Antioxidant, Antimicrobial and Antibiofilm Activity of Coriander (Coriandrum sativum L.) Essential Oil for Its Application in Foods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Origin of Microorganisms
2.2. Essential Oil
2.3. Chemical Composition of the Essential Oil
2.4. Radical Scavenging Activity—DPPH Method
2.5. Antimicrobial Activity with Disc Diffusion Method
2.6. Minimum Biofilm Inhibitory Concentration (MBIC)
2.7. Analysis of the Biofilm Development Phases and Evaluation of Molecular Differences on Different Surfaces Using MALDI-TOF MS Biotyper
2.8. Bread Making Process
2.9. Water Activity and Moisture Content
2.10. In-Situ Antifungal Analysis on Bread
2.11. Statistical Analysis
3. Results
3.1. Chemical Composition of Coriander Essential Oil
3.2. Antioxidant, Antimicrobial and Antibiofilm Activity of Coriander Essential Oil
3.3. Analysis of Biofilm Development Stages and Evaluation of Molecular Differences on Different Surfaces Using MALDI-TOF MS Biotyper
3.4. Effect of Coriander Essential Oil in the Selected Characteristics of Bread and Antifungal Effect of CEO
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kačániová, M.; Ivanišová, E. Antioxidant and antimicrobial activity of coriander (Coriandrum sativum L.). In Coriander; Nova Science Publishers: New York, NY, USA, 2019; pp. 63–93. [Google Scholar]
- Douglas, L.J. Candida biofilms and their role in infection. Trends Microbiol. 2003, 11, 30–36. [Google Scholar] [CrossRef]
- Hall-Stoodley, L.; Costerton, J.W.; Stoodley, P. Bacterial biofilms: From the natural environment to infectious diseases. Nat. Rev. Microbiol. 2004, 2, 95–108. [Google Scholar] [CrossRef] [PubMed]
- Juhas, M.; Eberl, L.; Tummler, B. Quorum sensing: The power of cooperation in the world of Pseudomonas. Environ. Microbiol. 2005, 7, 459–471. [Google Scholar] [CrossRef]
- Elvers, K.T.; Leeming, K.; Lappin-Scott, H.M. Binary culture biofilm formation by Stenotrophomonas maltophilia and Fusarium oxysporum. J. Ind. Microbiol. Biotechnol. 2001, 26, 178–183. [Google Scholar] [CrossRef] [PubMed]
- Jucker, B.A.; Harms, H.; Zehnder, A.J. Adherence of the positively charged bacterium Stenotrophomonas (Xanthomonas) maltophilia 70401 to glass and Teflon. J. Bacteriol. 1996, 178, 5472–5479. [Google Scholar] [CrossRef] [Green Version]
- Kadry, A.A.; Tawfik, A.A.; Abu El-Asrar, A.A.; Shibl, A.M. Reduction of mucoid Staphylococcus epidermidis adherence to intraocular lenses by selected antimicrobial agents. Chemotherapy 1999, 45, 56–60. [Google Scholar] [CrossRef]
- De Oliveira-Garcia, D.; Dell’Agnol, M.; Rosales, M.; Azzuz, A.C.; Martinez, M.B.; Giron, J.A. Characterization of flagella produced by clinical strains of Stenotrophomonas maltophilia. Emerg. Infect. Disaese 2002, 8, 918–923. [Google Scholar] [CrossRef]
- Morikawa, M. Beneficial biofilm formation by industrial bacteria Bacillus subtilis and related species. J. Biosci. Bioeng. 2006, 101, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Fratianni, F.; De Martino, L.; Melone, A.; De Feo, V.; Coppola, R.; Nazzaro, F. Preservation of chicken breast meat treated with thyme and balm essential oils. J. Food Sci. 2010, 75, M528–M535. [Google Scholar] [CrossRef]
- Duarte, A.F.; Ferreira, S.; Oliveira, R.; Domingues, F.C. Effect of coriander oil (Coriandrum sativum) on planktonic and biofilm cells of Acinetobacter baumannii. Nat. Prod. Commun. 2013, 8, 673–678. [Google Scholar] [CrossRef] [Green Version]
- Stewart, P.S. Mechanisms of antibiotic resistance in bacterial biofilms. Int. J. Med Microbiol. 2002, 292, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Senthamilselvi, S.; Lakshmipraba, A.; Premkumar, K.; Muthukumaran, R.; Visvanathan, P.; Ganeshkumar, R.S.; Govindaraju, M. Efficacy of bio-synthesized silver nanoparticles using Acanthophora spicifera to encumber biofilm formation. Dig. J. Nanomater. Biostructures 2012, 7, 511–522. [Google Scholar]
- Nagata, T.; Mukae, H.; Kadota, J.; Hayashi, T.; Fujii, T.; Kuroki, M.; Shirai, R.; Yanagihara, K.; Tomoko, K.; Koji, T.; et al. Effect of erythromycin on chronic respiratory infection caused by Pseudomonas aeruginosa with biofilm formation in an experimental murine model. Antimicrob. Agents Chemother. 2004, 48, 2251–2259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benagli, C.; Rossi, V.; Dolina, M.; Tonolla, M.; Petrini, O. Matrix-assisted laser desorption ionization-time of flight mass spectrometry for the identification of clinically relevant bacteria. PLoS ONE 2011, 6, e16424. [Google Scholar] [CrossRef]
- Ferreira, L.; Sanchez-Juanes, F.; García-Fraile, P.; Rivas, R.; Mateos, P.F.; Martínez-Molina, E.; Gonzalez-Buitrago, J.M.; Velasquez, E. MALDI-TOF mass spectrometry is a fast and reliable platform for identification and ecological studies of species from family Rhizobiaceae. PLoS ONE 2011, 6, e20223. [Google Scholar] [CrossRef] [Green Version]
- Pereira, F.D.E.S.; Bonatto, C.C.; Lopes, C.A.P.; Pereira, A.L.; Silva, L.P. Use of MALDI-TOF mass spectrometry to analyze the molecular profile of Pseudomonas aeruginosa biofilms grown on glass and plastic surfaces. Microb. Pathog. 2015, 86, 32–37. [Google Scholar] [CrossRef] [Green Version]
- Tančinová, D.; Mašková, Z.; Foltinová, D.; Štefániková, J.; Árvay, J. Effect of essential oils of Lamiaceae plants on the Rhizopus spp. Potravinárstvo Slovak J. Food Sci. 2018, 12, 491–498. [Google Scholar]
- Sánchés-Moreno, C.; Larrauri, A.; Saura-Calixto, F. A procedure to measure the antioxidant efficiency of polyphenols. J. Sci. Food Agric. 1998, 76, 270–276. [Google Scholar] [CrossRef]
- Ceri, H.; Merle, O.; Douglas, M.; Storey, D.G. Minimal biofilm eradication (MBEC) assay: Susceptibility testing for biofilms. In Biofilms, Infection, and Antimicrobial Therapy; CRC Press: Boca Raton, FL, USA, 2006; pp. 257–269. [Google Scholar]
- Hassan, A.; Usman, J.; Kaleem, F.; Omair, M.; Khalid, A.; Iqbal, M. Evaluation of different detection methods of biofilm formation in the clinical isolates. Braz. J. Infect. Dis. 2011, 15, 305–311. [Google Scholar] [CrossRef] [Green Version]
- Mandal, S.; Mandal, M. Coriander (Coriandrum sativum L.) essential oil: Chemistry and biological activity. Asian Pac. J. Trop. Biomed. 2015, 5, 421–428. [Google Scholar] [CrossRef] [Green Version]
- Shahwar, M.K.; El-Ghorab, A.H.; Anjum, F.M.; Butt, M.S.; Hussain, S.; Nadeem, M. Characterization of coriander (Coriandrum sativum L.) seeds and leaves: Volatile and non volatile extracts. Int. J. Food Prop. 2012, 15, 736–747. [Google Scholar] [CrossRef] [Green Version]
- Tisserand, R.; Young, R. Essential oil profiles. In Essential Oil Safety, 2nd ed.; Churchill Livingstone: London, UK, 2014; pp. 259–261. [Google Scholar]
- Ben Farhat, M.; Jordán, M.J.; Chaouch-Hamada, R.; Landoulsi, A.; Sotomayor, J.A. Phenophase effects on sage (Salvia officinalis L.) yield and composition of essential oil. J. Appl. Res. Med. Aromat. Plants 2016, 3, 87–93. [Google Scholar] [CrossRef]
- Dušková, E.; Dušek, K.; Indrák, P.; Smékalová, K. Postharvest changes in essential oil content and quality of lavender flowers. Ind. Crop. Prod. 2016, 79, 225–231. [Google Scholar] [CrossRef]
- Méndez-Tovar, I.; Novak, J.; Sponza, S.; Herrero, B.; Asensio-S-Manzanera, M.C. Variability in essential oil composition of wild populations of Labiatae species collected in Spain. Ind. Crop. Prod. 2016, 79, 18–28. [Google Scholar] [CrossRef]
- Singh, K.; Rani, R.; Bansal, P.; Medhe, S.; Srivastian, M.M. Antioxidant activity of Coriandrum sativum and standardization of HPTLC method for the estimation of major phytochemicals. J. Anal. Chem. 2015, 70, 220–224. [Google Scholar] [CrossRef]
- Darughe, F.; Barzegar, M.; Sahari, M.A. Antioxidant and antifungal activity of coriander (Coriandrum sativum L.) essential oil in cake. Int. Food Res. J. 2012, 19, 1253–1260. [Google Scholar]
- Marangoni, C.; Moura, N.F. Antioxidant activity of essential oil from Coriandrum sativum L. in Italian salami. Food Sci. Technol. 2011, 31, 124–128. [Google Scholar] [CrossRef] [Green Version]
- Lixandru, B.E.; Drăcea, N.O.; Dragomirescu, C.C.; Drăgulescu, E.C.; Coldea, I.L.; Anton, L. Antimicrobial activity of plant essential oils against bacterial and fungal species involved in food poisoning and/or food decay. Roum. Arch. Microbiol. Immunol. 2010, 69, 24–230. [Google Scholar]
- Abou El-Soud, N.H.; Deabes, M.M.; Abou El-Kassem, L.T.; Khalil, M.Y. Antifungal activity of family Apiaceae essential oils. J. Appl. Sci. Res. 2012, 8, 4964–4973. [Google Scholar]
- Duarte, A.; Ferreira, S.; Silva, F.; Domingues, F.C. Synergistic activity of coriander oil and conventional antibiotics against Acinetobacter Baumannii. Phytomedicine 2012, 19, 236–238. [Google Scholar] [CrossRef]
- Bazargani, M.M.; Rohloff, J. Antibiofilm activity of essential oils and plant extracts against Staphylococcus aureus and Escherichia coli biofilms. Food Control 2016, 61, 156–164. [Google Scholar] [CrossRef] [Green Version]
- Di Bonaventura, G.; Spedicato, I.; D’Antonio, D.; Robuffo, I.; Piccolomini, R. Biofilm formation by Stenotrophomonas maltophilia: Modulation by quinolones, trimethoprim-sulfamethoxazole, and ceftazidime. Antimicrob. Agents Chemother. 2004, 48, 151–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhuo, C.; Zhao, Q.Y.; Xiao, S.N. The impact of spgM, rpfF, rmlA gene distribution on biofilm formation in Stenotrophomonas maltophilia. PLoS ONE 2014, 9, e108409. [Google Scholar] [CrossRef] [PubMed]
- Gingichashvili, S.; Duanis-Assaf, D.; Shemesh, M.; Featherstone, J.D.B.; Feuerstein, O.; Steinberg, D. Bacillus subtilis biofilm development—A computerized study of morphology and kinetics. Front. Microbiol. 2017, 8, 2072. [Google Scholar] [CrossRef] [Green Version]
- Lahlali, R.; Serrhini, M.N.; Jijakli, M.H. Studying and modelling the combined effect of temperature and water activity on the growth rate of P. expansum. Int. J. Food Microbiol. 2005, 103, 315–322. [Google Scholar] [CrossRef]
- Belz, M.C.; Mairinger, R.; Zannini, E.; Ryan, L.A.; Cashman, K.D.; Arendt, E.K. The effect of sourdough and calcium propionate on the microbial shelf-life of salt reduced bread. Appl. Microbiol. Biotechnol. 2012, 96, 493–501. [Google Scholar] [CrossRef]
- Balaguer, M.P.; Lopez-Carballo, G.; Catala, R.; Gavara, R.; Hernandez-Munoz, P. Antifungal properties of gliadin films incorporating cinnamaldehyde and application in active food packaging of bread and cheese spread foodstuffs. Int. J. Food Microbiol. 2013, 166, 369–377. [Google Scholar] [CrossRef]
- Thery, T.; Tharappel, J.C.; Kraszewska, J.; Beckett, M.; Bond, U.; Arendt, E.K. Antifungal activity of a synthetic human β-defensin 3 and potential applications in cereal-based products. Innov. Food Sci. Emerg. Technol. 2016, 38, 160–168. [Google Scholar] [CrossRef]
- Day, L. Cereal Food Production with Low Salt. In Reference Module in Food Science; Elsevier: Amsterdam, The Netherlands, 2006; pp. 1–7. [Google Scholar]
- Cauvain, S.P. CAKES|Nature of Cakes. In Encyclopedia of Food Sciences and Nutrition; Academic Press: Cambridge, MA, USA, 2003; pp. 751–756. [Google Scholar]
- Cazier, J.B.; Gekas, V. Water activity and its prediction: A review. Int. J. Food Prop. 2001, 4, 35–43. [Google Scholar] [CrossRef]
- Freires, I.D.A.; Murata, R.M.; Furletti, V.F.; Sartoratto, A.; de Alencar, S.M.D.; Figueira, G.M. Coriandrum sativum L. (Coriander) essential oil: Antifungal activity and mode of action on Candida spp., and molecular targets affected in human whole-genome expression. PLoS ONE 2014, 9, e99086. [Google Scholar] [CrossRef] [Green Version]
- Lalitha, V.; Kiran, B.; Raveesha, K.A. Antifungal and antibacterial potentiality of six essential oils extracted from plant source. Int. J. Eng. Sci. Technol. 2011, 3, 3029–3038. [Google Scholar]
- Zare-Shehneh, Z.; Askarfarashah, M.; Ebrahimi, L.; Moradi Kor, N.; Zare-Zardini, H.; Soltaninejad, H. Biological activities of a new antimicrobial peptide from Coriandrum Sativum. Int. J. Biosci. 2014, 4, 89–99. [Google Scholar]
Name | Synonyms | TIC (Total Ion Chromatogram)% Area |
---|---|---|
2-myristynoyl pantetheine | 0.35 | |
β-myrcene | 0.42 | |
D-limonene | 2.93 | |
p-mentha-1,4-diene | γ-terpinene | 1.96 |
cymene | 6.35 | |
1,2-oxolinalool | 2.44 | |
camphor | (+)-2-bornanone | 8.34 |
(+/−)-linalool | β-linalool | 66.07 |
α-terpineol | 0.88 | |
geranyl acetate | 6.91 | |
citronellol | 0.39 | |
trans-geraniol | guaniol | 2.57 |
lemonol | ||
geraniol | ||
geranyl alcohol | ||
neryl alcohol | ||
terpendiol | 0.37 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kačániová, M.; Galovičová, L.; Ivanišová, E.; Vukovic, N.L.; Štefániková, J.; Valková, V.; Borotová, P.; Žiarovská, J.; Terentjeva, M.; Felšöciová, S.; et al. Antioxidant, Antimicrobial and Antibiofilm Activity of Coriander (Coriandrum sativum L.) Essential Oil for Its Application in Foods. Foods 2020, 9, 282. https://doi.org/10.3390/foods9030282
Kačániová M, Galovičová L, Ivanišová E, Vukovic NL, Štefániková J, Valková V, Borotová P, Žiarovská J, Terentjeva M, Felšöciová S, et al. Antioxidant, Antimicrobial and Antibiofilm Activity of Coriander (Coriandrum sativum L.) Essential Oil for Its Application in Foods. Foods. 2020; 9(3):282. https://doi.org/10.3390/foods9030282
Chicago/Turabian StyleKačániová, Miroslava, Lucia Galovičová, Eva Ivanišová, Nenad L. Vukovic, Jana Štefániková, Veronika Valková, Petra Borotová, Jana Žiarovská, Margarita Terentjeva, Soňa Felšöciová, and et al. 2020. "Antioxidant, Antimicrobial and Antibiofilm Activity of Coriander (Coriandrum sativum L.) Essential Oil for Its Application in Foods" Foods 9, no. 3: 282. https://doi.org/10.3390/foods9030282
APA StyleKačániová, M., Galovičová, L., Ivanišová, E., Vukovic, N. L., Štefániková, J., Valková, V., Borotová, P., Žiarovská, J., Terentjeva, M., Felšöciová, S., & Tvrdá, E. (2020). Antioxidant, Antimicrobial and Antibiofilm Activity of Coriander (Coriandrum sativum L.) Essential Oil for Its Application in Foods. Foods, 9(3), 282. https://doi.org/10.3390/foods9030282