Comprehensive Characterization of Fruit Volatiles and Nutritional Quality of Three Cucumber (Cucumis sativus L.) Genotypes from Different Geographic Groups after Bagging Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials, Growth Conditions, and Treatments
2.2. Determination of Photosynthetic Pigments, Ascorbate, Sugar, Cellulose, and Starch
2.3. Analysis of Volatile Compounds
2.4. RNA Isolation, Reverse-Transcription Quantitative PCR Analysis, and Measurement of LOX and HPL Activities
2.5. Measurement of Fatty Acids
2.6. Statistical Analysis
3. Results
3.1. Appearance and Nutritional Quality of Bagged Cucumber Fruits
3.2. Analysis of Cucumber Fruit Volatiles and Their Variation
3.3. Gene Expression, Enzymatic Activities, and Substrate Analysis of the LOX and HPL Pathways
4. Discussion
4.1. Bagging Impacts Fruit Appearance Quality and Nutritional Characteristics
4.2. Bagging Would be Conducive to Accumulation of C6 Volatiles in Cucumber Fruit
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Costa, C.; Antonucci, F.; Pallottino, F.; Aguzzi, J.; Sun, D.W.; Menesatti, P. Shape Analysis of Agricultural Products: A Review of Recent Research Advances and Potential Application to Computer Vision. Food Bioprocess Technol. 2011, 4, 673–692. [Google Scholar] [CrossRef]
- Zhang, B.; Huang, W.; Li, J.; Zhao, C.; Fan, S.; Wu, J.; Liu, C. Principles, developments and applications of computer vision for external quality inspection of fruits and vegetables: A review. Food Res. Int. 2014, 62, 326–343. [Google Scholar] [CrossRef]
- Shen, X.; Chen, S.; Pan, Y.; Wan, X.; Chen, W.; Cheng, S.; Zhang, R.; Meng, H. Genetic research on fruit color traits of cucumber (Cucumis sativus L.). J. Agric. Biotechnol. 2014, 22, 37–46. [Google Scholar] [CrossRef]
- Azari, R.; Reuveni, M.; Evenor, D.; Nahon, S.; Shlomo, H.; Chen, L.; Levin, I. Overexpression of UV-damaged DNA binding protein 1 links plant development and phytonutrient accumulation in high pigment-1 tomato. J. Exp. Bot. 2010, 61, 3627–3637. [Google Scholar] [CrossRef] [Green Version]
- Zhu, H.F.; Li, X.F.; Zhai, W.; Liu, Y.; Gao, Q.Q.; Liu, J.P.; Ren, L.; Chen, H.Y.; Zhu, Y.Y. Effects of low light on photosynthetic properties, antioxidant enzyme activity, and anthocyanin accumulation in purple pak-choi (Brassica campestris ssp Chinensis Makino). PLoS ONE 2017, 12. [Google Scholar] [CrossRef]
- Liao, G.; He, Y.; Li, X.; Zhong, M.; Huang, C.; Yi, S.; Liu, Q.; Xu, X. Effects of bagging on fruit flavor quality and related gene expression of AsA synthesis in Actinidia eriantha. Sci. Hortic. Amst. 2019, 256, 108511. [Google Scholar] [CrossRef]
- Chen, S.X.; Zhang, R.R.; Hao, L.N.; Chen, W.F.; Cheng, S.Q. Profiling of volatile compounds and associated gene expression and enzyme activity during fruit development in two cucumber cultivars. PLoS ONE 2015, 10, 22. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Yang, C.; Liu, C.; Xu, M.; Li, S.; Yang, L.; Wang, Y. Effects of bagging on volatiles and polyphenols in “Wanmi” peaches during endocarp hardening and final fruit rapid growth stages. J. Food Sci. 2010, 75, S455–S460. [Google Scholar] [CrossRef]
- Shen, J.Y.; Wu, L.; Liu, H.R.; Zhang, B.; Yin, X.R.; Ge, Y.Q.; Chen, K.S. Bagging treatment influences production of C6 aldehydes and biosynthesis-related gene expression in peach fruit skin. Molecules 2014, 19, 13461–13472. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Sun, Y.; Wang, X.; Dong, X.; Zhang, T.; Yang, Y.; Chen, S. Relationship between key environmental factors and profiling of volatile compounds during cucumber fruit development under protected cultivation. Food Chem. 2019, 290, 308–315. [Google Scholar] [CrossRef]
- Schwab, W.; Davidovich-Rikanati, R.; Lewinsohn, E. Biosynthesis of plant-derived flavor compounds. Plant J. 2008, 54, 712–732. [Google Scholar] [CrossRef] [PubMed]
- Mosblech, A.; Feussner, I.; Heilmann, I. Oxylipins: Structurally diverse metabolites from fatty acid oxidation. Plant Physiol. Biochem. 2009, 47, 511–517. [Google Scholar] [CrossRef]
- Yang, X.Y.; Jiang, W.J.; Yu, H.J. The expression profiling of the lipoxygenase (LOX) family genes during fruit development, abiotic stress and hormonal treatments in cucumber (Cucumis sativus L.). Int. J. Mol. Sci. 2012, 13, 2481–2500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, S.Q.; Liu, X.H.; Jiang, L.W. Genome-wide identification, phylogeny and expression analysis of the lipoxygenase gene family in cucumber. Genet. Mol. Res. 2011, 10, 2613–2636. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Yu, H.J.; Li, Y.Y.; Zhang, X.M.; Liu, P.; Li, Q.; Jiang, W.J. Leaf volatile compounds and associated gene expression during short-term nitrogen deficient treatments in cucumis seedlings. Int. J. Mol. Sci. 2016, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wan, X.H.; Chen, S.X.; Wang, C.Y.; Zhang, R.R.; Cheng, S.Q.; Meng, H.W.; Shen, X.Q. Isolation, expression, and characterization of a hydroperoxide lyase gene from cucumber. Int. J. Mol. Sci. 2013, 14, 22082–22101. [Google Scholar] [CrossRef]
- Jia, H.; Araki, A.; Okamoto, G. Influence of fruit bagging on aroma volatiles and skin coloration of ‘Hakuho’ peach (Prunus persica Batsch). Postharvest Biol. Technol. 2005, 35, 61–68. [Google Scholar] [CrossRef]
- Liu, Y.; Che, F.; Wang, L.; Meng, R.; Zhang, X.; Zhao, Z. Fruit coloration and anthocyanin biosynthesis after bag removal in non-red and red apples (Malus × domestica Borkh.). Molecules 2013, 18, 1549–1563. [Google Scholar] [CrossRef]
- Sui, X.; Shan, N.; Hu, L.; Zhang, C.; Yu, C.; Ren, H.; Turgeon, R.; Zhang, Z. The complex character of photosynthesis in cucumber fruit. J. Exp. Bot. 2017, 68, 1625–1637. [Google Scholar] [CrossRef] [Green Version]
- Massot, C.; Stevens, R.; Genard, M.; Longuenesse, J.J.; Gautier, H. Light affects ascorbate content and ascorbate-related gene expression in tomato leaves more than in fruits. Planta 2012, 235, 153–163. [Google Scholar] [CrossRef]
- Wang, H.; Sui, X.; Guo, J.; Wang, Z.; Cheng, J.; Ma, S.; Li, X.; Zhang, Z. Antisense suppression of cucumber (Cucumis sativus L.) sucrose synthase 3 (CsSUS3) reduces hypoxic stress tolerance. Plant Cell Environ. 2014, 37, 795–810. [Google Scholar] [CrossRef] [PubMed]
- Laurentin, A.; Edwards, C.A. A microtiter modification of the anthrone-sulfuric acid colorimetric assay for glucose-based carbohydrates. Anal. Biochem. 2003, 315, 143–145. [Google Scholar] [CrossRef]
- Wei, G.; Tian, P.; Zhang, F.; Qin, H.; Miao, H.; Chen, Q.; Hu, Z.; Cao, L.; Wang, M.; Gu, X.; et al. Integrative analyses of nontargeted volatile profiling and transcriptome data provide molecular insight into VOC diversity in cucumber plants (Cucumis sativus). Plant Physiol. 2016, 172, 603–618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palma-Harris, C.; McFeeters, R.F.; Fleming, H.P. Solid-phase microextraction (SPME) technique for measurement of generation of fresh cucumber flavor compounds. J. Agric. Food. Chem. 2001, 49, 4203–4207. [Google Scholar] [CrossRef]
- Khrisanapant, P.; Kebede, B.; Leong, S.Y.; Oey, I. A comprehensive characterisation of volatile and fatty acid profiles of legume seeds. Foods 2019, 8, 651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kusano, M.; Iizuka, Y.; Kobayashi, M.; Fukushima, A.; Saito, K. Development of a direct headspace collection method from Arabidopsis seedlings using HS-SPME-GC-TOF-MS analysis. Metabolites 2013, 3, 223–242. [Google Scholar] [CrossRef] [PubMed]
- Risticevic, S.; Pawliszyn, J. Solid-Phase microextraction in targeted and nontargeted analysis: Displacement and desorption effects. Anal. Chem. 2013, 85, 8987–8995. [Google Scholar] [CrossRef]
- Duan, Y.; Zheng, F.; Chen, H.; Huang, M.; Xie, J.; Chen, F.; Sun, B. Analysis of volatiles in Dezhou Braised Chicken by comprehensive two-dimensional gas chromatography/high resolution-time of flight mass spectrometry. LWT-Food Sci. Technol. 2015, 60, 1235–1242. [Google Scholar] [CrossRef]
- Wan, H.; Zhao, Z.; Qian, C.; Sui, Y.; Malik, A.A.; Chen, J. Selection of appropriate reference genes for gene expression studies by quantitative real-time polymerase chain reaction in cucumber. Anal. Biochem. 2010, 399, 257–261. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Matsui, K.; Fukutomi, S.; Wilkinson, J.; Hiatt, B.; Knauf, V.; Kajwara, T. Effect of overexpression of fatty acid 9-hydroperoxide lyase in tomatoes (Lycopersicon esculentum Mill.). J. Agric. Food. Chem. 2001, 49, 5418–5424. [Google Scholar] [CrossRef] [PubMed]
- Rudolph, M.; Schlereth, A.; Korner, M.; Feussner, K.; Berndt, E.; Melzer, M.; Hornung, E.; Feussner, I. The lipoxygenase-dependent oxygenation of lipid body membranes is promoted by a patatin-type phospholipase in cucumber cotyledons. J. Exp. Bot. 2011, 62, 749–760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing. Available online: http://www.R-project.org (accessed on 1 December 2019).
- Pan, Y.; Qu, S.; Bo, K.; Gao, M.; Haider, K.R.; Weng, Y. QTL mapping of domestication and diversifying selection related traits in round-fruited semi-wild Xishuangbanna cucumber (Cucumis sativus L. var. xishuangbannanesis). Theor. Appl. Genet. 2017, 130, 1531–1548. [Google Scholar] [CrossRef] [PubMed]
- Qi, J.; Liu, X.; Shen, D.; Miao, H.; Xie, B.; Li, X.; Zeng, P.; Wang, S.; Shang, Y.; Gu, X.; et al. A genomic variation map provides insights into the genetic basis of cucumber domestication and diversity. Nat. Genet. 2013, 45, 1510–1515. [Google Scholar] [CrossRef] [PubMed]
- Kohchi, T.; Mukougawa, K.; Frankenberg, N.; Masuda, M.; Yokota, A.; Lagarias, J.C. The Arabidopsis HY2 gene encodes phytochromobilin synthase, a ferredoxin-dependent biliverdin reductase. Plant Cell 2001, 13, 425–436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Llorente, B.; D'Andrea, L.; Aguila Ruiz-Sola, M.; Botterweg, E.; Pulido, P.; Andilla, J.; Loza-Alvarez, P.; Rodriguez-Concepcion, M. Tomato fruit carotenoid biosynthesis is adjusted to actual ripening progression by a light-dependent mechanism. Plant J. 2016, 85, 107–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toledo-Ortiz, G.; Huq, E.; Rodriguez-Concepcion, M. Direct regulation of phytoene synthase gene expression and carotenoid biosynthesis by phytochrome-interacting factors. Proc. Natl. Acad. Sci. USA 2010, 107, 11626–11631. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Badejo, A.A.; Shibata, H.; Sawa, Y.; Maruta, T.; Shigeoka, S.; Page, M.; Smirnoff, N.; Ishikawa, T. Expression analysis of the VTC2 and VTC5 genes encoding GDP-L-galactose phosphorylase, an enzyme involved in ascorbate biosynthesis, in Arabidopsis thaliana. Biosci. Biotechnol. Biochem. 2011, 75, 1783–1788. [Google Scholar] [CrossRef] [Green Version]
- Bulley, S.M.; Rassam, M.; Hoser, D.; Otto, W.; Schünemann, N.; Wright, M.; MacRae, E.; Gleave, A.; Laing, W. Gene expression studies in kiwifruit and gene over-expression in Arabidopsis indicates that GDP-L-galactose guanyltransferase is a major control point of vitamin C biosynthesis. J. Exp. Bot. 2009, 60, 765–778. [Google Scholar] [CrossRef] [Green Version]
- Hu, L.; Meng, F.; Wang, S.; Sui, X.; Li, W.; Wei, Y.; Sun, J.; Zhang, Z. Changes in carbohydrate levels and their metabolic enzymes in leaves, phloem sap and mesocarp during cucumber (Cucumis sativus L.) fruit development. Sci. Hortic. Amst. 2009, 121, 131–137. [Google Scholar] [CrossRef]
- Chen, F.S.; Zhang, L.F.; An, H.J.; Yang, H.S.; Sun, X.Y.; Liu, H.; Yao, Y.Z.; Li, L. The nanostructure of hemicellulose of crisp and soft Chinese cherry (Prunus pseudocerasus L.) cultivars at different stages of ripeness. LWT-Food Sci. Technol. 2009, 42, 125–130. [Google Scholar] [CrossRef]
- Sánchez-Rodríguez, C.; Bauer, S.; Hématy, K.; Saxe, F.; Ibáñez, A.B.; Vodermaier, V.; Konlechner, C.; Sampathkumar, A.; Rüggeberg, M.; Aichinger, E.; et al. CHITINASE-LIKE1/POM-POM1 and its homolog CTL2 are glucan-interacting proteins important for cellulose biosynthesis in Arabidopsis. Plant Cell 2012, 24, 589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watson, R.; Wright, C.J.; McBurney, T.; Taylor, A.J.; Linforth, R.S.T. Influence of harvest date and light integral on the development of strawberry flavour compounds. J. Exp. Bot. 2002, 53, 2121–2129. [Google Scholar] [CrossRef] [PubMed]
- Sivankalyani, V.; Maoz, I.; Feygenberg, O.; Maurer, D.; Alkan, N. Chilling stress upregulates α-linolenic acid-oxidation pathway and induces volatiles of C6 and C9 aldehydes in mango fruit. J. Agric. Food. Chem. 2017, 65, 632–638. [Google Scholar] [CrossRef] [PubMed]
- Nemchenko, A.; Kunze, S.; Feussner, I.; Kolomiets, M. Duplicate maize 13-lipoxygenase genes are differentially regulated by circadian rhythm, cold stress, wounding, pathogen infection, and hormonal treatments. J. Exp. Bot. 2006, 57, 3767–3779. [Google Scholar] [CrossRef]
- Padilla, M.N.; Hernandez, M.L.; Sanz, C.; Martinez-Rivas, J.M. Stress-dependent regulation of 13-lipoxygenases and 13-hydroperoxide lyase in olive fruit mesocarp. Phytochemistry 2014, 102, 80–88. [Google Scholar] [CrossRef] [Green Version]
- Padilla, M.N.; Hernández, M.L.; Sanz, C.; Martínez-Rivas, J.M. Molecular cloning, functional characterization and transcriptional regulation of a 9-lipoxygenase gene from olive. Phytochemistry 2012, 74, 58–68. [Google Scholar] [CrossRef]
Compound | Odor Threshold (μg·kg−1) | Aroma Value | Flavor Description | |||||
---|---|---|---|---|---|---|---|---|
ZN16–9 DAA | ZN16–9 DAB | BYS–9 DAA | BYS–9 DAB | DS–9 DAA | DS–9 DAB | |||
(E,Z)-2,6-Nonadienal | 0.01 | 9.95 × 104 ± 4.25 × 103 | 1.23 × 105 ± 1.58 × 104 ↑ | 8.49 × 104 ± 9.0 × 103 | 1.65 × 105 ± 1.28 × 104 ↑ | 2.27 × 105 ± 9.7 × 103 | 7.83 × 104 ± 6.7 × 103 ↓ | Cucumber like |
(E)-2-Nonenal | 0.50 | 1.37 × 103 ± 3.08×102 | 1.05 × 103 ±1.54 × 102 | 1.48 × 103 ± 1.40 × 102 | 2.05 × 103 ± 5.18 × 102 ↑ | 4.33 × 103 ± 4.94 × 102 | 6.90 × 102 ± 72 ↓ | Fatty, green |
Nonanal | 1.00 | 69.45 ± 4.91 | 65.69 ±15.50 | 97.58 ± 23.19 | 101.82 ± 18.36 | 41.96 ± 20.35 | 43.33 ± 3.97 | Orange like |
n-Hexanal | 4.50 | 17.78 ± 2.22 | 83.56 ± 13.11 ↑ | 28.67 ± 0.22 | 102.00 ± 5.11 ↑ | 99.33 ± 18.44 | 41.33 ± 9.78 ↓ | Green grass |
(E)-2-Hexenal | 17.00 | 7.00 ± 1.47 | 18.47 ± 2.06 ↑ | 4.88 ±0.24 | 16.29 ± 1.53 ↑ | 17.06 ± 2.94 | 12.65 ± 2.24 ↓ | Apple like |
Propanal | 9.50–37.00 | 0.55–2.12 | 5.08–19.78 ↑ | 0.58–2.28 | 4.18–16.28 ↑ | 7.00–27.26 | 3.67–14.31 ↓ | Stimulate |
(E,E)-2,4-Heptadienal | 10.00 | 10.28 ± 1.67 | 25.13 ± 6.56 ↑ | 8.00 ± 1.10 | 27.82 ± 5.89 ↑ | 10.20 ± 1.54 | 11.05 ± 2.19 | Fresh |
(Z)-2-Heptenal | 0.80 | 26.25 ± 7.50 | 76.25 ± 23.75 ↑ | 34.93 ± 1.25 | 101.25 ± 8.75 ↑ | ND | 48.75 ± 16.25 ↑ | Fresh |
(E,Z)-3,6-Nonadien-1-ol | 10.00 | ND | 11.18 ± 1.59 ↑ | ND | ND | ND | 14.02 ± 0.46 ↑ | Musky |
1-Hexanol | 250.00 | 0.27 ± 0.07 | 1.24 ± 0.28 ↑ | 0.12 ± 0.03 | 1.30 ± 0.43 ↑ | 0.51 ± 0.34 | 2.71 ± 0.31 ↑ | Strawberry, fresh |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shan, N.; Gan, Z.; Nie, J.; Liu, H.; Wang, Z.; Sui, X. Comprehensive Characterization of Fruit Volatiles and Nutritional Quality of Three Cucumber (Cucumis sativus L.) Genotypes from Different Geographic Groups after Bagging Treatment. Foods 2020, 9, 294. https://doi.org/10.3390/foods9030294
Shan N, Gan Z, Nie J, Liu H, Wang Z, Sui X. Comprehensive Characterization of Fruit Volatiles and Nutritional Quality of Three Cucumber (Cucumis sativus L.) Genotypes from Different Geographic Groups after Bagging Treatment. Foods. 2020; 9(3):294. https://doi.org/10.3390/foods9030294
Chicago/Turabian StyleShan, Nan, Zengyu Gan, Jing Nie, Huan Liu, Zhenyu Wang, and Xiaolei Sui. 2020. "Comprehensive Characterization of Fruit Volatiles and Nutritional Quality of Three Cucumber (Cucumis sativus L.) Genotypes from Different Geographic Groups after Bagging Treatment" Foods 9, no. 3: 294. https://doi.org/10.3390/foods9030294
APA StyleShan, N., Gan, Z., Nie, J., Liu, H., Wang, Z., & Sui, X. (2020). Comprehensive Characterization of Fruit Volatiles and Nutritional Quality of Three Cucumber (Cucumis sativus L.) Genotypes from Different Geographic Groups after Bagging Treatment. Foods, 9(3), 294. https://doi.org/10.3390/foods9030294