Rheology and Microstructures of Rennet Gels from Differently Heated Goat Milk
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cheese Manufacture and Curd Yield (CY) Measurement
2.2. Laboratory Curd Yield (LCY) and Curd Yield Efficiency (CYE)
2.3. Rheological Measurements
2.4. Scanning Electronic Microscopy (SEM)
2.5. Statistical Analysis
3. Results and Discussion
3.1. Rheological Measurements
3.2. Coagulation Parameters
3.3. Curd Yield Parameters
3.4. Correlations between Curd Yield and Coagulation Parameters
3.5. Microstructures of Rennet Gels
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Galante, M.; Boeris, V.; Álvarez, E.; Risso, P. Microstructural and textural properties of rennet-induced milk protein gel: Effect of guar gum. Int. J. Food Prop. 2017, 20, S2569–S2578. [Google Scholar] [CrossRef] [Green Version]
- Guinee, T.P.; O’Callaghan, D.J.; Pudja, P.D.; O’Brien, N. Rennet coagulation properties of retentates obtained by ultrafiltration of skim milks heated to different temperatures. Int. Dairy J. 1996, 6, 581–596. [Google Scholar] [CrossRef]
- Panthi, R.R.; Kelly, A.L.; Sheehan, J.J.; Bulbul, K.; Vollmer, A.H.; McMahon, D.J. Influence of protein concentration and coagulation temperature on rennet-induced gelation characteristics and curd microstructure. J. Dairy Sci. 2019, 102, 177–189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dimassi, O.; Neidhart, S.; Carle, R.; Mertz, L.; Migliore, G.; Mané-Bielfeldt, A.; Zárate, A.V. Cheese production potential of milk of Dahlem Cashmere goats from a rheological point of view. Small Rumin. Res. 2005, 57, 31–36. [Google Scholar] [CrossRef]
- Stocco, G.; Pazzola, M.; Dettori, M.L.; Paschino, P.; Bittante, G.; Vacca, G.M. Effect of composition on coagulation, curd firming, and syneresis of goat milk. J. Dairy Sci. 2018, 101, 9693–9702. [Google Scholar] [CrossRef]
- Steffl, A.; Schreiber, R.; Hafenmair, M.; Kessler, H.-G. Influence of whey protein aggregates on the renneting properties of milk. Int. Dairy J. 1999, 9, 403–404. [Google Scholar] [CrossRef]
- Da Silva, V.B.; da Costa, M.P. Rheology applied to dairy products. Rheol. Open Access 2017, 1, 104–105. [Google Scholar]
- Stocco, G.; Pazzola, M.; Dettori, M.L.; Paschino, P.; Summer, A.; Cipolat-Gotet, C.; Vacca, G.M. Effects of indirect indicators of udder health on nutrient recovery and cheese yield traits in goat milk. J. Dairy Sci. 2019, 102, 8648–8657. [Google Scholar] [CrossRef] [PubMed]
- Guinee, T.P.; O’Kennedy, B.T.; Kelly, P.M. Effect of milk protein standardization using different methods on the composition and yields of cheddar cheese. J. Dairy Sci. 2006, 89, 468–482. [Google Scholar] [CrossRef]
- Haenlein, G.F.W. Goat milk in human nutrition. Small Rumin. Res. 2004, 51, 155–163. [Google Scholar] [CrossRef]
- Morand-Fehr, P.; Boutonnet, J.P.; Devendra, C.; Dubeuf, J.P.; Haenlein, G.F.W.; Holst, P.; Mowlem, L.; Capote, J. Strategy for goat farming in the 21st century. Small Rumin. Res. 2004, 51, 175–183. [Google Scholar] [CrossRef]
- Sandra, S.; Dalgleish, D.G. The effect of ultra high-pressure homogenization (UHPH) on rennet coagulation properties of unheated and heated fresh skimmed milk. Int. Dairy J. 2007, 17, 1043–1052. [Google Scholar] [CrossRef]
- Montilla, A.; Balcones, E.; Olano, A.; Calvo, M.M. Influence of heat treatments on whey protein denaturation and rennet clotting properties of cow’s and goat’s milk. J. Agric. Food Chem. 1995, 43, 1908–1911. [Google Scholar] [CrossRef]
- Park, Y.W.; Juárez, M.; Ramos, M.; Haenlein, G.F.W. Physico-chemical characteristics of goat and sheep milk. Small Rumin. Res. 2007, 68, 88–113. [Google Scholar] [CrossRef] [Green Version]
- Raynal, K.; Remeuf, F. The effect of heating on physicochemical and renneting properties of milk: A comparison between caprine, ovine and bovine milk. Int. Dairy J. 1998, 8, 695–706. [Google Scholar] [CrossRef]
- Miloradovic, Z.; Kljajevic, N.; Miocinovic, J.; Tomic, N.; Smiljanic, J.; Macej, O. High heat treatment of goat cheese milk. The effect on yield, composition, proteolysis, texture and sensory quality of cheese during ripening. Int. Dairy J. 2017, 68, 1–8. [Google Scholar] [CrossRef]
- Alloggio, V.; Caponio, F.; Pasqualone, A.; Gomes, T. Effect of heat treatment on the rennet clotting time of goat and cow milk. Food Chem. 2000, 70, 51–55. [Google Scholar] [CrossRef]
- Calvo, M.M. Influence of fat, heat treatments and species on milk rennet clotting properties and glycomacropeptide formation. Eur. Food Res. Technol. 2002, 214, 182–185. [Google Scholar] [CrossRef]
- Nguyen, H.T.H.; Afsar, S.; Day, L. Differences in the microstructure and rheological properties of low-fat yoghurts from goat, sheep and cow milk. Food Res. Int. 2018, 108, 423–429. [Google Scholar] [CrossRef]
- Hallen, E. Coagulation Properties of Milk. PhD Thesis, Swedish University of Agricultural Sciences, Uppsala, Sweden, 2008. [Google Scholar]
- Abd El-Gawad, M.A.M.; Ahmed, N.S. Cheese yield as affected by some parameters, review. Acta Scentiarum Pol. 2011, 10, 131–153. [Google Scholar]
- Kljajevic, N.; Jovanovic, S.; Miloradovic, Z.; Macej, O.; Vucic, T.; Zdravkovic, I. Influence of the frozen storage period on the coagulation properties of caprine milk. Int. Dairy J. 2016, 58, 36–38. [Google Scholar] [CrossRef]
- Kuo, M.-I.; Gunasekaran, S. Effect of freezing and frozen storage on microstructure of Mozzarella and pizza cheeses. LWT Food Sci. Technol. 2009, 42, 9–16. [Google Scholar] [CrossRef]
- Castillo, M. Cutting time prediction methods in cheese making. In Encyclopedia of Agricultural, Food, and Biological Engineering, 1st ed.; Heldman, D., Ed.; Taylor & Francis Group: Boca Raton, FL, USA, 2006; Volume 1, pp. 1–7. [Google Scholar]
- Guinee, T.P.; Pudja, P.D.; Mulholland, E.O. Effect of milk protein standardization, by ultrafiltration, on the manufacture, composition and maturation of Cheddar cheese. J. Dairy Res. 1994, 61, 117–131. [Google Scholar] [CrossRef]
- Salvador, D.; Arango, O.; Castillo, M. In-line estimation of the elastic module of milk gels with variation of temperature protein concentration. Int. J. Food Sci. Technol. 2019, 54, 354–360. [Google Scholar] [CrossRef]
- Castillo, M.; Payne, F.A.; Hicks, C.L.; Laencina, J.; López, M.-B. Effect of protein and temperature on cutting time prediction in goats’ milk using an optical reflectance sensor. J. Dairy Res. 2003, 70, 205–215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, L.J.; Ngadi, M.; Raghavan, G.S.V. Effect of temperature and pulsed electric field treatment on rennet coagulation properties of milk. J. Food Eng. 2009, 95, 115–118. [Google Scholar] [CrossRef]
- Pomprasirt, V.; Singh, H.; Lucey, J.A. Effect of heat treatment on the rennet coagulation properties of recombined high total solids milk made from milk protein concentrate powder. Int. J. Dairy Technol. 1998, 51, 65–71. [Google Scholar] [CrossRef]
- Singh, H.; Waungana, A. Influence of heat treatment of milk on cheesemaking properties. Int. Dairy J. 2001, 11, 543–551. [Google Scholar] [CrossRef]
- Vasbinder, A.J. Casein—Whey Protein Interactions in Heated Milk. PhD Thesis, Utrecht University, Utrecht, The Netherlands, November 2002. [Google Scholar]
- Caponio, F.; Pasqualone, A.; Tommaso, G. Apulian Cacioricotta goat’s cheese: Technical interventions for improving yield and organoleptic characteristics. Eur. Food Res. Technol. 2001, 213, 178–182. [Google Scholar] [CrossRef]
- Walstra, P.; Wouters, J.T.M.; Geurts, T.J. Dairy Science and Technology; Taylor and Francis Group: Boca Raton, FL, USA, 2006. [Google Scholar]
- Castillo, M.; Payne, F.A.; Hicks, C.L.; Laencina, J.; López, M.B. Effect of calcium and enzyme in cutting time prediction of coagulating goats’ milk using a light scattering sensor. Int. Dairy J. 2002, 12, 1019–1023. [Google Scholar] [CrossRef]
- Erdem, Y.K. The effect of calcium chloride concentration and pH on the clotting time during the renneting of milk. Gida 1997, 22, 449–455. [Google Scholar]
- Franzoi, M.; Niero, G.; Penasa, M.; Cassandro, M.; De Marchi, M. Technical note: Development and validation of a new method for the quantification of soluble and micellar calcium, magnesium, and potassium in milk. J. Dairy Sci. 2018, 101, 1883–1888. [Google Scholar] [CrossRef] [PubMed]
- Niero, G.; Currò, S.; Costa, A.; Penasa, M.; Cassandro, M.; Boselli, C.; Giangolini, G.; De Marchi, M. Short communication: Phenotypic characterization of total antioxidant activity of buffalo, goat, and sheep milk. J. Dairy Sci. 2018, 101, 4864–4868. [Google Scholar] [CrossRef] [PubMed]
- Yildirim, S.; Erdem, Y.K. A tool for explaining the differences on renneting characteristics of milks from different origins: The surface hydrophobicity approach. Dairy Sci. Technol. 2015, 95, 719–731. [Google Scholar] [CrossRef]
- Donato, L.; Guyomarc’h, F. Formation and properties of the whey protein/κ-casein complexes in heated skim milk—A review. Dairy Sci. Technol. 2009, 89, 3–29. [Google Scholar] [CrossRef]
- Fox, P.F.; Brodkorb, A. The casein micelle: Historical aspects, current concepts and significance. Int. Dairy J. 2008, 18, 677–684. [Google Scholar] [CrossRef]
- Pesic, M.B.; Barac, M.B.; Stanojevic, S.P.; Ristic, N.M.; Macej, O.D.; Vrvic, M.M. Heat induced casein–whey protein interactions at natural pH of milk: A comparison between caprine and bovine milk. Small Rumin. Res. 2012, 108, 77–86. [Google Scholar] [CrossRef]
- De Kruif, C.G. Supra-aggregates of casein micelles as a prelude to coagulation. J. Dairy Sci. 1998, 81, 3019–3028. [Google Scholar] [CrossRef]
- Bonfatti, V.; Tuzzato, M.; Chiarot, G.; Carnier, P. Variation in milk coagulation properties does not affect cheese yield and composition of model cheese. Int. Dairy J. 2014, 39, 139–145. [Google Scholar] [CrossRef]
- Clark, S.; Sherbon, J.W. Alphas1-casein, milk composition and coagulation properties of goat milk. Small Rumin. Res. 2000, 38, 123–134. [Google Scholar] [CrossRef]
- Miloradovic, Z.; Macej, O.; Kljajevic, N.; Jovanovic, S.; Vucic, T.; Zdravkovic, I. The effect of heat treatment of caprine milk on the composition of cheese whey. Int. Dairy J. 2016, 58, 39–42. [Google Scholar] [CrossRef]
- Nguyen, N.H.A.; Wong, M.; Guyomarc’h, F.; Havea, P.; Anema, S.G. Effects of non-covalent interactions between the milk proteins on the rheological properties of acid gels. Int. Dairy J. 2014, 37, 57–63. [Google Scholar] [CrossRef]
- Li, Y.; Wang, W. Serum protein aggregates in the high-heated milk and their gelation properties in rennet-induced milk gel. Int. J. Food Prop. 2016, 19, 1994–2006. [Google Scholar] [CrossRef] [Green Version]
- Miloradovic, Z.; Kljajevic, N.; Jovanovic, S.; Vucic, T.; Macej, O. The effect of heat treatment and skimming on precipitate formation in caprine and bovine milks. J. Dairy Res. 2015, 82, 22–28. [Google Scholar] [CrossRef] [PubMed]
Heat Treatment | 65 °C/30 min | 80 °C/5 min | 90 °C/5 min |
---|---|---|---|
LCY (%) | 17.1 ± 1.17 a | 22.1±3.59 b | 27.7 ± 1.84 c |
CY (%) | 10.7 ± 0.59 a | 14.2±1.08 b | 15.4 ± 0.60 b |
CYE (%) | 62.2 ± 1.45 a | 65.1±6.56 a | 55.6 ± 3.12 b |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miloradovic, Z.; Kljajevic, N.; Miocinovic, J.; Levic, S.; Pavlovic, V.B.; Blažić, M.; Pudja, P. Rheology and Microstructures of Rennet Gels from Differently Heated Goat Milk. Foods 2020, 9, 283. https://doi.org/10.3390/foods9030283
Miloradovic Z, Kljajevic N, Miocinovic J, Levic S, Pavlovic VB, Blažić M, Pudja P. Rheology and Microstructures of Rennet Gels from Differently Heated Goat Milk. Foods. 2020; 9(3):283. https://doi.org/10.3390/foods9030283
Chicago/Turabian StyleMiloradovic, Zorana, Nemanja Kljajevic, Jelena Miocinovic, Steva Levic, Vladimir B. Pavlovic, Marijana Blažić, and Predrag Pudja. 2020. "Rheology and Microstructures of Rennet Gels from Differently Heated Goat Milk" Foods 9, no. 3: 283. https://doi.org/10.3390/foods9030283
APA StyleMiloradovic, Z., Kljajevic, N., Miocinovic, J., Levic, S., Pavlovic, V. B., Blažić, M., & Pudja, P. (2020). Rheology and Microstructures of Rennet Gels from Differently Heated Goat Milk. Foods, 9(3), 283. https://doi.org/10.3390/foods9030283