.; Gómez-Alonso, S.; García-Romero, E.; Canals, J.M.; Hermosín-Guitiérrez, I.; Teissedre, P.L.; Zamora, F. Oxygen consumption rates by different oenological tannins in a model wine solution. Food Chem. 2017, 234, 26–32. [Google Scholar] [CrossRef] [PubMed]
- Bindon, K.A.; Kassara, S.; Cynkar, W.U.; Robinson, E.M.; Scrimgeour, N.; Smith, P.A. Comparison of extraction protocols to determine differences in wine-extractable tannin and anthocyanin in Vitis vinifera L. cv. Shiraz and Cabernet Sauvignon grapes. J. Agric. Food Chem. 2014, 62, 4558–4570. [Google Scholar] [CrossRef] [PubMed]
- Versari, A.; Parpinello, G.P.; Mattioli, A.U. Characterisation of colour components and polymeric pigments of commercial red wines by using selected uv-vis spectrophotometric methods. S. Afr. J. Enol. Vitic. 2007, 28, 6–10. [Google Scholar] [CrossRef] [Green Version]
- Schwarz, M.; Picazo-Bacete, J.J.; Winterhalter, P.; Hermosín-Gutiérrez, I. Effect of copigments and grape cultivar on the color of red wines fermented after the addition of copigments. J. Agric. Food Chem. 2005, 53, 8372–8381. [Google Scholar] [CrossRef]
- Heras-Roger, J.; Díaz-Romero, C.; Darias-Martín, J. What gives a wine its strong red color? Main correlations affecting copigmentation. J. Agric. Food Chem. 2016, 64, 6567–6574. [Google Scholar] [CrossRef]
- Vignault, A.; Gombau, J.; Pascual, O.; Jourdes, M.; Moine, V.; Canals, J.M.; Zamora, F.; Teissedre, P.L. Copigmentation of malvidin-3-O-monoglucoside by oenological tannins: Incidence on wine model color in function of botanical origin, pH and ethanol content. Molecules 2019, 24, 1448. [Google Scholar] [CrossRef] [Green Version]
- Bautista-Ortín, A.B.; Martínez-Cutillas, A.; Ros-García, J.M.; López-Roca, J.M.; Gómez-Plaza, E. Improving colour extraction and stability in red wines: The use of maceration enzymes and enological tannins. Int. J. Food Sci. Technol. 2005, 40, 867–878. [Google Scholar] [CrossRef]
Compound | Unit | Grape Cultivar | Sign | |
---|---|---|---|---|
Aglianico | Cabernet Sauvignon | |||
Grape musta | ||||
Reducing sugars | g/L | 262 ± 4 | 234 ± 5 | * |
pH | - | 3.30 ± 0.01 | 3.49 ± 0.00 | * |
Titratable acidity | g/L as tartaric acid | 7.09 ± 0.05 | 5.68 ± 0.03 | * |
EA% | % | 43.66 ± 1.55 | 39.96 ± 0.69 | ns |
Mp% | % | 75.67 ± 0.01 | 69.85 ± 0.48 | ** |
Grape skin phenolic compositionb | ||||
TA | mg malvidin-3-glucoside chloride/kg grapes | 879 ± 15 | 1060 ± 41 | ** |
IPT | mg (-)-epicatechin/kg grapes | 3173 ± 180 | 3731 ± 178 | * |
FC | mg gallic acid/kg grapes | 1871 ± 298 | 2671 ± 494 | ns |
PRO | mg cyanidin chloride/kg grapes | 2561 ± 272 | 4270 ± 185 | *** |
FRV | mg (+)-catechin/kg grapes | 462 ± 43 | 642 ± 80 | * |
FRV/PRO | - | 0.18 ± 0.02 | 0.15 ± 0.01 | ns |
Anthocyanin profileb | ||||
Dp-3-G | % | 5.37 ± 0.27 | 12.58 ± 0.97 | *** |
Cy-3-G | % | 0.30 ± 0.05 | 1.53 ± 0.32 | ** |
Pt-3-G | % | 6.53 ± 0.26 | 5.32 ± 0.04 | ** |
Pn-3-G | % | 2.55 ± 0.30 | 5.44 ± 0.82 | ** |
Mv-3-G | % | 58.58 ± 0.99 | 43.82 ± 1.38 | *** |
∑ Acetyl | % | 3.76 ± 0.13 | 22.21 ± 0.57 | *** |
∑ Cinnamoyl | % | 22.92 ± 1.66 | 9.10 ± 0.11 | *** |
Colour Index | Grape Cultivar | Treatment | 6 h | 24 h | 48 h | 72 h | 96 h | 168 h | Sign b |
---|---|---|---|---|---|---|---|---|---|
Colour intensity (A.U.) | Aglianico | control | 1.823 ± 0.187 γ | 4.110 ± 0.288 b, β | 5.213 ± 0.313 a, α | 5.540 ± 0.431 α | 5.157 ± 0.341 a, α | 4.847 ± 0.407 αβ | *** |
grape seeds | 2.077 ± 0.218 γ | 4.423 ± 0.134 ab, β | 5.367 ± 0.177 a, α | 5.630 ± 0.177 α | 5.337 ± 0.175 a, α | 4.790 ± 0.248 β | *** | ||
grape skins | 2.203 ± 0.280 δ | 4.587 ± 0.180 ab, γ | 5.583 ± 0.050 a, α | 5.890 ± 0.078 α | 5.540 ± 0.151 a, αβ | 5.053 ± 0.257 βγ | *** | ||
acacia | 2.137 ± 0.203 δ | 4.243 ± 0.103 ab, γ | 5.227 ± 0.119 a, α | 5.433 ± 0.119 α | 5.137 ± 0.125 a, α | 4.637 ± 0.108 β | *** | ||
quebracho | 2.407 ± 0.222 ε | 4.740 ± 0.131 a, δ | 5.763 ± 0.120 a, αβ | 6.103 ± 0.055 α | 5.723 ± 0.049 a, β | 5.190 ± 0.085 γ | *** | ||
biosurfactant | 2.150 ± 0.212 γ | 4.473 ± 0.219 ab, β | 5.560 ± 0.295 a, α | 5.803 ± 0.351 α | 5.548 ± 0.335 a, α | 5.323 ± 0.494 αβ | *** | ||
Signa | ns | * | * | ns | * | ns | |||
Cabernet sauvignon | control | 1.477 ± 0.160 c, β | 3.703 ± 0.349 b, α | 4.620 ± 0.406 α | 4.633 ± 0.421 α | 4.120 ± 0.398 b, α | 3.703 ± 0.223 c, α | *** | |
grape seeds | 1.710 ± 0.100 abc, δ | 4.003 ± 0.196 ab, βγ | 4.670 ± 0.108 α | 4.483 ± 0.333 αβ | 4.233 ± 0.190 ab, αβγ | 3.857 ± 0.181 c, γ | *** | ||
grape skins | 1.540 ± 0.139 bc, γ | 4.100 ± 0.249 ab, β | 5.003 ± 0.310 α | 4.510 ± 0.246 αβ | 4.443 ± 0.280 ab, αβ | 4.090 ± 0.274 bc, β | *** | ||
acacia | 1.757 ± 0.045 abc, δ | 4.173 ± 0.110 ab, γ | 5.097 ± 0.234 α | 5.023 ± 0.280 α | 4.657 ± 0.092 ab, αβ | 4.257 ± 0.015 abc, βγ | *** | ||
quebracho | 1.887 ± 0.117 a, δ | 4.360 ± 0.215 a, γ | 5.090 ± 0.278 α | 5.033 ± 0.301 αβ | 4.873 ± 0.214 ab, αβγ | 4.450 ± 0.090 ab, βγ | *** | ||
biosurfactant | 1.807 ± 0.042 ab, γ | 4.377 ± 0.012 a, βγ | 5.490 ± 0.676 α | 5.217 ± 0.621 αβ | 4.987 ± 0.434 a, αβ | 4.637 ± 0.360 a, αβγ | * | ||
Signa | ** | * | ns | ns | * | ** | |||
Tonality | Aglianico | control | 0.454 ± 0.010 c, α | 0.397 ± 0.009 b, β | 0.398 ± 0.006 b, β | 0.409 ± 0.005 b, β | 0.435 ± 0.008 α | 0.478 ± 0.020 α | *** |
grape seeds | 0.513 ± 0.005 a, α | 0.431 ± 0.010 a, β | 0.418 ± 0.007 a, β | 0.428 ± 0.009 a, β | 0.457 ± 0.008, β | 0.488 ± 0.010 β | *** | ||
grape skins | 0.487 ± 0.005 b, α | 0.416 ± 0.005 ab, γ | 0.416 ± 0.002 ab, γ | 0.420 ± 0.003 a, γ | 0.453 ± 0.005 β | 0.484 ± 0.007 α | *** | ||
acacia | 0.511 ± 0.007 ab, α | 0.428 ± 0.002 a, β | 0.423 ± 0.006 a, β | 0.427 ± 0.006 a, β | 0.460 ± 0.006 α | 0.491 ± 0.005 α | *** | ||
quebracho | 0.486 ± 0.012 b, α | 0.416 ± 0.003 ab, γ | 0.414 ± 0.003 ab, γ | 0.418 ± 0.000 a, γ | 0.451 ± 0.002 β | 0.476 ± 0.003 α | *** | ||
biosurfactant | 0.440 ± 0.008 c, β | 0.396 ± 0.008 b, γ | 0.397 ± 0.008 b, γ | 0.408 ± 0.004 b, γ | 0.433 ± 0.004, β | 0.477 ± 0.003 α | *** | ||
Signa | *** | *** | *** | * | ns | ns | |||
Cabernet sauvignon | control | 0.460 ± 0.017 c, βγ | 0.413 ± 0.012 c, γ | 0.427 ± 0.015 b, γ | 0.463 ± 0.015 βγ | 0.490 ± 0.020 β | 0.570 ± 0.026 α | *** | |
grape seeds | 0.537 ± 0.012 a, β | 0.487 ± 0.025 a, γδ | 0.483 ± 0.006 ab, δ | 0.473 ± 0.015 δ | 0.527 ± 0.006 βγ | 0.607 ± 0.015 α | *** | ||
grape skins | 0.510 ± 0.017 ab, βγ | 0.487 ± 0.021 a, γδ | 0.487 ± 0.006 a, γδ | 0.463 ± 0.012 δ | 0.530 ± 0.010 β | 0.593 ± 0.012 α | *** | ||
acacia | 0.517 ± 0.006 ab, β | 0.460 ± 0.010 ab, γ | 0.463 ± 0.012 ab, γ | 0.460 ± 0.010 γ | 0.507 ± 0.006 β | 0.597 ± 0.006 α | *** | ||
quebracho | 0.530 ± 0.017 a, β | 0.470 ± 0.000 ab, γ | 0.457 ± 0.006 ab, γ | 0.457 ± 0.006 γ | 0.507 ± 0.006 β | 0.587 ± 0.015 α | *** | ||
biosurfactant | 0.477 ± 0.015 bc, β | 0.440 ± 0.017 bc, β | 0.457 ± 0.047 ab, β | 0.457 ± 0.038 β | 0.510 ± 0.026 β | 0.593 ± 0.015 α | *** | ||
Signa | *** | * | * | ns | ns | ns |
Grape Cultivar | Time (h) | Treatment | Dp-3-G (%) | Cy-3-G (%) | Pt-3-G (%) | Pn-3-G (%) | Mv-3-G (%) | ∑ Acetyl (%) | ∑ Cinnamoyl (%) | Total (mg/kg grapes) |
---|---|---|---|---|---|---|---|---|---|---|
Aglianico | 6 | control | 3.49 ± 0.47 b | 0.38 ± 0.11 | 4.78 ± 0.45 b | 3.63 ± 0.64 | 73.04 ± 1.72 α | 4.45 ± 0.18 a, αβ | 10.23 ± 1.35 β | 260 ± 30 β |
grape seeds | 3.90 ± 0.34 ab | 0.38 ± 0.02 α | 5.14 ± 0.28 ab | 3.46 ± 0.37 α | 73.11 ± 0.59 α | 4.37 ± 0.24 a, α | 10.10 ± 0.97 β | 256 ± 26 β | ||
grape skins | 3.81 ± 0.14 ab, αβ | 0.36 ± 0.02 α | 5.02 ± 0.12 ab, β | 3.25 ± 0.10 α | 73.36 ± 0.82 α | 3.91 ± 0.62 ab | 10.84 ± 1.60 β | 277 ± 23 β | ||
acacia | 3.73 ± 0.11 ab, α | 0.36 ± 0.06 α | 4.91 ± 0.14 ab, γ | 3.40 ± 0.43 | 73.34 ± 1.30 α | 3.82 ± 0.15 abc, β | 10.44 ± 0.74 γ | 261 ± 23 β | ||
quebracho | 4.31 ± 0.18 a, α | 0.39 ± 0.02 α | 5.52 ± 0.20 a, β | 3.44 ± 0.15 α | 73.15 ± 0.25 α | 3.35 ± 0.02 bc, γ | 9.84 ± 0.48 γ | 294 ± 21 γ | ||
biosurfactant | 3.92 ± 0.11 ab, α | 0.40 ± 0.04 α | 5.20 ± 0.11 ab, β | 3.71 ± 0.30 α | 73.85 ± 0.74 α | 3.03 ± 0.08 c, γ | 9.89 ± 0.89 β | 277 ± 23 β | ||
Signa | * | ns | * | ns | ns | *** | ns | ns | ||
72 | control | 4.14 ± 0.60 a | 0.34 ± 0.08 | 6.01 ± 0.59 ab | 2.90 ± 0.55 | 69.02 ± 1.91 αβ | 3.52 ± 0.77 c, β | 14.07 ± 1.94 αβ | 694 ± 31 ab, α | |
grape seeds | 4.17 ± 0.51 a | 0.26 ± 0.03 β | 6.03 ± 0.44 ab | 2.53 ± 0.13 β | 68.65 ± 0.15 β | 4.55 ± 0.18 a, α | 13.80 ± 0.82 α | 704 ± 26 ab, α | ||
grape skins | 4.24 ± 0.26 a, α | 0.27 ± 0.02 β | 5.97 ± 0.21 ab, α | 2.48 ± 0.13 β | 68.02 ± 0.27 β | 4.34 ± 0.15 ab | 14.68 ± 0.25 α | 707 ± 7 ab, α | ||
acacia | 3.79 ± 0.07 a, α | 0.26 ± 0.04 αβ | 5.50 ± 0.12 b, α | 2.59 ± 0.43 | 68.49 ± 0.39 β | 4.33 ± 0.16 ab, α | 15.05 ± 0.18 β | 673 ± 13 b, α | ||
quebracho | 4.52 ± 0.20 a, α | 0.31 ± 0.01 β | 6.35 ± 0.18 a, α | 2.67 ± 0.10 β | 68.22 ± 0.22 β | 3.90 ± 0.04 bc, β | 14.02 ± 0.45 β | 745 ± 4 a, α | ||
biosurfactant | 4.09 ± 0.15 a, α | 0.32 ± 0.03 αβ | 5.93 ± 0.12 ab, α | 2.84 ± 0.24 β | 69.35 ± 0.83 β | 3.45 ± 0.06 c, β | 14.01 ± 0.63 α | 664 ± 27 b, α | ||
Signa | * | ns | * | ns | ns | * | ns | ** | ||
168 | control | 3.16 ± 0.80 b | 0.30 ± 0.02 | 5.61 ± 0.91 b | 2.65 ± 0.56 | 67.47 ± 1.55 β | 4.88 ± 0.31 a, α | 15.93 ± 2.08 α | 644 ± 67 α | |
grape seeds | 3.41 ± 0.73 ab | 0.25 ± 0.06 β | 5.80 ± 0.83 ab | 2.28 ± 0.19 β | 68.73 ± 0.57 β | 3.23 ± 0.61 b, β | 16.33 ± 1.76 α | 692 ± 50 α | ||
grape skins | 3.50 ± 0.38 ab, β | 0.27 ± 0.02 β | 5.79 ± 0.51 ab, αβ | 2.28 ± 0.10 β | 68.28 ± 0.94 β | 3.37 ± 1.14 ab | 16.51 ± 0.71 α | 665 ± 21 α | ||
acacia | 2.96 ± 0.09 b, β | 0.24 ± 0.03 β | 5.20 ± 0.07 b, β | 2.34 ± 0.42 | 67.15 ± 0.07 β | 4.53 ± 0.17 ab, α | 17.58 ± 0.38 α | 634 ± 5 α | ||
quebracho | 3.74 ± 0.08 a, β | 0.27 ± 0.01 γ | 6.02 ± 0.09 a, α | 2.38 ± 0.08 γ | 66.97 ± 0.20 γ | 4.14 ± 0.07 ab, α | 16.49 ± 0.20 α | 685 ± 8 β | ||
biosurfactant | 3.42 ± 0.28 ab, β | 0.27 ± 0.02 β | 5.87 ± 0.32 ab, α | 2.41 ± 0.11 β | 67.65 ± 1.85 β | 3.82 ± 0.07 ab, α | 16.56 ± 1.74 α | 646 ± 25 α | ||
Signa | ** | ns | ** | ns | ns | * | ns | ns | ||
Signb | ns,ns,*,***,**,* | ns,**,**,*,***,** | ns,ns,*,**,**,** | ns,**,***,ns,***,** | *,***,***,***,***,** | *,*,ns,**,***,*** | *,**,**,***,***,** | ***,***,***,***,***,*** | ||
Cabernet sauvignon | 6 | control | 6.86 ± 0.99 b, β | 1.66 ± 0.71 ab | 5.14 ± 0.36 b, β | 6.06 ± 1.13 | 50.10 ± 1.79 b, β | 26.20 ± 1.99 a, α | 3.98 ± 0.44 β | 294 ± 27 γ |
grape seeds | 7.26 ± 0.70 ab | 1.38 ± 0.18 b, α | 5.70 ± 0.34 ab, β | 6.33 ± 0.84 α | 54.28 ± 0.60 a, α | 20.01 ± 2.00 b, β | 3.40 ± 0.67 β | 290 ± 20 γ | ||
grape skins | 6.85 ± 0.63 b, αβ | 1.31 ± 0.19 b, α | 5.56 ± 0.29 ab, β | 6.35 ± 0.26 α | 55.45 ± 1.33 a, α | 20.84 ± 2.22 b | 4.48 ± 0.65 β | 275 ± 27 γ | ||
acacia | 8.91 ± 0.57 a, αβ | 2.40 ± 0.17 a, α | 6.24 ± 0.32 a, β | 7.23 ± 0.54 α | 53.04 ± 0.37 ab, α | 18.72 ± 0.39 b, β | 3.46 ± 0.90 β | 295 ± 8 γ | ||
quebracho | 8.37 ± 0.57 ab, β | 1.64 ± 0.16 ab, α | 6.14 ± 0.34 a, β | 6.54 ± 0.06 α | 53.00 ± 1.07 ab, α | 21.28 ± 2.75 ab | 3.03 ± 0.66 β | 294 ± 35 γ | ||
biosurfactant | 7.70 ± 0.39 ab, β | 1.87 ± 0.33 ab, α | 5.74 ± 0.19 ab, β | 6.84 ± 0.43 α | 52.80 ± 0.91 ab, αβ | 20.81 ± 0.49 b | 4.24 ± 0.56 β | 313 ± 21 γ | ||
Signa | * | * | * | ns | ** | ** | ns | ns | ||
72 | control | 9.50 ± 0.21 ab, α | 1.32 ± 0.04 b | 7.38 ± 0.21 ab, α | 5.13 ± 0.57 | 51.21 ± 0.53 a, β | 19.64 ± 0.83 de, β | 5.85 ± 0.32 b, α | 846 ± 24 ab, α | |
grape seeds | 8.27 ± 0.65 b | 1.02 ± 0.12 b, αβ | 6.72 ± 0.28 b, α | 4.73 ± 0.58 αβ | 49.31 ± 1.11 ab, β | 23.92 ± 0.57 a, α | 6.04 ± 0.63 b, α | 758 ± 11 b, α | ||
grape skins | 8.19 ± 0.61 b, α | 0.98 ± 0.17 b, αβ | 6.64 ± 0.33 b, α | 4.76 ± 0.25 β | 49.38 ± 1.18 ab, β | 22.97 ± 0.30 ab | 7.09 ± 0.23 a, α | 762 ± 59 b, α | ||
acacia | 10.41 ± 0.63 a, α | 1.82 ± 0.05 a, β | 7.36 ± 0.30 ab, α | 5.43 ± 0.38 β | 47.01 ± 0.51 b, γ | 21.59 ± 0.49 bc, α | 6.38 ± 0.31 ab, α | 851 ± 19 ab, α | ||
quebracho | 10.16 ± 0.69 a, α | 1.30 ± 0.12 b, αβ | 7.50 ± 0.21 a, α | 5.14 ± 0.12 β | 48.67 ± 0.81 ab, β | 20.88 ± 0.30 cd | 6.35 ± 0.35 ab, α | 865 ± 33 a, α | ||
biosurfactant | 9.57 ± 0.69 ab, α | 1.39 ± 0.28 ab, αβ | 7.30 ± 0.28 ab, α | 5.10 ± 0.33 αβ | 51.02 ± 1.07 a, β | 19.12 ± 0.73 e | 6.51 ± 0.22 ab, α | 807 ± 34 ab, α | ||
Signa | ** | *** | * | ns | ** | *** | * | ** | ||
168 | control | 7.19 ± 0.02 abc, αβ | 0.98 ± 0.03 ab | 6.84 ± 0.25 α | 4.77 ± 0.71 | 57.48 ± 1.12 a, α | 17.46 ± 1.73 d, β | 5.30 ± 0.37 b, α | 668 ± 11 ab, β | |
grape seeds | 6.55 ± 0.92 bc | 0.82 ± 0.14 b, β | 6.43 ± 0.52 αβ | 4.48 ± 0.60 β | 57.24 ± 1.73 a, α | 18.67 ± 0.60 cd, β | 5.81 ± 0.22 ab, α | 591 ± 37 b, β | ||
grape skins | 6.35 ± 0.76 c, β | 0.74 ± 0.15 b, β | 6.00 ± 0.45 αβ | 4.20 ± 0.25 β | 52.34 ± 1.45 bc, αβ | 23.91 ± 0.22 a | 6.45 ± 0.24 a, α | 579.51 ± 55 b, β | ||
acacia | 8.51 ± 0.68 ab, β | 1.36 ± 0.07 a, γ | 6.91 ± 0.40 αβ | 4.88 ± 0.40 β | 49.73 ± 0.41 c, β | 22.47 ± 0.65 ab, α | 6.15 ± 0.44 ab, α | 657 ± 23 ab, β | ||
quebracho | 8.77 ± 0.78 a, αβ | 1.04 ± 0.13 ab, β | 7.21 ± 0.29 α | 4.68 ± 0.12 γ | 50.27 ± 0.89 c, β | 21.67 ± 0.26 b | 6.36 ± 0.42 a, α | 711 ± 25 a, β | ||
biosurfactant | 7.46 ± 0.90 abc, β | 0.99 ± 0.24 ab, β | 6.64 ± 0.39 α | 4.37 ± 0.38 β | 53.89 ± 1.24 ab, α | 20.46 ± 0.90 bc | 6.19 ± 0.30 ab, α | 619 ± 32 ab, β | ||
Signa | * | ** | ns | ns | *** | *** | * | ** | ||
Signb | *,ns,*,*,*,* | ns,*,*,***,**,* | **,*,*,*,**,** | ns,*,***,**,***,*** | *,***,**,***,*** | **,**,ns,***,ns,ns | *,**,***,**,***,*** | ***,***,**,***,***,*** |
Grape Cultivar | Treatment | Copigmented Anthocyanins (%) | Free Anthocyanins (%) | Polymeric Pigments (%) | LPP (%) | SPP (%) | IPT (mg/kg grapes) | TA (mg/kg grapes) | FNA (mg/kg grapes) |
---|---|---|---|---|---|---|---|---|---|
Aglianico | control | 26.13 ± 1.14 a | 63.55 ± 0.25 b | 19.90 ± 0.63 | 8.89 ± 0.68 | 11.01 ± 0.14 | 2014 ± 148 c | 542 ± 57 | 639 ± 30 c |
grape seeds | 21.62 ± 0.72 b | 67.57 ± 0.31 a | 20.71 ± 0.95 | 9.95 ± 0.97 | 10.75 ± 0.02 | 2285 ± 68 bc | 532 ± 19 | 828 ± 21 b | |
grape skins | 24.50 ± 0.64 ab | 64.37 ± 1.16 ab | 20.19 ± 0.35 | 8.10 ± 1.06 | 12.09 ± 1.17 | 2320 ± 89 b | 535 ± 5 | 814 ± 22 b | |
acacia | 25.24 ± 1.40 ab | 64.11 ± 1.14 ab | 21.81 ± 0.29 | 9.44 ± 1.207 | 12.37 ± 1.21 | 2283 ± 37 bc | 498 ± 13 | 831 ± 25 b | |
quebracho | 24.34 ± 3.42 ab | 65.32 ± 3.54 ab | 20.62 ± 0.34 | 10.14 ± 0.47 | 10.48 ± 0.39 | 2641 ± 18 a | 544 ± 6 | 1045 ± 28 a | |
biosurfactant | 25.70 ± 1.20 a | 64.12 ± 1.66 ab | 20.99 ± 1.45 | 9.44 ± 2.11 | 11.55 ± 0.72 | 2141 ± 184 bc | 533 ± 46 | 632 ± 70 c | |
Sign | * | *** | ns | ns | ns | *** | ns | *** | |
Cabernet sauvignon | control | 18.42 ± 2.15 b | 64.88 ± 0.97 a | 36.60 ± 10.66 | 16.07 ± 11.33 | 20.53 ± 1.55 a | 2192 ± 222 c | 510 ± 58 b | 482 ± 38 d |
grape seeds | 19.98 ± 2.30 ab | 64.23 ± 2.75 a | 29.20 ± 1.31 | 13.46 ± 1.49 | 15.74 ± 0.19 b | 2733 ± 139 ab | 543 ± 13 ab | 713 ± 6 c | |
grape skins | 22.62 ± 3.82 ab | 61.96 ± 3.03 ab | 28.83 ± 0.67 | 12.27 ± 0.92 | 16.56 ± 0.86 b | 2671 ± 51 bc | 534 ± 28 ab | 751 ± 21 c | |
acacia | 20.14 ± 1.20 ab | 64.93 ± 1.32 a | 29.62 ± 0.31 | 14.53 ± 0.52 | 15.09 ± 0.38 b | 2856 ± 166 ab | 582 ± 11 ab | 860 ± 19 b | |
quebracho | 23.30 ± 0.65 ab | 63.02 ± 0.66 ab | 30.53 ± 1.19 | 13.79 ± 3.62 | 16.74 ± 2.54 b | 3191 ± 208 a | 606 ± 41 a | 1145 ± 57 a | |
biosurfactant | 24.95 ± 1.55 a | 59.62 ± 1.92 b | 32.41 ± 3.37 | 16.65 ± 3.14 | 16.65 ± 0.77 b | 2659 ± 238 bc | 529 ± 16 ab | 406 ± 19 d | |
Sign | * | *** | ns | ns | ** | *** | * | *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scalzini, G.; López-Prieto, A.; Paissoni, M.A.; Englezos, V.; Giacosa, S.; Rolle, L.; Gerbi, V.; Río Segade, S.; Pérez Cid, B.; Moldes, A.B.; et al. Can a Corn-Derived Biosurfactant Improve Colour Traits of Wine? First Insight on Its Application during Winegrape Skin Maceration versus Oenological Tannins. Foods 2020, 9, 1747. https://doi.org/10.3390/foods9121747
Scalzini G, López-Prieto A, Paissoni MA, Englezos V, Giacosa S, Rolle L, Gerbi V, Río Segade S, Pérez Cid B, Moldes AB, et al. Can a Corn-Derived Biosurfactant Improve Colour Traits of Wine? First Insight on Its Application during Winegrape Skin Maceration versus Oenological Tannins. Foods. 2020; 9(12):1747. https://doi.org/10.3390/foods9121747
Chicago/Turabian StyleScalzini, Giulia, Alejandro López-Prieto, Maria A. Paissoni, Vasileios Englezos, Simone Giacosa, Luca Rolle, Vincenzo Gerbi, Susana Río Segade, Benita Pérez Cid, Ana B. Moldes, and et al. 2020. "Can a Corn-Derived Biosurfactant Improve Colour Traits of Wine? First Insight on Its Application during Winegrape Skin Maceration versus Oenological Tannins" Foods 9, no. 12: 1747. https://doi.org/10.3390/foods9121747
APA StyleScalzini, G., López-Prieto, A., Paissoni, M. A., Englezos, V., Giacosa, S., Rolle, L., Gerbi, V., Río Segade, S., Pérez Cid, B., Moldes, A. B., & Cruz, J. M. (2020). Can a Corn-Derived Biosurfactant Improve Colour Traits of Wine? First Insight on Its Application during Winegrape Skin Maceration versus Oenological Tannins. Foods, 9(12), 1747. https://doi.org/10.3390/foods9121747