Effect of the Refining Process on Total Hydroxytyrosol, Tyrosol, and Tocopherol Contents of Olive Oil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Industrial Samples
2.3. Commercial Samples
2.4. Analytical Determinations for Quality and Purity Assessment
2.5. UHPLC Analysis of Tocopherols
2.6. UHPLC Analysis of Phenolic Compounds
2.7. Statistical Analysis
3. Results and Discussions
3.1. Characterization of Selected Oil Samples
3.2. Analysis of Polyphenols
3.3. Analysis of Tocopherols
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References and Notes
- International Olive Oil Council. Trade Standard Applying to Olive Oil and Olive Pomace Oils; COI/T.15/NC No3/Rev.; International Olive Oil Council: Madrid, Spain, 2019. [Google Scholar]
- Blatchly, R.; Delen, Z.; O’Hara, P. Processing: The most important hour. In The Chemical Story of Olive Oil: From Grove to Table, 1st ed.; Blatchly, R., Delen, Z., O’Hara, P., Eds.; Royal Society of Chemistry: London, UK, 2017; pp. 109–153. [Google Scholar]
- Čmolík, J.; Pokorný, J. Physical refining of edible oils. Eur. J. Lipid Sci. Technol. 2000, 102, 472–486. [Google Scholar] [CrossRef]
- Ruiz-Mendez, M.V.; de la Rosa, I.P.; Jimenez-Marquez, A.; Uceda-Ojeda, M. Elimination of pesticides in olive oil by refining using bleaching and deodorization. Food Addit. Contam. 2005, 22, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Boscou, D.; Blekas, G.; Tsimidou, M. Olive oil composition. In Olive Oil: Chemistry and Technology, 2nd ed.; Editor Boskou, D., Ed.; AOCS: Urbana, IL, USA, 2006; pp. 41–72. [Google Scholar]
- Alpaslan, M.; Tepe, S.; Simsek, O. Effect of refining processes on the total and individual tocopherol content in sunflower oil. Int. J. Food Sci. Technol. 2001, 36, 737–739. [Google Scholar] [CrossRef]
- Di Meo, F.; Lemaur, V.; Cornil, J.; Lazzaroni, R.; Duroux, J.L.; Olivier, Y.; Trouillas, P. Free radical scavenging by natural polyphenols: Atom versus electron transfer. J. Phys. Chem. A 2013, 10, 2082–2092. [Google Scholar] [CrossRef]
- Deiana, M.; Rosa, A.; Cao, C.F.; Pirisi, F.M.; Bandino, G.; Dessi, M.A. Novel approach to study oxidative stability of extra virgin oils: Importance of α-tocopherol concentration. J. Agric. Food Chem. 2002, 50, 4342–4346. [Google Scholar] [CrossRef] [PubMed]
- Conte, L.; Bendini, A.; Valli, E.; Lucci, P.; Moret, S.; Maquet, A.; Lacoste, F.; Brereton, P.; García-González, D.L.; Moreda, W.; et al. Olive oil quality and authenticity: A review of current EU legislation, standards, relevant methods of analyses, their drawbacks and recommendations for the future. Trends Food Sci Tech. 2019, in press. [Google Scholar] [CrossRef]
- Pérez, A.G.; León, L.; Pascual, M.; de la Rosa, R.; Belaj, A.; Sanz, C. Analysis of Olive (Olea Europaea L.) Genetic Resources in Relation to the Content of Vitamin E in Virgin Olive Oil. Antioxidants 2019, 8, 242. [Google Scholar] [CrossRef] [Green Version]
- Špika, M.J.; Kraljić, K.; Koprivnjak, O.; Škevin, D.; Žanetić, M.; Katalinić, M. Effect of Agronomical Factors and Storage Conditions on the Tocopherol Content of Oblica and Leccino Virgin Olive Oils. J. Am. Oil Chem. Soc. 2015, 92, 293–1301. [Google Scholar]
- Ergönül, P.G.; Köseoğlu, O. Changes in α-, β-, γ- and δ-tocopherol contents ofmostly consumed vegetable oils during refining process. CyTA J. Food 2014, 12, 199–202. [Google Scholar] [CrossRef]
- Tasan, M.; Demicri, M. Total and individual tocopherol contents of sunflower oil at different steps of refining. J. Eur. Food Res. Technol. 2005, 220, 251–254. [Google Scholar] [CrossRef]
- Li, X.; Wang, S.C. Shelf Life of Extra Virgin Olive Oil and Its Prediction Models. J. Food Qual. 2018, 2018, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Choe, E.; Min, D.B. Mechanism and factors for edible oil oxidation. Compr. Rev. Food Sci. Food Saf. 2006, 5, 169–186. [Google Scholar] [CrossRef]
- Codex Alimentarius, Standard for Olive Oils and Olive Pomace Oils Codex Stan 33-1981; Adopted in 1981. Revision: 1989, 2003, 2015. Amendment: 2009, 2013.
- EFSA Panel on Dietetic Products Nutrition and Allergens Scientific Opinion on the substantiation of health claims related to polyphenols in olive and protection of LDL particles from oxidative damage (ID 1333, 1638 1639, 1696 2865), maintenance of normal blood HDL cholesterol concentrations (ID 1639), maintenance of normal blood pressure (ID 3781), “anti-inflammatory properties” (ID 1882), “contributes to the upper respiratory tract health” (ID 3468), “can help to maintain a normal function of gastrointestinal tract” (3779), and “contributes to body defences against external agents” (ID 3467) pursuant to Article 13(1) of Regulation (EC) No. 1924/2006. EFSA J. 2011, 9, 2033–2058.
- European Commission Regulation (EEC). No. 2568/91, on the characteristics of olive oil and olive-residue oil and on the relevant methods of analysis. Off. J. Eur. Union 1991, 248, 1–83. [Google Scholar]
- International Olive Council. Determination of the Difference between Actual and Theoretical Content of Triacylglycerols with ECN 42 COI/T.20/Doc; No. 20 Rev. 3; International Olive Council: Madrid, Spain, 2001. [Google Scholar]
- International Olive Council. Determination of Biophenols in Olive Oil by HPLC COI/T.20/Doc No. 29; International Olive Council: Madrid, Spain, 2009. [Google Scholar]
- UNI/CT 003/GL 18 “Oli, grassi animali e vegetali e loro sottoprodotti, semi e frutti oleaginosi”. Progetto UNI1603053 Determinazione del Contenuto di Idrossitirosolo e Tirosolo Negli Oli di Olive—Metodo HPLC; 2017.
- Sanja, K.-V.; Sasa, M. Characterization of fatty acid profile, polyphenolic content and antioxidant activity of cold pressed and refined edible oils from Macedonia. J. Food Chem. Nutr. 2013, 1, 16–21. [Google Scholar]
- Kraljić, K.; Škevin, D.; Barišić, L.; Kovačević, M.; Obranović, M.; Jurčević, I. Changes in 4-vinylsyringol and other phenolics during rapeseed oil refining. Food Chem. 2015, 187, 236–242. [Google Scholar] [CrossRef]
- Cortesi, N.; Ponziani, A.; Fedeli, E. Caratterizzazione degli oli virgini e raffinati mediante HPLC dei componenti polari. Nota peliminari. Riv. Ital. Sostanze Grasse 1981, 58, 108–114. [Google Scholar]
- García, A.; Ruiz-Méndez, M.V.; Romero, C.; Brenes, M. Effect of refining on the phenolic composition of crude olive oils. J. Am. Oil Chem. Soc. 2006, 83, 159–164. [Google Scholar] [CrossRef]
- Artajo, L.S.; Romero, M.P.; Morelló, J.R.; Motilva, M.J. Enrichment of refined olive oil with phenolic compounds: Evaluation of their antioxidant activity and their effect on the bitter index. J. Agric. Food Chem. 2006, 54, 6079–6088. [Google Scholar] [CrossRef]
- Venturi, F.; Sanmartin, C.; Taglieri, I.; Nari, A.; Andrich, G.; Terzuoli, E.; Donnini, S.; Nicolella, C.; Zinnai, A. Development of phenol-enriched olive oil with phenolic compounds extracted from wastewater produced by physical refining. Nutrients 2017, 9, 916. [Google Scholar] [CrossRef] [Green Version]
- Núñez, O.; Gallart-Ayala, H.; Martins, C.P.; Lucci, P. New trends in fast liquid chromatography for food and environmental analysis. J. Chromatogr. A 2012, 1228, 298–323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Parliament and Council. Regulation (EC) no. 1907/2006 of 18 December 2006 concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), establishing a European Chemicals Agency, amending Directive 1999/45/EC and repealing Council Regulation (EEC) no. 793/93 and Commission Regulation (EC) no. 1488/94 as well as Council Directive 76/769/EEC and Commission Directives 91/155/EEC, 93/67/EEC, 93/105/EC and 2000/21/EC. Off. J. Eur. Union 2006, 396, 30. [Google Scholar]
- Pal, U.S.; Patra, R.K.; Sahoo, N.R.; Bakhara, C.K.; Panda, M.K. Effect of refining on quality and composition of sunflower oil. J. Food Sci. Technol. 2015, 52, 4613–4618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Hoed, V.; Depaemelaere, G.; Ayala, J.; Santiwattana, P.; Verhe, R.; De Greyt, W. Influence of chemical refining on the major and minor components of rice brain oil. J. Am. Oil Chem. Soc. 2006, 83, 315–321. [Google Scholar] [CrossRef]
- Szydlowska-Czerniak, A.; Trokowski, K.; Karlovits, G.; Szlyk, E. Effect of refining processes on antioxidant capacity, total contents of phenolics and carotenoids in palm oils. Food Chem. 2011, 129, 1187–1192. [Google Scholar] [CrossRef]
- Wu, Y.; Zhou, R.; Wang, Z.; Wang, B.; Yang, Y.; Ju, X.; He, R. The effect of refining process on the physicochemical properties and micronutrients of rapeseed oils. PLoS ONE 2019, 14, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Suliman, T.M.A.; Jiang, J.; Liu, Y. Chemical refining of sunflower oil: Effect on oil stability, total tocopherol, free fatty acids and colour. Int. J. Eng. Sci. Technol. 2013, 5, 449–454. [Google Scholar]
- Carrillo, W. Food production and technology. In Biotechnology and Food Production, 1st ed.; Carrillo, W., Ed.; ED-Tech Press: London, UK, 2019; pp. 219–246. [Google Scholar]
Quality Parameters | Samples | ||||||||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
Free acidity (%) | 4.0 | 5.1 | 4.0 | 4.7 | 5.1 | 3.7 | 2.2 | 2.2 | 2.7 |
K232 | 2.22 | 2.61 | 2.30 | 2.19 | 2.51 | 2.89 | 2.33 | 2.16 | 2.25 |
K270 | 0.28 | 0.33 | 0.28 | 0.24 | 0.31 | 0.28 | 0.20 | 0.19 | 0.20 |
Delta-K | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.00 | 0.00 | 0.00 |
Purity Parameters | Samples | ||||||||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
∆ECN42 | |0.1| | |0.2| | |0.1| | |0.0| | |0.1| | |0.1| | |0.1| | |0.1| | |0.1| |
3,5-stigmastadienes (mg/kg) | 0.07 | 0.25 | 0.44 | 0.03 | 0.08 | 0.04 | 0.04 | 0.03 | 0.06 |
Cholesterol (%) | 0.20 | 0.28 | 0.16 | 0.17 | 0.22 | 0.20 | 0.16 | 0.14 | 0.16 |
Brassicasterol (%) | 0.07 | 0.08 | 0.11 | 0.06 | 0.08 | 0.06 | 0.00 | 0.01 | 0.02 |
Campesterol (%) | 3.28 | 3.45 | 3.41 | 3.42 | 3.39 | 3.29 | 3.37 | 3.55 | 3.52 |
Stigmasterol (%) | 1.45 | 1.58 | 1.80 | 1.94 | 1.87 | 1.55 | 1.61 | 1.48 | 1.51 |
β-sitosterol (%) | 94.2 | 93.6 | 93.4 | 93.6 | 93.5 | 93.6 | 93.4 | 93.9 | 93.8 |
∆7-avenasterol (%) | 0.40 | 0.41 | 0.38 | 0.38 | 0.44 | 0.70 | 0.44 | 0.54 | 0.61 |
∆7-stigmastenol (%) | 0.33 | 0.35 | 0.30 | 0.35 | 0.39 | 0.50 | 1.12 | 0.35 | 0.37 |
Total sterols (mg/kg) | 1657 | 1483 | 1397 | 1432 | 1440 | 1623 | 1687 | 1649 | 1675 |
Erythrodiol + uvaol (%) | 2.96 | 2.50 | 2.41 | 2.68 | 1.97 | 2.32 | 2.43 | 2.24 | 3.04 |
Waxes (mg/kg) | 246 | 252 | 261 | 295 | 248 | 246 | 170 | 152 | 207 |
Aliphatic alcohols (mg/kg) | 305 | 234 | 255 | 256 | 211 | 322 | 340 | 318 | 380 |
Fatty acid composition | |||||||||
C16:0 (%) | 11.9 | 12.6 | 11.7 | 12.1 | 12.4 | 14.0 | 15.3 | 15.8 | 15.4 |
C18:0 (%) | 3.0 | 2.6 | 3.0 | 2.9 | 2.8 | 2.5 | 2.3 | 2.3 | 2.3 |
C18:1Δ9c (%) | 75.4 | 74.1 | 76.2 | 75.7 | 74.6 | 69.4 | 67.6 | 66.2 | 66.9 |
C18:2 Δ9c,12c (%) | 6.9 | 7.8 | 6.3 | 6.4 | 7.2 | 10.4 | 11.1 | 12.0 | 11.8 |
C18:3 Δ9c,12c,15c (%) | 0.7 | 0.7 | 0.6 | 0.6 | 0.6 | 0.7 | 0.7 | 0.7 | 0.7 |
Samples | Total Tocopherols | ||||
---|---|---|---|---|---|
Crude oil | Degummed | Neutralized | Bleached | Deodorized | |
1 | 226 ± 4 bc | 225 ± 2 bc | 233 ± 5 c | 214 ± 4 a | 218 ± 2 ab |
2 | 170 ± 8 c | 152 ± 7 b | 138 ± 4 a | 142 ± 3 a | 157 ± 2 b |
3 | 154 ± 3 ab | 163 ± 2 bc | 169 ± 5 c | 149 ± 3 a | 167 ± 2 c |
4 | 188 ± 1 b | 171 ± 5 a | 188 ± 4 b | 216 ± 3 c | 181 ± 4 ab |
5 | 142 ± 2 b | 141 ± 4 b | 145 ± 3 b | 126 ± 5 a | 141 ± 3 b |
6 | 229 ± 2 a | 229 ± 5 a | 228 ± 2 a | 232 ± 3 a | 229 ± 2 a |
7 | 296 ± 3 b | 315 ±12 bc | 310 ± 3 b | 328 ± 6 c | 271 ± 5 a |
8 | 324 ± 6 b | 338 ± 5 b | 333 ± 2 b | 330 ± 5 b | 288 ±18 a |
9 | 344 ± 5 c | 346 ± 3 c | 335 ±12 bc | 309 ±11 ab | 287 ±13 a |
Quality Parameters | Samples | ||||||||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
Free acidity (%) | 4.00 | 5.02 | 4.00 | 4.70 | 5.10 | 3.73 | 2.22 | 2.21 | 2.68 |
Oil loss/chemical refining (%)—neutralization up to 0.2% of FFAs | 3.80 | 4.82 | 3.80 | 4.50 | 4.90 | 3.53 | 2.01 | 2.02 | 2.48 |
Oil loss/physical refining (%)—physical flash neutralization up to 0.02% of FFAs | 3.78 | 4.80 | 3.78 | 4.48 | 4.88 | 3.51 | 2.00 | 1.99 | 2.46 |
Total Tocopherols | |
---|---|
Samples | |
1 | 252 ± 7 |
2 | 481 ± 5 |
3 | 388 ± 5 |
4 | 272 ± 9 |
5 | 353 ± 11 |
6 | 174 ± 3 |
7 | 394 ± 4 |
8 | 207 ± 8 |
9 | 301 ± 13 |
10 | 108 ± 9 |
11 | 199 ± 5 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lucci, P.; Bertoz, V.; Pacetti, D.; Moret, S.; Conte, L. Effect of the Refining Process on Total Hydroxytyrosol, Tyrosol, and Tocopherol Contents of Olive Oil. Foods 2020, 9, 292. https://doi.org/10.3390/foods9030292
Lucci P, Bertoz V, Pacetti D, Moret S, Conte L. Effect of the Refining Process on Total Hydroxytyrosol, Tyrosol, and Tocopherol Contents of Olive Oil. Foods. 2020; 9(3):292. https://doi.org/10.3390/foods9030292
Chicago/Turabian StyleLucci, Paolo, Valentina Bertoz, Deborah Pacetti, Sabrina Moret, and Lanfranco Conte. 2020. "Effect of the Refining Process on Total Hydroxytyrosol, Tyrosol, and Tocopherol Contents of Olive Oil" Foods 9, no. 3: 292. https://doi.org/10.3390/foods9030292
APA StyleLucci, P., Bertoz, V., Pacetti, D., Moret, S., & Conte, L. (2020). Effect of the Refining Process on Total Hydroxytyrosol, Tyrosol, and Tocopherol Contents of Olive Oil. Foods, 9(3), 292. https://doi.org/10.3390/foods9030292