Challenges Associated with Byproducts Valorization—Comparison Study of Safety Parameters of Ultrasonicated and Fermented Plant-Based Byproducts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Microorganism for Fermentation
2.3. Chemicals
2.4. Fermentation and Ultrasonication of Processing Byproducts
2.5. Acidity Characteristics of the Fermented Byproducts
2.6. Microbiological Analysis of Processing Byproducts
2.7. High-Performance Liquid Chromatography Coupled to Time of Flight High-Resolution Mass Spectrometry (HPLC-TOF-HRMS) for Mycotoxin Analysis
2.8. Evaluation of Biogenic amines (BAs) Formation in Press Cake Samples
2.9. Analysis of Macro- and Micro-Elements in Processing Byproducts Using Inductively Coupled Plasma Mass Spectrometry (ICP-MS)
2.10. Statistical Analysis
3. Results and Discussion
3.1. Acidity Parameters of Samples after Fermentation
3.2. Microbiological Parameters of Ultrasonicated and Fermented Processing Byproducts
3.3. The Influence of Ultrasonication and Fermentation on Mycotoxins in Press Cake Samples
3.4. Concentration of Biogenic Amines (BAs) in Press Cake Samples
3.5. Macro- and Micro-Elements in Processing Byproducts after Ultrasonication and Fermentation
3.5.1. Changes in Macro-Elements
3.5.2. Changes in Essential Micro-Elements
3.5.3. Changes in Non-Essential Micro-Elements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Céspedes, M.; Cárdenas, P.; Staffolani, M.; Ciappini, M.C.; Vinderola, G. Performance in nondairy drinks of probiotic L. casei strains usually employed in dairy products. J. Food Sci. 2013, 78, M756–M762. [Google Scholar] [CrossRef] [PubMed]
- Markets and Markets Dairy Alternative (Milk) Market by Type (Soy, Almond, Rice), Formulation (Plain, Flavored, Sweetened, Unsweetened), Channel (Supermarket, Health Store, Pharmacy, Convenience Store) & Geography—Global Trends & Forecast to 2018. Available online: https://www.marketsandmarkets.com/Market-Reports/dairy-alternative-plant-milk-beverages-market-677.html (accessed on 23 April 2020).
- Non-Dairy Milk Market—Global Outlook and Forecast 2019–2024. Available online: https://www.marketresearch.com/Arizton-v4150/Non-Dairy-Milk-Global-Outlook-12287735/ (accessed on 24 April 2020).
- FAO—Food and Agriculture Organization of the United Nations. Available online: http://www.fao.org/faostat/en/#data/QC/visualize (accessed on 24 April 2020).
- BIOTECH 2017. Available online: https://www.biotech-gm-food.com/aktuelles/gen-soja/ (accessed on 24 April 2020).
- Shakeel, A.; Saeed, M.S.; Aslam, H.K.W.; Naheed, N.; Shoaib, M.H.; Razal, M.S.; Noor, A. Extraction of soya milk from different varieties 0 of soya beans and comparative study for better nutrition with buffalo milk. J. Glob. Innov. Agric. Soc. Sci. 2015, 3, 146–151. [Google Scholar] [CrossRef]
- Li, B.; Qiao, M.; Lu, F. Composition, Nutrition, and Utilization of Okara (Soybean Residue). Food Rev. Int. 2012, 28, 231–252. [Google Scholar] [CrossRef]
- Tangyu, M.; Muller, J.; Bolten, C.J.; Wittmann, C. Fermentation of plant-based milk alternatives for improved flavour and nutritional value. Appl. Microbiol. Biotechnol. 2019, 103, 9263–9275. [Google Scholar] [CrossRef] [PubMed]
- Soetan, K.; Olaiya, C.; Oyewole, O. The importance of mineral elements for humans, domestic animals and plants—A review. Afr. J. Food Sci. 2010, 4, 200–222. [Google Scholar]
- Tamang, J.P.; Shin, D.; Jung, S.; Cha, E.S. Functional properties of microorganisms in fermented foods. Front. Microbiol. 2016, 7, 578. [Google Scholar] [CrossRef] [PubMed]
- Bartkiene, E.; Zokaityte, E.; Lele, V.; Sakiene, V.; Zavistanaviciute, P.; Klupsaite, D.; Bendoraitiene, J.; Navikaite-Snipaitiene, V.; Ruzauskas, M. Technology and characterisation of whole hemp seed beverages prepared from ultrasonicated and fermented whole seed paste. Int. J. Food Sci. Technol. 2020, 55, 406–419. [Google Scholar] [CrossRef]
- Bartkiene, E.; Lele, V.; Sakiene, V.; Zavistanaviciute, P.; Ruzauskas, M.; Bernatoniene, J.; Jakstas, V.; Viskelis, P.; Zadeike, D.; Juodeikiene, G. Improvement of the antimicrobial activity of lactic acid bacteria in combination with berries/fruits and dairy industry by-products. J. Sci. Food Agric. 2019, 99, 3992–4002. [Google Scholar] [CrossRef]
- Bartkiene, E.; Bartkevics, V.; Rusko, J.; Starkute, V.; Zadeike, D.; Juodeikiene, G. Changes in the free amino acids and the biogenic amine contents during lactic acid fermentation of different lupin species. Int. J. Food Sci. Technol. 2016, 51, 2049–2056. [Google Scholar] [CrossRef]
- Soria, A.C.; Villamiel, M. Effect of ultrasound on the technological properties and bioactivity of food: A review. Trends Food Sci. Technol. 2010, 21, 323–331. [Google Scholar] [CrossRef]
- Liu, Y.; Li, M.; Liu, Y.; Bai, F.; Bian, K. Effects of pulsed ultrasound at 20 kHz on the sonochemical degradation of mycotoxins. World Mycotoxin J. 2019, 12, 357–366. [Google Scholar] [CrossRef]
- Mortazavia, S.M.; Sania, A.M.; Mohsenib, S. Destruction of AFT by Ultrasound Treatment. J. Appl. Environ. Biol. Sci. 2015, 4, 198–202. [Google Scholar]
- Charoux, C.M.; O’Donnell, C.P.; Tiwari, B.K. Ultrasound processing and food quality. In Ultrasound: Advances for Food Processing and Preservation; Bermudez-Aguirre, D., Ed.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 215–235. [Google Scholar]
- Wójciak, K.M.; Stasiak, D.M.; Stadnik, J.; Ferysiuk, K.; Kononiuk, A. The influence of sonication time on the biogenic amines formation as a critical point in uncured dry-fermented beef manufacturing. Int. J. Food Sci. Technol. 2019, 54, 75–83. [Google Scholar] [CrossRef]
- Gallo, M.; Ferrara, L.; Naviglio, D. Application of ultrasound in food science and technology: A perspective. Foods 2018, 7, 164. [Google Scholar] [CrossRef] [PubMed]
- Wolf-Hall, C.E.; Schwarz, P.B. Mycotoxins and Fermentation—Beer Production. In Mycotoxins and Food Safety. Advances in Experimental Medicine and Biology; DeVries, J.W., Trucksess, M.W., Jackson, L.S., Eds.; Springer: Boston, MA, USA, 2002; Volume 504, pp. 217–226. [Google Scholar]
- Mah, J.; Park, Y.K.; Jin, Y.H.; Lee, J.; Hwang, H. Bacterial production and control of biogenic amines in Asian fermented soybean foods. Foods 2019, 8, 85. [Google Scholar] [CrossRef] [PubMed]
- Valle-Algarra, F.M.; Mateo, E.M.; Medina, A.; Mateo, F.; Gimeno-Adelantado, J.V.; Jiménez, M. Changes in ochratoxin A and type B trichothecenes contained in wheat flour during doughfermentation and bread-baking. Food Addit. Contam. 2009, 26, 896–906. [Google Scholar] [CrossRef]
- Halasz, A.; Lasztity, R.; Abonyi, T.; Bata, A. Decontamination of mycotoxin-containing food and feed by biodegradation. Food Rev. Int. 2009, 25, 284–298. [Google Scholar] [CrossRef]
- Yang, L.; Yang, Z.; Yang, W.; Li, H.; Zhang, C.; Jiang, S.; Li, X. Conventional solid fermentation alters mycotoxin contents and microbial diversity analyzed by high-throughput sequencing of a Fusarium mycotoxin-contaminated diet. Can. J. Anim. Sci. 2018, 98, 354–361. [Google Scholar] [CrossRef]
- Chong, C.; Abu Bakar, F.; Russly, A.; Jamilah, B.; Mahyudin, N. The effects of food processing on biogenic amines formation. Int. Food Res. J. 2011, 18, 867–876. [Google Scholar]
- Naila, A.; Flint, S.; Fletcher, G.; Bremer, P.; Meerdink, G. Control of biogenic amines in food—Existing and emerging approaches. J. Food Sci. 2010, 75, R139–R150. [Google Scholar] [CrossRef]
- Ruiz-Capillas, C.; Herrero, A.M. Impact of biogenic amines on food quality and safety. Foods 2019, 8, 62. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Pérez, S.; Comas-Basté, O.; Rabell-González, J.; Veciana-Nogués, M.T.; Latorre-Moratalla, M.L.; Vidal-Carou, M.C. Biogenic Amines in Plant-Origin Foods: Are they Frequently Underestimated in Low-Histamine Diets? Foods 2018, 7, 205. [Google Scholar] [CrossRef]
- ICC 109/01. Determination of the Moisture Content of Cereals and Cereal Products (Basic reference method). In ICC Standard Methods; International Association for Cereal Chemistry, ICC—International Association for Cereal Science and Technology: Vienna, Austria, 1976. [Google Scholar]
- Ben-Gigirey, B.; de Sousa, V.B.; Juan, M.; Villa, T.G.; Barros-Velazquez, J. Histamine and Cadaverine Production by Bacteria Isolated from Fresh and Frozen Albacore (Thunnus Alalunga). J. Food Prot. 1999, 62, 933–939. [Google Scholar] [CrossRef] [PubMed]
- Bartkiene, E.; Bartkevics, V.; Ikkere, L.E.; Pugajeva, I.; Zavistanaviciute, P.; Lele, V.; Ruzauskas, M.; Bernatoniene, J.; Jakstas, V.; Klupsaite, D. The effects of ultrasonication, fermentation with Lactobacillus sp., and dehydration on the chemical composition and microbial contamination of bovine colostrum. J. Dairy Sci. 2018, 101, 6787–6798. [Google Scholar] [CrossRef] [PubMed]
- Bianchetti, D.G.; Amelio, G.S.; Lava, S.A.; Bianchetti, M.G.; Simonetti, G.D.; Agostoni, C.; Fossali, E.F.; Milani, G.P. D-lactic acidosis in humans: Systematic literature review. Pediatr. Nephrol. 2018, 33, 673–681. [Google Scholar] [CrossRef] [PubMed]
- Reddy, G.; Altaf, M.; Naveena, B.; Venkateshwar, M.; Kumar, E.V. Amylolytic bacterial lactic acid fermentation—A review. Biotechnol. Adv. 2008, 26, 22–34. [Google Scholar] [CrossRef] [PubMed]
- Freire, A.L.; Ramos, C.L.; Schwan, R.F. Microbiological and chemical parameters during cassava based-substrate fermentation using potential starter cultures of lactic acid bacteria and yeast. Food Res. Int. 2015, 76, 787–795. [Google Scholar] [CrossRef]
- Olagunju, O.F.; Ezekiel, O.O.; Ogunshe, A.O.; Oyeyinka, S.A.; Ijabadeniyi, O.A. Effects of fermentation on proximate composition, mineral profile and antinutrients of tamarind (Tamarindus indica L.) seed in the production of daddawa-type condiment. LWT 2018, 90, 455–459. [Google Scholar] [CrossRef]
- Dakwa, S.; Sakyi-Dawson, E.; Diako, C.; Annan, N.T.; Amoa-Awua, W.K. Effect of boiling and roasting on the fermentation of soybeans into dawadawa (soy-dawadawa). Int. J. Food Microbiol. 2005, 104, 69–82. [Google Scholar] [CrossRef]
- Adeva-Andany, M.; López-Ojén, M.; Funcasta-Calderón, R.; Ameneiros-Rodríguez, E.; Donapetry-García, C.; Vila-Altesor, M.; Rodríguez-Seijas, J. Comprehensive Review on Lactate Metabolism in Human Health. Mitochondrion 2014, 17, 76–100. [Google Scholar] [CrossRef]
- Aguilar, C.; Vanegas, C.; Klotz, B. Antagonistic effect of Lactobacillus strains against Escherichia coli and Listeria monocytogenes in milk. J. Dairy Res. 2011, 78, 136–143. [Google Scholar] [CrossRef] [PubMed]
- Arena, M.P.; Capozzi, V.; Russo, P.; Drider, D.; Spano, G.; Fiocco, D. Immunobiosis and probiosis: Antimicrobial activity of lactic acid bacteria with a focus on their antiviral and antifungal properties. Appl. Microbiol. Biotechnol. 2018, 102, 9949–9958. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.; Ndegwa, E. Influence of pH and Temperature on Growth Characteristics of Leading Foodborne Pathogens in a Laboratory Medium and Select Food Beverages. Austin Food Sci. 2018, 3, 1031. [Google Scholar]
- Othman, M.; Ariff, A.B.; Rios-Solis, L.; Halim, M. Extractive Fermentation of Lactic Acid in Lactic Acid Bacteria Cultivation: A Review. Front. Microbiol. 2017, 8, 2285. [Google Scholar] [CrossRef]
- Salvetti, E.; Torriani, S.; Felis, G.E. The Genus Lactobacillus: A Taxonomic Update. Probiotics Antimicrob. 2012, 4, 217–226. [Google Scholar] [CrossRef]
- Lyng, K.; Stensgård, A.E.; Hanssen, O.J.; Modahl, I.S. Relation between greenhouse gas emissions and economic profit for different configurations of biogas value chains: A case study on different levels of sector integration. J. Clean Prod. 2018, 182, 737–745. [Google Scholar] [CrossRef]
- Zupanc, M.; Pandur, Ž.; Perdih, T.S.; Stopar, D.; Petkovšek, M.; Dular, M. Effects of cavitation on different microorganisms: The current understanding of the mechanisms taking place behind the phenomenon. A review and proposals for further research. Ultrason. Sonochem. 2019, 57, 147–165. [Google Scholar] [CrossRef]
- Viegas, S.; Assunção, R.; Martins, C.; Nunes, C.; Osteresch, B.; Twarużek, M.; Kosicki, R.; Grajewski, J.; Ribeiro, E.; Viegas, C. Occupational exposure to mycotoxins in swine production: Environmental and biological monitoring approaches. Toxins 2019, 11, 78. [Google Scholar] [CrossRef]
- Alshannaq, A.; Yu, J. Occurrence, toxicity, and analysis of major mycotoxins in food. Int. J. Environ. Res. Public Health 2017, 14, 632. [Google Scholar] [CrossRef]
- Reddy, L.; Bhoola, K. Ochratoxins—Food contaminants: Impact on human health. Toxins 2010, 2, 771–779. [Google Scholar] [CrossRef]
- Kong, D.; Wu, X.; Li, Y.; Liu, L.; Song, S.; Zheng, Q.; Kuang, H.; Xu, C. Ultrasensitive and eco-friendly immunoassays based monoclonal antibody for detection of deoxynivalenol in cereal and feed samples. Food Chem. 2019, 270, 130–137. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Shim, W.; Kim, J.; Chung, D. Development of a Simultaneous Lateral Flow Strip Test for the Rapid and Simple Detection of Deoxynivalenol and Zearalenone. J. Food Sci. 2014, 79, M2048–M2055. [Google Scholar] [CrossRef] [PubMed]
- Kovalsky, P.; Kos, G.; Nährer, K.; Schwab, C.; Jenkins, T.; Schatzmayr, G.; Sulyok, M.; Krska, R. Co-621 Occurrence of Regulated, Masked and Emerging Mycotoxins and Secondary Metabolites in Finished Feed and maize—An Extensive Survey. Toxins 2016, 8, 363. [Google Scholar] [CrossRef] [PubMed]
- EFSA. Deoxynivalenol in food and feed: Occurrence and exposure. EFSA J. 2013, 11, 3379. [Google Scholar]
- Habler, K.; Rychlik, M. Multi-Mycotoxin Stable Isotope Dilution LC-MS/MS Method for Fusarium Toxins in Cereals. Anal. Bioanal. Chem. 2016, 408, 307–317. [Google Scholar] [CrossRef]
- Gonçalves, C.; Stroka, J. Cross-Reactivity Features of Deoxynivalenol (DON)-Targete Immunoaffinity Columns Aiming to Achieve Simultaneous Analysis of DON and Major Conjugates in Cereal Samples. Food Addit. Contam. Part A 2016, 33, 1053–1062. [Google Scholar] [CrossRef]
- Vendl, O.; Berthiller, F.; Crews, C.; Krska, R. Simultaneous Determination of Deoxynivalenol, Zearalenone, and their Major Masked Metabolites in Cereal-Based Food by LC–MS–MS. Anal. Bioanal. Chem. 2009, 395, 1347–1354. [Google Scholar] [CrossRef]
- Codex Alimentarius Commission. Joint FAO/WHO Food Standards Programme, Codex Committte on Contaminants in Foods; Fifth Session; Codex Alimentarius: Rome, Italy, 2011. [Google Scholar]
- Pinton, P.; Tsybulskyy, D.; Lucioli, J.; Laffitte, J.; Callu, P.; Lyazhr, F.; Grosjean, F.; Bracarense, A.P.; Kolf-Clauw, M.; Oswald, I.P. Toxicity of Deoxynivalenol and its Acetylated Derivatives on the Intestine: Differential Effects on Morphology, Barrier Function, Tight Junction Proteins, and Mitogen-Activated Protein Kinases. Toxicol. Sci. 2012, 130, 180–190. [Google Scholar] [CrossRef]
- European Commission. Collection of Occurrence Data of Fusarium Toxins in Food and Assessment of Dietary Intake by the Population of EU Member States, Report on Tasks for Scientific Cooperation (SCOOP); European Commission: Brussels, Belgium, 2003. [Google Scholar]
- WHO. Aflatoxins. Food Safety Digest, Department of Food safety and Zoonoses. 2018. Available online: https://www.who.int/foodsafety/FSDigest_Aflatoxins_EN.pdf (accessed on 4 September 2019).
- Berthiller, F.; Maragos, C.M.; Dall’Asta, C. Introduction to masked mycotoxins. In Masked Mycotoxins in Food: Formation, Occurrence and Toxicological Relevance; Dall’Asta, C., Berthiller, F., Eds.; The Royal Society of Chemistry: Cambridge, UK, 2016; pp. 2–13. [Google Scholar]
- Papageorgiou, M.; Lambropoulou, D.; Morrison, C.; Kłodzińska, E.; Namieśnik, J.; Płotka-Wasylka, J. Literature Update of Analytical Methods for Biogenic Amines Determination in Food and Beverages. TrAC Trend Anal. Chem. 2018, 98, 128–142. [Google Scholar] [CrossRef]
- Alvarez, M.A.; Moreno-Arribas, M.V. The Problem of Biogenic Amines in Fermented Foods and the use of Potential Biogenic Amine-Degrading Microorganisms as a Solution. Trends Food Sci. Technol. 2014, 39, 146–155. [Google Scholar] [CrossRef]
- Suzzi, G.; Torriani, S. Biogenic Amines in Food. Front. Microbiol. 2015, 6, 472. [Google Scholar] [CrossRef] [PubMed]
- Mantis, F.; Tsachev, I.; Sabatakou, O.; Burriel, A.; Vacalopoulos, A.; Ramantanis, S. Safety and Shelf-Life of Widely Distributed Vacuum Packed, Heat Treated Sausages. Bulg. J. Vet. Med. 2005, 8, 245–254. [Google Scholar]
- EFSA. Scientific Opinion on the risks for animal and public health related to the presence of Alternaria toxins in feed and food. EFSA J. 2011, 9, 2407. [Google Scholar] [CrossRef]
- Mooraki, N.; Sedaghati, M. Reduction of Biogenic Amines in Fermented Fish Sauces by using Lactic Acid Bacteria. J. Sur. Fish. Sci. 2019, 5, 99–110. [Google Scholar]
- Dapkevicius, M.L.E.; Nout, M.R.; Rombouts, F.M.; Houben, J.H.; Wymenga, W. Biogenic Amine Formation and Degradation by Potential Fish Silage Starter Microorganisms. Int. J. Food Microbiol. 2000, 57, 107–114. [Google Scholar] [CrossRef]
- Wołonciej, M.; Milewska, E.; Roszkowska-Jakimiec, W. Pierwiastki Śladowe Jako Aktywatory Enzymów Antyoksydacyjnych. Adv. Hyg. Exp. Med. Postepy Hig. Med. Dosw. 2016, 70, 1483–1498. [Google Scholar] [CrossRef]
- Ross, A.C.; Caballero, B.; Cousins, R.J.; Tucker, K.L.; Ziegler, T.R. Modern Nutrition in Health and Disease; Wolters Kluwer Health/Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2014; p. 159. [Google Scholar]
- Nkhata, S.G.; Ayua, E.; Kamau, E.H.; Shingiro, J. Fermentation and Germination Improve Nutritional Value of Cereals and Legumes through Activation of Endogenous Enzymes. Food Sci. Nutr. 2018, 6, 2446–2458. [Google Scholar] [CrossRef]
- Bajwa, H.K.; Santosh, O.; Koul, A.; Bisht, M.; Nirmala, C. Quantitative Determination of Macroelement and Microelement Content of Fresh and Processed Bamboo Shoots by Wavelength Dispersive X-ray Fluorescence Spectrometry. X-ray Spectrom. 2019, 48, 637–643. [Google Scholar] [CrossRef]
- Day, C.N.; Morawicki, R.O. Effects of Fermentation by Yeast and Amylolytic Lactic Acid Bacteria on Grain Sorghum Protein Content and Digestibility. J. Food Qual. 2018, 2018, 1–8. [Google Scholar] [CrossRef]
- Afify, A.E.M.; El-Beltagi, H.S.; El-Salam, S.M.A.; Omran, A.A. Effect of Soaking, Cooking, Germination and Fermentation Processing on Proximate Analysis and Mineral Content of Three White Sorghum Varieties (Sorghum Bicolor L. Moench). Not. Bot. Horti Agrobot. Cluj Napoca 2012, 40, 92–98. [Google Scholar]
- Alemu, M.K. The Effect of Natural Fermentation on Some Antinutritional Factors, Minerals, Proximate Composition and Sensory Characteristics in Sorghum Based Weaning Food. Master′s Thesis, Addis Ababa University, Addis Ababa, Ethiopia, 2009. [Google Scholar]
- Abbaspour, N.; Hurrell, R.; Kelishadi, R. Review on Iron and its Importance for Human Health. J. Res. Med. Sci. 2014, 19, 164–174. [Google Scholar] [PubMed]
- Jurowski, K.; Krośniak, M.; Fołta, M.; Tatar, B.; Cole, M.; Piekoszewski, W. The Toxicological Analysis of Ni and Cr in Prescription Food for Special Medical Purposes and Modified Milk Products for Babies in Infancy Available in Pharmacies in Poland. Biol. Trace Elem. Res. 2019, 192, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Kieliszek, M. Selenium–Fascinating Microelement, Properties and Sources in Food. Molecules 2019, 24, 1298. [Google Scholar] [CrossRef] [PubMed]
- Marshall, F. Enhancing Food Chain Integrity: Quality Assurance Mechanism for Air Pollution Impacts on Fruits and Vegetables Systems. Crop Post Harvest Program. Available online: https://www.gov.uk/dfid-research-outputs/enhancing-food-chain-integrity-quality-assurance-mechanisms-for-air-pollution-impacts-on-fruit-and-vegetable-systems-final-technical-report (accessed on 9 April 2020).
- Radwan, M.A.; Salama, A.K. Market Basket Survey for some Heavy Metals in Egyptian Fruits and Vegetables. Food Chem. Toxicol. 2006, 44, 1273–1278. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Cao, Q.; Zheng, Y.; Huang, Y.; Zhu, Y. Health Risks of Heavy Metals in Contaminated Soils and Food Crops Irrigated with Wastewater in Beijing, China. Environ. Pollut. 2008, 152, 686–692. [Google Scholar] [CrossRef]
- Taiwo, A.; Oyebode, A.; Salami, F.; Okewole, I.; Gbogboade, A.; Agim, C.; Oladele, T.; Kamoru, T.; Abdullahi, K.; Davidson, N. Carcinogenic and Non-Carcinogenic Evaluations of Heavy Metals in Protei Foods from Southwestern Nigeria. J. Food Comp. Anal. 2018, 73, 60–66. [Google Scholar] [CrossRef]
- Pirsaheb, M.; Fattahi, N.; Sharafi, K.; Khamotian, R.; Atafar, Z. Essential and Toxic Heavy Metals in Cereals and Agricultural Products Marketed in Kermanshah, Iran, and Human Health Risk Assessment. Food Addit. Contam. Part B 2016, 9, 15–20. [Google Scholar] [CrossRef]
- WHO. Cadmium. Environmental Health Criteria; World Health Organization: Geneva, Switzerland, 1992; p. 134. [Google Scholar]
- WHO. Policy Paper: Mercury in Health Care; WHO/SDE/WSH/05.08; World Health Organization: Geneva, Switzerland, 2005. [Google Scholar]
- Rodsamran, P.; Sothornvit, R. Physicochemical and functional properties of protein concentrate from by-product of coconut processing. Food Chem. 2018, 241, 364–371. [Google Scholar] [CrossRef]
- Russo, P.; Fares, C.; Longo, A.; Spano, G.; Capozzi, V. Lactobacillus plantarum with broad 765 antifungal activity as a protective starter culture for bread production. Foods 2017, 6, 110. [Google Scholar] [CrossRef]
- Capozzi, V.; Russo, P.; Dueñas, M.T.; López, P.; Spano, G. Lactic acid bacteria producing B-group vitamins: A great potential for functional cereals products. Appl. Microbiol. Biotechnol. 2012, 96, 1383–1394. [Google Scholar] [CrossRef]
Byproducts | pH | TTA, °N | Lactic Acid Isomers, g/100 g | ||||||
---|---|---|---|---|---|---|---|---|---|
12 h | 24 h | 48 h | 12 h | 24 h | 48 h | L−(+) | D−(−) | L/D | |
RPC | 2.41 ± 0.02 | 5.4 ± 0.01 | 5.6 ± 0.01 | 4.91 ± 0.05 | 4.17 ± 0.04 | 3.83 ± 0.03 | 1.05 ± 0.10 | 0.31 ± 0.04 | 3.4 |
SPC | 2.88 ± 0.02 | 3.8 ± 0.02 | 4.1 ± 0.01 | 5.5 ± 0.04 | 4.84 ± 0.05 | 4.54 ± 0.04 | 2.13 ± 0.07 | 0.28 ± 0.03 | 7.6 |
APC | 2.94 ± 0.01 | 4.6 ± 0.01 | 4.9 ± 0.02 | 4.52 ± 0.02 | 5.09 ± 0.02 | 4.52 ± 0.02 | 1.99 ± 0.09 | 0.16 ± 0.02 | 12.4 |
CPC | 5.27 ± 0.01 | 4.5 ± 0.02 | 4.7 ± 0.02 | 4.45 ± 0.03 | 4.50 ± 0.03 | 4.06 ± 0.05 | 1.87 ± 0.13 | 0.25 ± 0.04 | 7.5 |
OPC | 2.41 ± 0.02 | 7.8 ± 0.02 | 8.3 ± 0.02 | 4.91 ± 0.06 | 4.26 ± 0.04 | 3.79 ± 0.02 | 1.52 ± 0.10 | 0.17 ± 0.03 | 8.9 |
Byproducts | TBC | TEC | LAB | M/Y |
---|---|---|---|---|
log10 CFU/g | ||||
OPC | 4.02 ± 0.14 | nd | nd | 3.90 ± 0.18 |
OPCus | nd | nd | nd | nd |
OPCLUHS210 (12 h) | 8.08 ± 0.14 | nd | 8.09 ± 0.21 | nd |
OPCLUHS210 (24 h) | 8.41 ± 0.25 | nd | 8.38 ± 0.15 | nd |
OPCLUHS210 (48 h) | 8.36 ± 0.21 | nd | 8.32 ± 0.14 | nd |
RPC | 3.67 ± 0.21 | nd | nd | 4.64 ± 0.13 |
RPCus | nd | nd | nd | nd |
RPC LUHS210 (12 h) | 8.34 ± 0.20 | nd | 8.32 ± 0.18 | nd |
RPC LUHS210 (24 h) | 8.75 ± 0.17 | nd | 8.60 ± 0.20 | nd |
RPC LUHS210 (48 h) | 8.80 ± 0.10 | nd | 8.76 ± 0.20 | nd |
APC | 4.92 ± 0.18 | 3.08 ± 0.10 | nd | 4.68 ± 0.17 |
APCus | 4.52 ± 0.11 | nd | nd | 4.61 ± 0.10 |
APC LUHS210 (12 h) | 8.97 ± 0.15 | nd | 8.95 ± 0.20 | nd |
APC LUHS210 (24 h) | 8.81 ± 0.15 | nd | 8.75 ± 0.17 | nd |
APC LUHS210 (48 h) | 8.71 ± 0.17 | nd | 8.67 ± 0.14 | nd |
CPC | 3.57 ± 0.20 | nd | nd | 3.23 ± 0.12 |
CPCus | nd | nd | nd | nd |
CPC LUHS210 (12 h) | 8.27 ± 0.18 | nd | 7.90 ± 0.15 | nd |
CPC LUHS210 (24 h) | 8.32 ± 0.10 | nd | 8.45 ± 0.23 | nd |
CPC LUHS210 (48 h) | 8.42 ± 0.20 | nd | 8.38 ± 0.16 | nd |
SPC | 5.09 ± 0.15 | nd | nd | 4.28 ± 0.10 |
SPCus | nd | nd | nd | nd |
SPC LUHS210 (12 h) | 8.68 ± 0.19 | nd | 8.52 ± 0.20 | nd |
SPC LUHS210 (24 h) | 8.68 ± 0.20 | nd | 8.70 ± 0.15 | nd |
SPC LUHS210 (48 h) | 8.70 ± 0.23 | nd | 8.61 ± 0.15 | nd |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bartkiene, E.; Bartkevics, V.; Pugajeva, I.; Borisova, A.; Zokaityte, E.; Lele, V.; Sakiene, V.; Zavistanaviciute, P.; Klupsaite, D.; Zadeike, D.; et al. Challenges Associated with Byproducts Valorization—Comparison Study of Safety Parameters of Ultrasonicated and Fermented Plant-Based Byproducts. Foods 2020, 9, 614. https://doi.org/10.3390/foods9050614
Bartkiene E, Bartkevics V, Pugajeva I, Borisova A, Zokaityte E, Lele V, Sakiene V, Zavistanaviciute P, Klupsaite D, Zadeike D, et al. Challenges Associated with Byproducts Valorization—Comparison Study of Safety Parameters of Ultrasonicated and Fermented Plant-Based Byproducts. Foods. 2020; 9(5):614. https://doi.org/10.3390/foods9050614
Chicago/Turabian StyleBartkiene, Elena, Vadims Bartkevics, Iveta Pugajeva, Anastasija Borisova, Egle Zokaityte, Vita Lele, Vytaute Sakiene, Paulina Zavistanaviciute, Dovile Klupsaite, Daiva Zadeike, and et al. 2020. "Challenges Associated with Byproducts Valorization—Comparison Study of Safety Parameters of Ultrasonicated and Fermented Plant-Based Byproducts" Foods 9, no. 5: 614. https://doi.org/10.3390/foods9050614
APA StyleBartkiene, E., Bartkevics, V., Pugajeva, I., Borisova, A., Zokaityte, E., Lele, V., Sakiene, V., Zavistanaviciute, P., Klupsaite, D., Zadeike, D., Özogul, F., & Juodeikiene, G. (2020). Challenges Associated with Byproducts Valorization—Comparison Study of Safety Parameters of Ultrasonicated and Fermented Plant-Based Byproducts. Foods, 9(5), 614. https://doi.org/10.3390/foods9050614