Temperature Dependence of Oxidation Kinetics of Extra Virgin Olive Oil (EVOO) and Shelf-Life Prediction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Olive Oil Samples
2.3. Storage Conditions
2.4. Reference Chemical Analysis
2.5. Phenolic Compounds
2.6. Tocopherols
2.7. Pyropheophytin a (ISO 29841:2009 (E))
2.8. Conjugated Trienes
2.9. Volatile Compound Analysis
2.10. Kinetics Data Analysis
2.11. Statistical Analysis
3. Results
3.1. EVOO Initial Chemical Composition
3.2. Kinetics of Quality Indicators during Storage at Increasing Temperatures
3.3. Modeling the Temperature Dependence of the Oxidation Rate
3.4. Shelf-Life Estimation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Conte, L.; Bendini, A.; Valli, E.; Lucci, P.; Moret, S.; Maquet, A.; Lacoste, F.; Brereton, P.; García-González, D.L.; Moreda, W.; et al. Olive oil quality and authenticity: A review of current EU legislation, standards, relevant methods of analyses, their drawbacks and recommendations for the future. Trends Food Sci. Technol. 2019, in press. [Google Scholar] [CrossRef]
- European Commission Regulation (EEC). No. 2568/91, On the Characteristics of Olive Oil and Olive-Residue Oil and on the Relevant Methods of Analysis. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A01991R2568-20151016 (accessed on 15 January 2020).
- International Olive Oil Council. Trade Standard Applying to Olive Oil and Olive Pomace Oils. Available online: https://www.internationaloliveoil.org/wp-content/uploads/2019/12/trade-standard-REV-14-Eng.pdf (accessed on 15 January 2020).
- Fadda, C.; Del Caro, A.; Sanguinetti, A.M.; Urgeghe, P.P.; Vacca, V.; Arca, P.P.; Piga, A. Changes during storage of quality parameters and in vitro antioxidant activity of extra virgin monovarietal oils obtained with two extraction technologies. Food Chem. 2012, 134, 1542–1548. [Google Scholar] [CrossRef] [PubMed]
- Kotsiou, K.; Tasioula-Margari, M. Monitoring the phenolic compounds of Greek extra-virgin olive oils during storage. Food Chem. 2016, 200, 255–262. [Google Scholar] [CrossRef] [PubMed]
- Gertz, C.; Fiebig, H.J. Pyropheophytin a: Determination of thermal degradation products of cholorohyll a in virgin olive oil. Eur. J. Lipid Sci. Technol. 2006, 108, 1062–1065. [Google Scholar] [CrossRef]
- European Commission Regulation (EEC). No. 1169/2011 of the European Parliament and of the Council of 28 January 2002. Available online: https://books.google.com.hk/books?id=KVdxDwAAQBAJ&pg=PA116&lpg=PA116&dq=European+Commission+Regulation+(EEC)+No.+1169/2011+of+the+European+Parliament+and+of+the+Council+of+28+January+2002&source=bl&ots=axNZoAuxLK&sig=ACfU3U14dmKujTI6Nseo-altO3YtGYXW9A&hl=zh-CN&sa=X&ved=2ahUKEwiD4KWwr4DoAhXPc94KHYTjDWEQ6AEwA3oECAYQAQ#v=onepage&q=European%20Commission%20Regulation%20(EEC)%20No.%201169%2F2011%20of%20the%20European%20Parliament%20and%20of%20the%20Council%20of%2028%20January%202002&f=false (accessed on 20 December 2019).
- Nicoli, M.C. The shelf-life assessment process. In Shelf-life Assessment of Food; Nicoli, M.C., Ed.; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- Calligaris, S.; Manzocco, L.; Anese, M.; Nicoli, M.C. Shelf-life assessment of food undergoing oxidation—A review. Crit. Rev. Food Sci. Nutr. 2015, 56, 1903–1912. [Google Scholar] [CrossRef] [PubMed]
- Calligaris, S.; Manzocco, L.; Anese, M.; Nicoli, M.C. Accelerated Shelf-Life Testing. Food Quality and Shelf-Life; Galanakis, C.M., Ed.; Academic Press: Cambridge, MA, USA, 2019. [Google Scholar]
- Arrhenius, S.A. Textbook of the electrochemistry. In Larobok I Teoretisk Elektrokemi; Quando & Handel: Leipzig, Germany, 1901. [Google Scholar]
- Labuza, T.P.; Schmidl, M.K. Accelerated shelf-life testing of foods. Food Technol. 1985, 39, 57–62. [Google Scholar]
- Corradini, M.G.; Peleg, M. Shelf-life estimation from accelerated data. Trends Food Sci. Technol. 2007, 18, 37–47. [Google Scholar] [CrossRef]
- Mancebo-Campos, V.; Fregapane, G.; Salvador, M.D. Kinetic study for the development of an accelerated oxidative stability test to estimate virgin olive oil potential shelf-life. Eur. J. Lipid Sci. Technol. 2008, 110, 969–976. [Google Scholar] [CrossRef]
- Calligaris, S.; Sovrano, S.; Manzocco, L.; Nicoli, M.C. Influence of crystallisation on the oxidative stability of extra virgin olive oil. J. Agric. Food Chem. 2006, 54, 529–535. [Google Scholar] [CrossRef] [PubMed]
- Frankel, E.V. Stability methods. In Lipid Oxidation; Frankel, E.N., Ed.; The Oily Press: Sawston, Cambridge, UK, 2005. [Google Scholar]
- Mizrahi, S. Accelerated shelf-life tests. In food and Beverage Stability and Shelf-Life; Kilcast, D., Subramaniam, P., Eds.; Woodhead Publishing Limited: Cambridge, UK, 2011. [Google Scholar]
- International Olive Council Determination of Biophenols in Olive Oil by HPLC COI/T.20/Doc No. 29, Madrid. Available online: https://www.internationaloliveoil.org/wp-content/uploads/2019/11/COI-T.15-NC.-No-3-Rev.-13-2019-Eng.pdf (accessed on 20 December 2019).
- UNI 11702:2018. Determinazione Dell’idrossitirosolo e del Tirosolo Negli Oli Extra Vergini di Oliva. Available online: https://core.ac.uk/download/pdf/79621131.pdf (accessed on 20 December 2019).
- ISO. Vegetable Fats and Oils: Determination of Degradation Products of Chlorophyll a and a′ (Pheophytins a, a′ and Pyropheophytins) (ISO 29841:2009); International Organization for Standardization: Geneva, Switzerland, 2009. [Google Scholar]
- Rovellini, P.; Cortesi, N. Oxidative status of extra virgin olive oils: HPLC evaluation. Ital. J. Food Sci. 2004, 16, 335–344. [Google Scholar]
- Vichi, S.; Castellote, A.I.; Pizzale, L.; Conte, L.S.; Buxaderas, S.; Lopez-Tamames, E. Analysis of virgin olive oil volatile compounds by headspace solid-phase microextraction coupled to gas chromatography with mass spectrometric and flame ionization detection. J. Chromatogr. A 2003, 983, 19–33. [Google Scholar] [CrossRef]
- EFSA. Panel on Dietetic Products Nutrition and Allergens Scientific Opinion on the substantiation of health claims related to polyphenols in olive and protection of LDL particles from oxidative damage (ID 1333, 1638 1639, 1696 2865), maintenance of normal blood HDL cholesterol concentrations (ID 1639), maintenance of normal blood pressure (ID 3781), “anti-inflammatory properties” (ID 1882), “contributes to the upper respiratory tract health” (ID 3468), “can help to maintain a normal function of gastrointestinal tract” (3779), and “contributes to body defences against external agents” (ID 3467) pursuant to Article 13(1) of Regulation (EC) No. 1924/2006. EFSA J. 2011, 9, 2033–2058. [Google Scholar]
- Brenes, M.; Garcia, A.; Garcia, P.; Garrido, A. Acid hydrolysis of secoiridoid aglycons during storage of virgin olive oil. J. Agric. Food Chem. 2001, 49, 5609–5614. [Google Scholar] [CrossRef] [PubMed]
- Gomes-Alonso, S.; Mancebo-Campos, V.M.; Salvador, M.D.; Fregapane, G. Evolution of major and minor components and oxidation indices of virgin olive oil during 21 months storage at room temperature. Food Chem. 2007, 1, 36–42. [Google Scholar] [CrossRef]
- Kanavouras, A.; Hernandez-Mugnoz, P.; Coutelieris, F.; Selke, S. Oxidation-derivated flavor compounds as quality indicators for packaged olive oil. J. Am. Oil Chem. Soc. 2004, 81, 251–257. [Google Scholar] [CrossRef]
- Van Boekel, M.A.J.S. Kinetic modelling of reactions in food: A critical review. Compr. Rev. Food Sci. Food Saf. 2008, 7, 144–158. [Google Scholar] [CrossRef]
- Manzocco, L.; Calligaris, S.; Nicoli, M.C. Methods for food shelf-life determination and prediction. In Oxidation in Foods and Beverages and Antioxidant Applications; Decker, E.A., Elias, R.J., McClements, D.J., Eds.; Woodhead: Cambridge, UK, 2010. [Google Scholar]
- Aparicio-Ruiz, R.; Minguez-Mosquera, M.I.; Gandul-Rojas, B. Thermal degradation kinetics of chlorophyll pigments in virgin olive oils. 1. Compounds of series a. J. Agric. Food Chem. 2010, 58, 6200–6208. [Google Scholar] [CrossRef] [PubMed]
- Manzocco, L. The Acceptability Limit in Food Shelf-life Studies. Crit. Rev. Food Sci. Nutr. 2016, 56, 1640–1646. [Google Scholar] [CrossRef] [PubMed]
- Commission Delegate Regulation (EU) No. 2015/1830. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:32015R1830 (accessed on 20 December 2019).
- Australian Standards® Olive Oil and Olive-Pomace Oils. AS 5264–2011. Available online: https://australianolives.com.au/wp-content/uploads/2019/05/Australian-Standards-P-Miller.pdf (accessed on 20 December 2019).
- Aparicio-Ruiz, R.; Roca, M.; Gandul-Rojas, B. Mathematical model to predict the formation of Pyropheophytin a in virgin olive oil during storage. J. Agric. Food Chem. 2012, 60, 7040–7049. [Google Scholar] [CrossRef] [PubMed]
- Aparicio-Ruiz, R.; Tena, N.; Romero, R.; Aparicio, R.; Garcia-Gonzalez, D.L.; Morales, M.T. Predicting extra virgin olive oil freshness during storage by fluorescence spectroscopy. Grasas y Aceites 2017, 68. [Google Scholar] [CrossRef] [Green Version]
Qualitative Characteristics | Values | IOC Reference Values [2,3] |
---|---|---|
PV (meqO2/kg) | 5.7 | 20.0 |
K232 (ex, 1%, 1cm) | 1.81 | 2.50 |
K270 (ex, 1%, 1 cm) | 0.15 | 0.22 |
total tyrosol and hydroxytyrosol (mg/kg) | 332.9 | n.c. |
α-tocopherol (mg/kg) | 205.6 | n.c. |
β+δ-tocopherol (mg/kg) | 15.6 | n.c. |
ϒ-tocopherol (mg/kg) | 4.3 | n.c. |
total tocopherols (mg/kg) | 225.6 | n.c. |
chlorophyllics pigments (mg/kg) | 23.5 | n.c. |
Main Fatty Acids (%) | ||
C16:0 | 10.7 | 7.50–20.00 |
C18:0 | 1.9 | 0.50–5.00 |
C18:1 Δ9c | 76.5 | 55.00–83.00 * |
C18:1 Δ11c | 1.2 | |
C18:2 Δ9c,12c | 7.8 | 2.50–21.00 |
C18:3 Δ9c,12c,15c | 0.6 | ≤1.00 |
Others | 1.3 | --- |
T (°C) | K270 | %PPP | CT | Hexanal | ||||
---|---|---|---|---|---|---|---|---|
k270 (D.O.day−1·10−3) | R2 | kPPP (%PPP day−1) | R2 | kCT (mg/kg day−1·10−3) | R2 | khexanal (mg/kg day−1·10−3) | R2 | |
25 | 0.18 ± 0.01 | 0.96 | 0.043 ± 0.03 | 0.99 | 0.36 ± 0.01 | 0.99 | 2.77 ± 0.34 | 0.95 |
40 | 0.62 ± 0.02 | 0.98 | 0.428 ± 0.01 | 0.99 | 1.05 ± 0.06 | 0.98 | 7.24 ± 0.73 | 0.92 |
50 | 1.07 ± 0.07 | 0.95 | 1.112 ± 0.07 | 0.96 | 3.01 ± 0.11 | 0.95 | 16.91 ± 0.94 | 0.94 |
60 | 2.20 ± 0.02 | 0.97 | 5.270 ± 0.49 | 0.97 | 9.17 ± 0.32 | 0.96 | 26.62 ± 2.88 | 0.97 |
Index | ko | Ea (kJ/mol) | R2 |
---|---|---|---|
K270 | 4.88 × 1012 | 58.39 | 0.99 |
CT | 6.57 × 109 | 75.46 | 0.99 |
Hexanal | 9.28 × 1010 | 54.78 | 0.99 |
%PPP | 1.30 × 1017 | 102.94 | 0.99 |
Temperature (°C) | Estimated Shelf-Life in Days (months) | |
---|---|---|
K270 | %PPP | |
25 | 377 | 332 |
40 | 122 | 45 |
50 | 61 | 16 |
60 | 32 | 4 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Conte, L.; Milani, A.; Calligaris, S.; Rovellini, P.; Lucci, P.; Nicoli, M.C. Temperature Dependence of Oxidation Kinetics of Extra Virgin Olive Oil (EVOO) and Shelf-Life Prediction. Foods 2020, 9, 295. https://doi.org/10.3390/foods9030295
Conte L, Milani A, Calligaris S, Rovellini P, Lucci P, Nicoli MC. Temperature Dependence of Oxidation Kinetics of Extra Virgin Olive Oil (EVOO) and Shelf-Life Prediction. Foods. 2020; 9(3):295. https://doi.org/10.3390/foods9030295
Chicago/Turabian StyleConte, Lanfranco, Andrea Milani, Sonia Calligaris, Pierangela Rovellini, Paolo Lucci, and Maria Cristina Nicoli. 2020. "Temperature Dependence of Oxidation Kinetics of Extra Virgin Olive Oil (EVOO) and Shelf-Life Prediction" Foods 9, no. 3: 295. https://doi.org/10.3390/foods9030295
APA StyleConte, L., Milani, A., Calligaris, S., Rovellini, P., Lucci, P., & Nicoli, M. C. (2020). Temperature Dependence of Oxidation Kinetics of Extra Virgin Olive Oil (EVOO) and Shelf-Life Prediction. Foods, 9(3), 295. https://doi.org/10.3390/foods9030295