Quantification of Ash and Moisture in Wheat Flour by Raman Spectroscopy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Milling Process
2.2. Moisture and Ash Analysis
2.3. Elemental Analysis
2.4. Raman Spectra
2.5. Data Analysis
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cardoso, R.V.C.; Fernandes, A.; Heleno, S.A.; Rodrigues, P.; Gonzalez-Paramas, A.M.; Barros, L.; Ferreira, I. Physicochemical characterization and microbiology of wheat and rye flours. Food Chem. 2019, 280, 123–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carson, G.R.; Edwards, N.M. Criteria of Wheat and Flour Quality. In WHEAT: Chemistry and Technology; American Association of Cereal Chemists: St Paul, MN, USA, 2009; pp. 97–118. [Google Scholar] [CrossRef]
- Kulkarni, S.D.; Acharya, R.; Nair, A.G.C.; Rajurkar, N.S.; Reddy, A.V.R. Determination of elemental concentration profiles in tender wheatgrass (Triticum aestivum L.) using instrumental neutron activation analysis. Food Chem. 2006, 95, 699–707. [Google Scholar] [CrossRef]
- Piironen, V.; Salmenkallio-Marttila, M. Micronutrients and Phytochemicals in Wheat Grain. In WHEAT: Chemistry and Technology; American Association of Cereal Chemists: St Paul, MN, USA, 2009; pp. 179–222. [Google Scholar] [CrossRef]
- Obert, J.C.; Ridley, W.P.; Schneider, R.W.; Riordan, S.G.; Nemeth, M.A.; Trujillo, W.A.; Breeze, M.L.; Sorbet, R.; Astwood, J.D. The composition of grain and forage from glyphosate tolerant wheat MON 71800 is equivalent to that of conventional wheat (Triticum aestivum L.). J. Agric. Food Chem. 2004, 52, 1375–1384. [Google Scholar] [CrossRef] [PubMed]
- Betschart, A.A. Nutritional quality of wheat products. In Wheat: Chemistry and Technology; American Association of Cereal Chemists: St Paul, MN, USA, 1988; pp. 91–129. ISBN 0913250503. [Google Scholar]
- Hemery, Y.; Holopainen, U.; Lampi, A.-M.; Lehtinen, P.; Nurmi, T.; Piironen, V.; Edelmann, M.; Rouau, X. Potential of dry fractionation of wheat bran for the development of food ingredients, part II: Electrostatic separation of particles. J. Cereal Sci. 2011, 53, 9–18. [Google Scholar] [CrossRef]
- Bucsella, B.; Molnár, D.; Harasztos, A.H.; Tömösközi, S. Comparison of the rheological and end-product properties of an industrial aleurone-rich wheat flour, whole grain wheat and rye flour. J. Cereal Sci. 2016, 69, 40–48. [Google Scholar] [CrossRef]
- Bilge, G.; Sezer, B.; Eseller, K.E.; Berberoglu, H.; Koksel, H.; Boyaci, I.H. Ash analysis of flour sample by using laser-i nduced breakdown spectroscopy. Spectrochim. Acta B 2016, 124, 74–78. [Google Scholar] [CrossRef]
- Sezer, B.; Bilge, G.; Sanal, T.; Koksel, H.; Boyaci, I.H. A novel method for ash analysis in wheat milling fractions by using laser-induced breakdown spectroscopy. J. Cereal Sci. 2017, 78, 33–38. [Google Scholar] [CrossRef]
- Poji, M.; Mastilovi, J.; Majce, N. The Application of Near Infrared Spectroscopy in Wheat Quality Control. In Infrared Spectroscopy—Life and Biomedical Sciences; InTechOpen: London, UK, 2012; pp. 167–184. [Google Scholar] [CrossRef] [Green Version]
- Ferrão, M.F.; Davanzo, C.U. Horizontal attenuated total reflection applied to simultaneous determination of ash and protein contents in commercial wheat flour. Anal. Chim. Acta 2005, 540, 411–415. [Google Scholar] [CrossRef]
- Markiewicz-Keszycka, M.; Casado-Gavalda, M.P.; Cama-Moncunill, X.; Cama-Moncunill, R.; Dixit, Y.; Cullen, P.J.; Sullivan, C. Laser-induced breakdown spectroscopy (LIBS) for rapid analysis of ash, potassium and magnesium in gluten free flours. Food Chem. 2018, 244, 324–330. [Google Scholar] [CrossRef] [PubMed]
- Sujka, K.; Koczon, P.; Ceglinska, A.; Reder, M.; Ciemniewska-Zytkiewicz, H. The Application of FT-IR Spectroscopy for Quality Control of Flours Obtained from Polish Producers. J. Anal. Methods Chem. 2017, 2017, 4315678. [Google Scholar] [CrossRef] [PubMed]
- Boyaci, I.H.; Temiz, H.T.; Geniş, H.E.; Acar Soykut, E.; Yazgan, N.N.; Güven, B.; Uysal, R.S.; Bozkurt, A.G.; İlaslan, K.; Torun, O.; et al. Dispersive and FT-Raman spectroscopic methods in food analysis. RSC Adv. 2015, 5, 56606–56624. [Google Scholar] [CrossRef]
- Technical, A. Ash-Basic Method. AACC Int. Approv. Methods 2009. [Google Scholar] [CrossRef]
- Technical, A. Moisture-Air-Oven Methods. AACC Int. Approv. Methods 2009. [Google Scholar] [CrossRef]
- Geladi, P.; Kowalski, B.R. Partial least-squares regression: A tutorial. Anal. Chim. Acta 1986, 185, 1–17. [Google Scholar] [CrossRef]
- Czaja, T.; Mazurek, S.; Szostak, R. Quantification of gluten in wheat flour by FT-Raman spectroscopy. Food Chem. 2016, 211, 560–563. [Google Scholar] [CrossRef] [PubMed]
- Wiercigroch, E.; Szafraniec, E.; Czamara, K.; Pacia, M.Z.; Majzner, K.; Kochan, K.; Kaczor, A.; Baranska, M.; Malek, K. Raman and infrared spectroscopy of carbohydrates: A review. Spectrochim. Acta A 2017, 185, 317–335. [Google Scholar] [CrossRef] [PubMed]
- Mariotti, F.; Tome, D.; Mirand, P.P. Converting nitrogen into protein-beyond 6.25 and Jones’ factors. Crit. Rev. Food Sci. Nutr. 2008, 48, 177–184. [Google Scholar] [CrossRef] [PubMed]
Parameter | Ingredient | |
---|---|---|
Ash | Moisture | |
R | 0.998 | 0.997 |
Rcv | 0.933 | 0.841 |
RSEPcal | 2.35 | 1.41 |
RSEPval | 2.06 | 1.75 |
Parameter | Element | |||
---|---|---|---|---|
Nitrogen | Carbon | Sulfur | Oxygen | |
R | 0.995 | 0.995 | 0.974 | 0.979 |
Rcv | 0.965 | 0.878 | 0.812 | 0.874 |
RSEPcal | 1.18 | 0.08 | 3.41 | 0.25 |
RSEPval | 1.13 | 0.10 | 3.30 | 0.28 |
Number of factors | 3 | 4 | 3 | 3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Czaja, T.; Sobota, A.; Szostak, R. Quantification of Ash and Moisture in Wheat Flour by Raman Spectroscopy. Foods 2020, 9, 280. https://doi.org/10.3390/foods9030280
Czaja T, Sobota A, Szostak R. Quantification of Ash and Moisture in Wheat Flour by Raman Spectroscopy. Foods. 2020; 9(3):280. https://doi.org/10.3390/foods9030280
Chicago/Turabian StyleCzaja, Tomasz, Aldona Sobota, and Roman Szostak. 2020. "Quantification of Ash and Moisture in Wheat Flour by Raman Spectroscopy" Foods 9, no. 3: 280. https://doi.org/10.3390/foods9030280
APA StyleCzaja, T., Sobota, A., & Szostak, R. (2020). Quantification of Ash and Moisture in Wheat Flour by Raman Spectroscopy. Foods, 9(3), 280. https://doi.org/10.3390/foods9030280