Effect of Sugar Substitution with Steviol Glycosides on Sensory Quality and Physicochemical Composition of Low-Sugar Apple Preserves
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Preparation of Apple Preserves
2.1.2. Sample Presentation for Sensory Evaluation
2.2. Sensory Analytical Method
2.3. Consumer Testing
2.4. Instrumental Color Measurements
2.5. Physicochemical Composition
- -
- dry matter content, the samples were oven-dried at 70 °C until a constant weight was attained. DM was expressed as percentage dry weight of the initial fresh sample;
- -
- total ash content [50];
- -
- titratable acidity [51]. Results were expressed as mg g-1 of malic acid equivalent (MAE).
- -
- pH was conducted following the potentiometric method and using pH-meter Knick 913 (Elektronische Messgeräte, GmbH & Co. KG, Berlin, Germany) according to [52];
- -
- total soluble solids content was determined using the refractometric method [53].
2.6. Data Analysis
3. Results
3.1. Optimization of the Level of Steviol Glycosides Addition to Apple Preserves Taking into Account Sensory Properties
3.2. Consumer Evaluation of Apple Preserves
3.3. Effect of Sugar Substitution By Sgs, on the Color of Low-Sugar Apple Preserves
3.4. Effect of Sucrose Substitution with Steviol Glycosides on the Technological Quality of Apple Preserves
4. Discussion
4.1. Sensory Quality of Low-Sugar Apple Preserves
4.2. Physicochemical Properties of Low-Sugar Apple Preserves
Limitations
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- WHO. Guideline: Sugars Intake for Adults and Children; WHO: Geneva, Switzerland, 2015; Available online: https://www.who.int/nutrition/publications/guidelines/sugars_intake/en/ (accessed on 20 December 2019).
- Yadav, A.K.; Singh, S.; Dhyani, D.; Ahuja, P.S. A review on the improvement of stevia [Stevia rebaudiana (Bertoni)]. Can. J. Plant Sci. 2011, 91, 1–27. [Google Scholar] [CrossRef]
- Pielak, M.; Czarniecka-Skubina, E.; Trafiałek, J.; Głuchowski, A. Contemporary Trends and Habits in the Consumption of Sugar and Sweeteners—A Questionnaire survey among Poles. Int. J. Environ. Res. Public Health 2019, 16, 1164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mooradian, A.D.; Smith, M.; Tokuda, M. The role of artificial and natural sweeteners in reducing the consumption of table sugar: A narrative review. Clin. Nutr. ESPEN 2017, 18, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Al-Qudsi, F.M.; Al-Hasan, M.M. In utero exposure to commercial artificial sweeteners affects mice development and mammary gland structure. Environ. Sci. Pollut. Res. Int. 2019, 26, 5054–5064. [Google Scholar] [CrossRef] [PubMed]
- Kinghorn, A.D.; Chin, Y.W.; Pan, L.; Jia, Z. Natural Products as Sweeteners and Sweetness Modifiers. In Comprehensive Natural Products II: Chemistry and Biology; Mander, L., Liu, H.-W., Eds.; Elsevier: Oxford, UK, 2010; Volume 3, pp. 269–315. [Google Scholar]
- Pawar, R.S.; Krynitsky, A.J.; Rader, J.I. Sweeteners from plants with emphasis on Stevia rebaudiana (Bertoni) and Siraitia grosvenorii (Swingle). Anal. Bioanal. Chem. 2013, 405, 4397–4407. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority (EFSA). Scientific opinion on the safety of steviol glycosides for the proposed uses as a food additive. EFSA J. 2010, 8, 1537. [Google Scholar] [CrossRef]
- Commission Regulation (EU). Commission Regulation (EU) No 1131/2011 of 11 November 2011, amending Annex II to Regulation (EC) No 1333/2008 of the European Parliament and of the Council with regard to steviol glycosides. Off. J. Eur. Union 2011, L295/205, 1. [Google Scholar]
- United States Department of Agriculture (USDA). Sugar and Sweeteners Outlook: June 2012. USDA No. (SSSM-286); 2012. Available online: https://www.ers.usda.gov/publications/pub-details/?pubid=39310 (accessed on 18 June 2018).
- Pól, J.; Hohnová, B.; Hyötyläinen, T. Characterisation of Stevia rebaudiana by comprehensive two dimensional liquid chromatography time-of-flight mass spectrometry. J. Chromatogr. A 2007, 1150, 85–92. [Google Scholar] [CrossRef]
- Philippe, R.N.; De Mey, M.; Anderson, J.; Ajikumar, P.K. Biotechnological production of natural zero-calorie sweeteners. Curr. Opin. Biotech. 2014, 26, 155–161. [Google Scholar] [CrossRef]
- Abelyan, V.; Markosyan, A.; Abelyan, L. Process for Manufacturing a Sweetener and Use Thereof. U.S. Patent 8293307B2, 23 October 2012. Available online: https://patentimages.storage.googleapis.com/68/77/45/a58ba6041c3fd3/US8293307.pdf (accessed on 20 May 2018).
- Prakash, I.; Clos, J.F.; Chaturvedula, V.S.P. Stability of rebaudioside A under acidic conditions and its degradation products. Food Res. Int. 2012, 48, 65–75. [Google Scholar] [CrossRef]
- Prakash, I.; Markosyan, A.; Bunders, C. Development of Next Generation Stevia Sweetener: Rebaudioside M. Foods 2014, 3, 162–175. [Google Scholar] [CrossRef] [PubMed]
- Hellfritsch, C.; Brockhoff, A.; Stähler, F.; Meyerhof, W.; Hofmann, T. Human psychometric and taste receptor responses to steviol glycosides. J. Agric. Food Chem. 2012, 60, 6782–6793. [Google Scholar] [CrossRef] [PubMed]
- Spence, C.; Piqueras-Fiszman, B. The Perfect Meal: The Multisensory Science of Food and Dining; Wiley-Blackwell: Oxford, UK, 2014. [Google Scholar]
- Zorn, S.; Alcaire, F.; Vidal, L.; Giménez, A.; Ares, G. Application of multiple-sip temporal dominance of sensations to the evaluation of sweeteners. Food Qual. Pref. 2014, 36, 135–143. [Google Scholar] [CrossRef]
- Wölwer-Rieck, U.; Tomberg, W.; Wawrzun, A. Investigations on the stability of Stevioside and Rebaudioside A in soft drinks. J. Agric. Food Chem. 2010, 58, 12216–12220. [Google Scholar] [CrossRef]
- Lemus-Mondaca, R.; Vega-Gálvez, A.; Zura-Bravo, L.; Ah-Hen, K. Stevia rebaudiana Bertoni, source of a high-potency natural sweetener: A comprehensive review on the biochemical, nutritional and functional aspects. Food Chem. 2012, 132, 1121–1132. [Google Scholar] [CrossRef]
- Catharino, R.R.; Santos, L.S. On-line monitoring of stevioside sweetener hydrolysis to steviol in acidic aqueous solutions. Food Chem. 2012, 133, 1632–1635. [Google Scholar] [CrossRef] [Green Version]
- Thomas, J.E.; Glade, M.J. Stevia: It’s not just about calories. Open Obes. J. 2010, 2, 101–109. [Google Scholar] [CrossRef]
- Cadena, R.S.; Cruz, A.G.; Netto, R.R.; Castro, W.F.; Faria, J.D.A.F.; Bolini, H.M.A. Sensory profile and physicochemical characteristics of mango nectar sweetened with high intensity sweeteners throughout storage time. Food Res. Int. 2013, 54, 1670–1679. [Google Scholar] [CrossRef] [Green Version]
- Guggisberg, D.; Piccinali, P.; Schreier, K. Effects of sugar substitution with Stevia, ActilightTM and Stevia combinations or PalatinoseTM on rheological and sensory characteristics of low-fat and whole milk set yoghurt. Int. Dairy J. 2011, 21, 636–644. [Google Scholar] [CrossRef]
- Lisak, K.; Lenc, M.; Jeličić, I.; Božanić, R. Sensory evaluation of the strawberry flavored yoghurt with stevia and sucrose addition. Croat. J. Food Technol. Biotechnol. Nutr. 2012, 7, 39–43. [Google Scholar]
- Abou-Arab, E.A.; Abou-Arab, A.A.; Abu-Salem, M.F. Physicochemical assessment to natural sweeteners steviosides produced from Stevia rebaudiana bertoni plants. African J. Food Sci. 2010, 4, 269–281. [Google Scholar]
- Walter, J.M.; Soliah, L. Objective measures of baked products made with Stevia. J. Am. Diet. Assoc. 2010, 110, A54. [Google Scholar] [CrossRef]
- De, S.; Mondal, S.; Banerjee, S. Stevioside: Technology, Applications and Health; John Wiley & Sons: Kharagpur, India, 2013. [Google Scholar]
- Zahn, S.; Forker, A.; Krugel, L.; Rohm, H. Combined use of rebaudioside A and fibres for partial sucrose replacement in muffins. LWT-Food Sci. Technol. 2013, 50, 695–701. [Google Scholar] [CrossRef]
- Karp, S.; Wyrwisz, J.; Kurek, M.; Wierzbicka, A. Physical properties of muffins sweetened with steviol glycosides as the sucrose replacement. Food Sci. Biotechnol. 2016, 25, 1591–1596. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Guo, X.; Brennan, M.A.; Mason, S.L.; Zeng, X.-A.; Brennan, C.S. The Potential of Modulating the Reducing Sugar Released (and the Potential Glycemic Response) of Muffins Using a Combination of a Stevia Sweetener and Cocoa Powder. Foods 2019, 8, 644. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Noguera, J.; Weller, C.L.; Oliveira, F.I.; Rodrigues, S.; Fernandes, F.A. Dual-stage sugar substitution in strawberries with a Stevia-based sweetener. Innov. Food Sci. Emerg. Technol. 2010, 11, 225–230. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, F.I.P.; Rodrigues, S.; Fernandes, F.A.N. Production of low calorie Malay apples by dual stage sugar substitution with Stevia-based sweetener. Food Bioprod. Process. 2012, 90, 713–718. [Google Scholar] [CrossRef]
- Savita, S.M.; Sheela, K.; Sunanda, S.; Shankar, A.G.; Ramakrishna, P. Stevia rebaudiana–A functional component for food industry. J. Human Ecol. 2004, 15, 261–264. [Google Scholar] [CrossRef]
- Abbas, H.M. Utilization of stevia (Stevia rebaudiana Bertoni) leaves powder as natural non-caloric sweetener in production of pomegranate jam. Minia J. Agric. Res. Dev. 2007, 27, 457–479. [Google Scholar]
- De Carvalho, A.C.G.D.; de Oliveira, R.C.G.; Navacchi, M.F.P.; da Costa, C.E.M.; Mantovani, D.; Dacôme, A.S.; Seixas, F.A.V.; da Costa, S.C. Evaluation of the potential use of rebaudioside-A as sweetener for diet jam. Food Sci. Technol. (Campinas) 2013, 33, 555–560. [Google Scholar] [CrossRef] [Green Version]
- Nowicka, P.; Teleszko, M.; Wojdyło, A.; Oszmiański, J. Assessment of sensory qualities and nutritional value of chokeberry puree with added flax pomace and dried leaves of stevia. Żywność. Nauka. Technologia. Jakość 2014, 1, 124–136. [Google Scholar] [CrossRef]
- Hemada Hanaa, M.; Shehata, A.E.N.; Mohamed, E.F.; Abb Elmagied, F. The Impact of Natural Stevia Extract (Stevioside) as a Sucrose Replace on Quality Characteristics of Selected Food Products. Middle East J. Appl. Sci. 2016, 6, 40–50. [Google Scholar]
- Sutwal, R.; Dhankhar, J.; Kindu, P.; Mehla, R. Development of Low Calorie Jam by Replacement of Sugar with Natural Sweetener Stevia. Int. J. Current Research Rev. 2019, 11, 9–16. [Google Scholar] [CrossRef]
- Martinez-Palou, A.; Rohner-Tielen, E. Fruit and vegetables: Fresh and healthy on European tablesf. In Eurostat, Statistic in Focus; European Commission: Luxembourg, 2008; Volume 60. [Google Scholar]
- Pielak, M.; Czarniecka-Skubina, E. Właściwości technologiczne i wykorzystanie glikozydów stewiolowych w produktach rynkowych. Przemysł Spożywczy 2017, 6, 36–40. (In Polish) [Google Scholar] [CrossRef]
- Thibault, J.F.; Ralet, M.C. Physico-Chemical Properties of Pectins in the Cell Walls and After Extraction. In Advances in Pectin and Pectinase Research; Voragen, F., Schols, H., Visser, R., Eds.; Springer: Dordrecht, The Netherlands, 2003; pp. 91–105. [Google Scholar]
- PN-EN ISO 8586:2014-03. Polish Standard. Sensory analysis. General guidelines for the selection, training and monitoring of selected assessors and expert sensory assessors. ISO 2012, 8586, 2012. [Google Scholar]
- Civille, G.V.; Carr, B.T.; Meilgaard, M. Sensory Evaluation Techniques, 5th ed.; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- ISO 8589:2007. Sensory Analysis—General Guidance for the Design of Test Rooms; International Organization for Standardization: Geneva, Switzerland, 2017. [Google Scholar]
- ISO 13299:2016. Sensory Analysis. Methodology. General Guidelines for Determining the Sensory Profile; International Organization for Standardization: Geneva, Switzerland, 2016. [Google Scholar]
- Peryam, D.R.; Pilgrim, F.J. Hedonic scale method of measuring food preferences. Food Technol. 1957, 11, 9–14. [Google Scholar]
- Mokrzycki, W.S.; Tatol, M. Colour Difference ΔE—A Survey. Mach. Graph. Vis. 2011, 20, 384–411. Available online: http://mgv.wzim.sggw.pl/ (accessed on 20 December 2019).
- Rogowska, A.M. Synaesthesia and Individual Differences; Cambridge University Press: Cambridge, UK, 2015. [Google Scholar] [CrossRef]
- PN-90/A-75101-08/Az1:2002. Przetwory owocowe i warzywne. Przygotowanie próbek i metody badań fizykochemicznych. Oznaczanie zawartości popiołu ogólnego i jego alkaliczności; Polish Committee for Standardization: Warsaw, Poland, 2002. (In Polish) [Google Scholar]
- ISO 750:1998(EN). Fruit and Vegetable Products. Determination of Titratable Acidity; International Organization for Standardization: Geneva, Switzerland; Warsaw, Poland, 1998. [Google Scholar]
- EN 1132:1994. Fruit and Vegetable Juices—Determination of the pH Value; Comite Europeen de Normalisation: Brussels, Belgium, 1994. [Google Scholar]
- PN-A-75101-02:1990. Przetwory owocowe i warzywne. Przygotowanie próbek i metody badań fizykochemicznych; Polish Committee for Standardization: Warsaw, Poland, 1990. (In Polish) [Google Scholar]
- Borgognone, M.G.; Bussi, J.; Hough, G. Principal component analysis in sensory analysis: Covariance or correlation matrix? Food Qual. Pref. 2001, 12, 323–326. [Google Scholar] [CrossRef]
- Delwiche, J. The impact of perceptual interactions on perceived flavor. Food Qual. Pref. 2004, 15, 137–146. [Google Scholar] [CrossRef]
- Ghandehari Yazdi, A.P.; Hojjatoleslamy, M.; Keramat, J.; Shariati, M.A. Replacing Sucrose by Stevoioside and Adding Arabic Gum: Investigation of Rheological Properties of Apple Jam. J Appl. Sci. Agric. 2014, 9, 508–513. [Google Scholar]
- Hergesell, L.; Schöne, F.; Greiling, A.; Schäfer, U.; Jahreis, G. Possibilities and limitations of sugar reduction by steviol glycosides in yoghurt. Ernährungs Umsch. 2014, 61, 181–187. [Google Scholar] [CrossRef]
- Yosefi, M.; Goli, S.A.H.; Kadivar, M. Optimization of Low-Calorie Quince jam production with stevioside sweetener. J. Food Res. 2012, 22, 155–164. [Google Scholar]
- Mielby, L.H.; Andersen, B.V.; Jensen, S.; Kildegaard, H.; Kuznetsova, A.; Eggers, N.; Brockhoff, P.B.; Byrne, D.V. Changes in sensory characteristics and their relation with consumers’ liking, wanting and sensory satisfaction: Using dietary fibre and lime flavour in Stevia rebaudiana sweetened fruit beverages. Food Res. Int. 2016, 82, 14–21. [Google Scholar] [CrossRef]
- Parpinello, G.P.; Versari, A.; Castellari, M.; Galassi, S. Steviosides as a replacement of sucrose in peach juice: Sensory evaluation. J. Sens. Stud. 2001, 16, 471–484. [Google Scholar] [CrossRef]
- Gałkowska, D.; Juszczak, L.; Fortuna, T.; Cęcek, J. Sensory characteristics of low-sugar gelatine jellies sweetened with steviol glycosides. Potravinárstvo 2013, 7, 158–161. [Google Scholar]
- Pomeranz, Y.; Meloan, C.E. Determination of Moisture. In Food Analysis: Theory and Practice, 3rd ed.; Springer: Boston, MA, USA, 1994; pp. 575–601. [Google Scholar]
- Nawirska-Olszańska, A.; Kucharska, A.Z.; Sokół-Łętowska, A.; Biesiada, A. Quality assessment of pumpkin jams enriched with japanese quince, cornelian cherry and strawberries. Żywność. Nauka. Technologia. Jakość 2010, 17, 40–48, (In Polish, English abstract). [Google Scholar]
- Nieć, J.; Stefaniak, A.; Stanuch, B.; Słoma, M.; Bielaszka, A. Ocena jakości dżemów pomarańczowych. In Bezpieczeństwo zdrowotne żywności. Aspekty mikrobiologiczne, chemiczne i ocena towaroznawcza; Stadnik, J., Jackowska, N., Eds.; Naukowe PTTŻ: Kraków, Poland, 2015; pp. 203–211. (In Polish) [Google Scholar]
- Kucharska, A.Z.; Kowalczyk, K.; Nawirska-Olszańska, A.; Sokół-Łętowska, A. Effect of chokeberry, strawberry, and raspberry added to cornelian cherry purée on its physical and chemical composition. Żywność. Nauka. Technologia. Jakość 2010, 4, 95–106, (In Polish, English abstract). [Google Scholar]
- Lespirand, A.R.; Bambicha, R.R.; Mascheroni, R.H. Quality parameters assessment in kiwi jam during pasteurization. Modelling and optimization of the thermal process. Food Bioprod. Process. 2012, 90, 799–808. [Google Scholar] [CrossRef]
- Kiczorowska, B.; Kiczorowski, P.; Bochniarz, A. Chemical composition of flesh and skin of Jonica and Szampion apple varieties produced in orchards in the province of Lublin. Acta Agrophysica 2006, 8, 375–383, (In Polish, English abstract). [Google Scholar]
- Planchon, V.; Lateur, M.; Dupont, P.; Lognay, G. Ascorbic acid level of Belgian apple genetic resources. Sci. Hortic. 2004, 100, 51–61. [Google Scholar] [CrossRef] [Green Version]
- Jabłońska -Ryś, E.; Gustaw, W.; Latoch, A. Assessing technological usefulness of selected apples varieties in terms of browning potential. Żywność. Nauka. Technologia. Jakość 2014, 1, 114–123, (In Polish, English abstract). [Google Scholar] [CrossRef]
- Felicetti, E.; Mattheis, J.P. Quantification and histochemical localization of ascorbic acid in ‘Delicious’, ‘Golden Delicious’ and ‘Fuji’ apple fruit during on-tree development and cold storage. Postharvest Biol. Technol. 2010, 56, 56–63. [Google Scholar] [CrossRef]
- Gumul, D.; Korus, J.; Achremowicz, B. The effect of processing operations on the antioxidant activity of plant raw materials. Food. Sci. Technol. Qual. 2005, 4, 41–48, (In Polish, English abstract). [Google Scholar]
- Maceiras, R.; Álvarez, E.; Cancela, M.A. Rheological properties of fruit purees: Effect of cooking. J. Food Eng. 2007, 80, 763–769. [Google Scholar] [CrossRef]
- Poiana, M.A.; Alexa, E.; Mateescu, C. Tracking antioxidant properties and color changes in low-sugar bilberry jam as effect of processing, storage and pectin concentration. Chem. Cent. J. 2012, 6, 4. [Google Scholar] [CrossRef] [Green Version]
- Uckiah, A.; Goburdhun, D.; Ruggoo, A. Vitamin C content during processing and storage of pineapple. Nutr. Food Sci. 2009, 39, 398–412. [Google Scholar] [CrossRef]
- Różańska, D.; Regulska-Ilow, B.; Ilow, R. Influence of selected culinary processes on the antioxidant capacity and polyphenol content in food. Problemy Higieny i Epidemiologii 2014, 95, 215–222. [Google Scholar]
- Kunachowicz, H.; Nadolna, I.; Iwanow, K.; Przygoda, B. Wartość odżywcza wybranych produktów spożywczych i typowych potraw; Wydawnictwo Lekarskie PZWL: Warszawa, Poland, 2005. (In Polish) [Google Scholar]
- Zambiazi, R.C.; Chim, J.F.; Bruscatto, M. Avaliação das Caracteristicas e Estabilidade de Geléias Light de Morango. Alimentos & Nutrição, Araraquara 2006, 2, 165–170. [Google Scholar]
- Granada, G.G.; Zambiazi, R.C.; Mendonça, C.R.B.; Silva, E. Caracterização, física, química, microbiológica e sensorial de geléias light de abacaxi. Ciênca e tecnologia de Alimentos 2005, 25, 629–635. [Google Scholar] [CrossRef] [Green Version]
- Igual, M.; Contreras, C.; Martinez-Navarrete, N. Non-conventional techniques to obtain grapefruit jam. Innov. Food Sci. Emerg. Technol. 2010, 11, 335–341. [Google Scholar] [CrossRef]
- Rababah, T.M.; Al.-U’Datt, M.; Al-Mahasneh, M.; Yang, W.; Feng, H.; Ereifej, K.; Kilani, I.; Ishmais, M.A. Effect of jam processing and storage on phytochemicals and physiochemical properties of cherry at different temperatures. J. Food Process. Preserv. 2014, 38, 247–254. [Google Scholar] [CrossRef]
- Adedeji, A.A.; Gachovska, T.K.; Ngadi, M.O.; Raghavan, G.S.V. Effect of pretreat mention the drying characteristics of Okra. Dry. Technol. 2006, 26, 1251–1256. [Google Scholar] [CrossRef]
EXPERIMENT III | |||||
---|---|---|---|---|---|
EXPERIMENT II | Citric Acid (g) | ||||
EXPERIMENT I | Pectin (g) | ||||
Variant | Sugar (g) | Steviol Glycosides | |||
(g) | (%)* | ||||
L0 | 50 | 0.00 | 0 | 0.3 | 1.00 |
L10 | 45 | 0.05 | 10 | 0.3 | 0.94 |
L20 | 40 | 0.10 | 20 | 0.3 | 0.89 |
L30 | 35 | 0.15 | 30 | 0.3 | 0.83 |
L40 | 30 | 0.20 | 40 | 0.3 | 0.77 |
L50 | 25 | 0.25 | 50 | 0.3 | 0.71 |
L60 | 20 | 0.30 | 60 | 0.3 | 0.65 |
L70 | 15 | 0.35 | 70 | 0.3 | 0.59 |
L80 | 10 | 0.40 | 80 | 0.3 | 0.53 |
L90 | 5 | 0.45 | 90 | 0.3 | 0.47 |
Sensory Traits | Definition | Word Anchors (0–10 c.u) | |
---|---|---|---|
Odor | apple | odor characteristic for a baked apple | none → strong |
sweet | primary, refers to the presence of sugars allowing the release of a sweet aroma, sweet-smelling odor such as cotton candy, caramel or honey | ||
nectar | odor characteristic for fruit nectar, honey | ||
wine metallic sharp | a slightly sour odor, reminiscent of a wine acid odor, characteristic for metal (e.g., ferrous sulfate) strong, irritating, pinching (biting) odor | ||
‘other’ | with free space to specify by assessors | ||
Color | color characteristic for apple preserves | light → dark | |
Taste | sweet sour bitter | taste on the tongue associated with sugars taste on the tongue associated with acids taste on the tongue associated with bitter agents | none → strong |
Flavor | apple | specific flavor, characteristic for baked apple | none → strong |
nectar | flavor characteristic for fruit nectar, honey | ||
spicy (woody) | flavor of exotic woods mixed with bitter spice notes such as cloves, cinnamon or nutmeg | ||
metallic | chemical feeling factor, specific for metal taste in the mouth or from contact with iron or copper salts (clean copper coins), an unpleasant | ||
bland | a low level of flavor, and without character | ||
‘other’ | with free space to specify | ||
astringent sensation | the shrinking or puckering of the tongue surface caused by substances such as tannins or alum | ||
Sensory Balance | degree of harmonization of sensory attributes; the degree to which various flavor and odor characteristics fit together in the product | low → high |
SGs Substitution (%) | Experiment 1 | Experiment 2 | Experiment 3 | |
---|---|---|---|---|
Mean of Overall Liking Scores (Hedonic Scale 1–9) | ||||
0 | 6.2 a | 6.8 a | 7.1 a | |
10 | 6.1 a | 6.0 b | 6.8 a | |
20 | 4.8 a,b | 6.1b | 6.2 b | |
30 | 4.4 b | 6.0 b | 6.2 b | |
40 | 4.7 b | 5.7 c | 6.0 c | |
50 | 3.7 c | 5.1 c | 5.9c | |
60 | 3.8 c | 5.2 c | 5.9 c | |
70 | 3.9 c | 2.8 e | 5.3 b | |
80 | 2.6 d | 4.3 d | 5.0 d | |
90 | 1.8 e | 2.9 e | 3.2 e |
Color (L*a*b*) | Experiment I | Experiment II | Experiment III | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
SGs (%) | SGs (%) | SGs (%) | ||||||||||
0 | 10 | 30 | 40 | 0 | 10 | 30 | 40 | 0 | 10 | 30 | 40 | |
L* | 21.66 ± 0.19 | 23.18 ± 0.87 | 23,51 ± 0.18 | 25.59 ± 0.6 | 21.93 ± 0.87 | 23.15 ± 0.63 | 23.99 ± 0.81 | 26.66 ± 0.55 | 17.19 ± 0.60 | 22.27 ± 0.18 | 23.94 ± 0.70 | 24.73 ± 2.29 |
ΔL | - | 1.52 | 1.85 | 3.93 | - | 1.22 | 2.06 | 4.73 | - | 5.08 | 6.75 | 7.54 |
a* | 0.48 ± 0.14 | 0.58 ± 0.02 | 0.66 ± 0.20 | 0.65 ± 0.05 | 0.17 ± 0.07 | 0.18 ± 0.25 | -0.64 ± 0.02 | -0.78 ± 0.05 | 0.23 ± 0.24 | -0.39 ± 0.02 | -0.47 ± 0.04 | -0.49 ± 0.06 |
Δa | - | 0.1 | 0.18 | 0.17 | - | 0.01 | -0.81 | -0.95 | - | -0.62 | -0.7 | -0.72 |
b* | 13.8 ± 0.68 | 12.52 ± 0.44 | 12.13 ± 0.90 | 11.48 ± 0.37 | 13.43 ± 0.44 | 12.7 ± 0.28 | 11.01 ± 0.55 | 10.04 ± 0.15 | 7.56 ± 0.28 | 13.22 ± 0.24 | 13.37 ± 0.39 | 13.55 ± 0.82 |
Δb | - | -1.28 | -1.67 | -2.32 | - | -0.73 | -2.42 | -3.39 | - | 5.66 | 5.81 | 5.99 |
C | 13.81 | 12.53 | 12.15 | 11.50 | 13.43 | 12.7 | 11.03 | 10.07 | 7.56 | 13.22 | 13.38 | 13.56 |
ΔC | - | 1.28 | 1.68 | 2.33 | - | 0.73 | 2.55 | 3.52 | - | 5.69 | 5.85 | 6.03 |
(ΔE) | - | 1.99 | 2.5 | 4.57 | - | 1.42 | 3.28 | 5.9 | - | 7.63 | 8.93 | 9.66 |
Experiment | SGs (%) | Dry Matter (%) | Total Soluble Solids (%) | Vitamin C (mg/100 g) | Total Ash (%) | pH | Titratable Acidity (°) | Malic Acid(g/100 g) |
---|---|---|---|---|---|---|---|---|
I | 0 | 47.3 ± 0.2 A,a | 46.0 ± 0.5 A,a | 0.52 ± 0.02 A,a | 0.160 ± 0.002 A,a | 3.79 ± 0.01 A,a | 4.92 ± 0.02 A,a | 0.330 ± 0.000 A,a |
10 | 45.0 ± 0.3 A,b | 44.4 ± 0.5 A,b | 0.50 ± 0.01 A,b | 0.162 ± 0.002 A,a | 3.76 ± 0.01 A,b | 5.28 ± 0.02 A,b | 0.354 ± 0.001 A,b | |
30 | 40.2 ± 0.4 A,c | 41.2 ± 0.2 A,c | 0.48 ± 0.02 A,b | 0.168 ± 0.002 A,b | 3.68 ± 0.01 A,c | 5.99 ± 0.01 A,c | 0.401 ± 0.001 A,c | |
40 | 39.9 ± 0.3 A,c | 40.8 ± 0.2 A,d | 0.51 ± 0.01 A,b | 0.182 ± 0.002 A,c | 3.60 ± 0.02 A,d | 5.97 ± 0.01 A,c | 0.400 ± 0.001 A,c | |
II | 0 | 48.5 ± 0.2 B,a | 47.5 ± 0.4 B,a | 0.55 ± 0.01 B,a | 0.091 ± 0.001 B,a | 3.68 ± 0.02 B,a | 3.87 ± 0.01 B,a | 0.259 ± 0.001 B,a |
10 | 47.3 ± 0.2 B,b | 47.7 ± 0.3 B,a | 0.56 ± 0.01 B,a | 0.148 ± 0.029 B,b | 3.66 ± 0.02 B,a | 4.26 ± 0.02 B,b | 0.286 ± 0.002 B,b | |
30 | 47.7 ± 0.6 B,b | 43.5 ± 0.5 B,b | 0.54 ± 0.02 B,a | 0.174 ± 0.001 B,c | 3.61 ± 0.02 B,b | 5.07 ± 0.02 B,c | 0.339 ± 0.001 B,c | |
40 | 42.1 ± 0.6 B,c | 38.9 ± 0.2 B,c | 0.55 ± 0.01 B,a | 0.173 ± 0.003 B,c | 3.60 ± 0.01 A,b | 5.13 ± 0.02 B,d | 0.344 ± 0.00 B,d | |
III | 0 | 41.4 ± 0.2 C,a | 45.2 ± 0.7 C,a | 0.56 ± 0.02 B,a | 0.161 ± 0.021 A,a | 3.29 ± 0.02 C,a | 10.69 ± 0.04 C,a | 0.714 ± 0.004 C,a |
10 | 40.4 ± 0.1 C,b | 43.9 ± 1.1 C,b | 0.54 ± 0.02 B,a | 0.163 ± 0.006 A,a | 3.26 ± 0.01 C,a | 12.12 ± 0.04 C,b | 0.811 ± 0.004 C,b | |
30 | 38.6 ± 0.3 C,c | 39.0 ± 0.5 C,c | 0.53 ± 0.01 B,a | 0.167 ± 0.004 C,a | 3.21 ± 0.01 C,b | 14.98 ± 0.02 C,c | 1.000 ± 0.001 C,c | |
40 | 34.7 ± 0.3 C,d | 36.0 ± 0.6 C,d | 0.54 ± 0.03 B,a | 0.169 ± 0.010 C,a | 3.23 ± 0.00 B,c | 15.10 ± 0.10 C,d | 1.012 ± 0.008 C,d |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pielak, M.; Czarniecka-Skubina, E.; Głuchowski, A. Effect of Sugar Substitution with Steviol Glycosides on Sensory Quality and Physicochemical Composition of Low-Sugar Apple Preserves. Foods 2020, 9, 293. https://doi.org/10.3390/foods9030293
Pielak M, Czarniecka-Skubina E, Głuchowski A. Effect of Sugar Substitution with Steviol Glycosides on Sensory Quality and Physicochemical Composition of Low-Sugar Apple Preserves. Foods. 2020; 9(3):293. https://doi.org/10.3390/foods9030293
Chicago/Turabian StylePielak, Marlena, Ewa Czarniecka-Skubina, and Artur Głuchowski. 2020. "Effect of Sugar Substitution with Steviol Glycosides on Sensory Quality and Physicochemical Composition of Low-Sugar Apple Preserves" Foods 9, no. 3: 293. https://doi.org/10.3390/foods9030293
APA StylePielak, M., Czarniecka-Skubina, E., & Głuchowski, A. (2020). Effect of Sugar Substitution with Steviol Glycosides on Sensory Quality and Physicochemical Composition of Low-Sugar Apple Preserves. Foods, 9(3), 293. https://doi.org/10.3390/foods9030293