Potential Activity of Aqueous Fig Leaves Extract, Olive Leaves Extract and Their Mixture as Natural Preservatives to Extend the Shelf Life of Pasteurized Buffalo Milk
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Chemicals
2.2. Source of Milk
2.3. Plant Materials
Preparation of Aqueous Extracts of Olive and Fig Leaves
2.4. Chemical Analysis of the Examined Leaves
2.5. Determination of Minerals Content
2.6. Quantitative Assessment of Total Polyphenol Level
2.7. Preliminary Phytochemical Determination of the Aqueous Leaves’ Extracts
2.7.1. Detection of Flavonoids
2.7.2. Detection of Steroids
2.7.3. Detection of Tannins
2.7.4. Saponin Detection
2.7.5. Detection of Alkaloids
2.7.6. Glycosides Detection
2.8. Fractionation and Identification of Phenolic Compounds
2.9. Antioxidant Activity and the IC50 of OLE and FLE Using DPPH Radical Assay
2.10. The Preliminary Evaluation of the Antimicrobial Activity of OLE, FLE, and MLE
2.11. Preparation of Aqueous-Extracts-Enriched Pasteurized Milk
2.12. The Microbiological Analysis of FLE, OLE, and MLE Enriched Pasteurized Milk
2.12.1. Determination of Total Aerobic Counts (TAC)
2.12.2. Determination of Total Psychrotrophic Counts (TPC)
2.12.3. Determination of the Psychrotrophic Aerobic Bacterial Spore Counts (PABSC)
2.12.4. Determination of Enterobacteriaceae Count (EC)
2.13. Measurement of pH Value and Acidity
2.14. Proteolytic Activity
2.15. Lipolytic Activity
2.16. Analysis of Sensory Properties
2.17. Statistical Analysis
3. Results and Discussion
3.1. Chemical Composition of Olive and Fig Leaves
3.2. Minerals Content of Olive and Fig Leaves
3.3. Phytochemical Screening of Aqueous Extract of Olive and Fig Leaves
3.4. Total Phenolic Compounds Levels (mg/g) and Antioxidant Activity (IC50) of Olive and Fig Leaves’ Aqueous Extracts
3.5. Characterization of the Phenolic Compounds by HPLC
3.6. The Antimicrobial Activity of OLE, FLE, and MLE
3.7. Antibacterial Effect of FLE, OLE, and MLE on Pasteurized Buffalo Milk Samples
3.8. Determination of the pH and the Acidity Level in the Pasteurized Milk over the Storage Period at 5 °C
3.9. Determination of Protease Activity in Pasteurized Buffalo Milk
3.10. Determination of Lipolysis Activity in Pasteurized Milk
3.11. Sensory Analysis of Pasteurized Buffalo Milk Enriched with FLE, OLE, and MLE
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- WHO. Estimates of the Global Burden of Foodborne Diseases: Foodborne Disease Burden Epidemiology Reference Group 2007–2015; World Health Organization: Geneva, Switzerland, 2015; Available online: https://apps.who.int/iris/bitstream/handle/10665/199350/9789241565165_eng.pdf (accessed on 15 April 2020).
- Kimestri, A. Microbiological and physicochemical quality of pasteurized milk supplemented with sappan wood extract (Caesalpinia sappan L.). Int. Food Res. J. 2018, 25, 392–398. [Google Scholar]
- Jayarao, B.M.; Donaldson, S.C.; Straley, B.A.; Sawant, A.A.; Hegde, N.V.; Brown, J. A survey of foodborne pathogens in bulk tank milk and raw milk consumption among farm families in Pennsylvania. J. Dairy Sci. 2006, 89, 2451–2458. [Google Scholar] [CrossRef]
- Chatterjee, S.; Bhattacharjee, I.; Chatterjee, S.; Chandra, G. Microbiological examination of milk in Tarakeswar, India with special reference to coliforms. Afr. J. Biotechnol. 2006, 5, 1383–1385. Available online: https://www.ajol.info/index.php/ajb/article/view/43120 (accessed on 15 April 2020).
- Costard, S.; Espejo, L.; Groenendaal, H.; Zagmutt, F.J. Outbreak-related disease burden associated with consumption of unpasteurized cow’s milk and cheese, United States, 2009–2014. Emerg. Infect. Dis. 2017, 23, 957. [Google Scholar] [CrossRef] [PubMed]
- Anema, S.G. Storage stability and age gelation of reconstituted ultra-high temperature skim milk. Int. Dairy J. 2017, 75, 56–67. [Google Scholar] [CrossRef]
- Malmgren, B.; Ardö, Y.; Langton, M.; Altskär, A.; Bremer, M.G.; Dejmek, P.; Paulsson, M. Changes in proteins, physical stability and structure in directly heated UHT milk during storage at different temperatures. Int. Dairy J. 2017, 71, 60–75. [Google Scholar] [CrossRef]
- Perkins, M.L.; D’Arcy, B.R.; Lisle, A.T.; Deeth, H.C. Solid phase microextraction of stale flavour volatiles from the headspace of UHT milk. J. Sci. Food Agric. 2005, 85, 2421–2428. [Google Scholar] [CrossRef]
- Palmeri, R.; Parafati, L.; Trippa, D.; Siracusa, L.; Arena, E.; Restuccia, C.; Fallico, B. Addition of Olive Leaf Extract (OLE) for Producing Fortified Fresh Pasteurized Milk with An Extended Shelf Life. Antioxidants 2019, 8, 255. [Google Scholar] [CrossRef] [Green Version]
- Joint, F.; FAO/WHO Codex Alimentarius Commission. Report of the 36th Session of the Codex Committee on Food Additives and Contaminants, Rotterdam, The Netherlands 22–26 March 2004; FAO/WHO Codex Alimentarius Commission: Rome, Italy, 2004. [Google Scholar]
- Machado, S.G.; Baglinière, F.; Marchand, S.; Van Coillie, E.; Vanetti, M.C.; De Block, J.; Heyndrickx, M. The biodiversity of the microbiota producing heat-resistant enzymes responsible for spoilage in processed bovine milk and dairy products. Front. Microbiol. 2017, 8, 302. [Google Scholar] [CrossRef] [Green Version]
- Seow, Y.X.; Yeo, C.R.; Chung, H.L.; Yuk, H.-G. Plant essential oils as active antimicrobial agents. Crit. Rev. Food Sci. Nutr. 2014, 54, 625–644. [Google Scholar] [CrossRef]
- Burt, S. Essential oils: Their antibacterial properties and potential applications in foods—A review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef] [PubMed]
- Yousef, N.S.; El-Ghandour, A.; El-Shershaby, S.S.A. Antimicrobial Activity of Fig and Olive Leaves Extracts. J. Food Dairy Sci. 2019, 10, 503–508. [Google Scholar] [CrossRef]
- Friedman, M.; Henika, P.R.; Levin, C.E. Bactericidal activities of health-promoting, food-derived powders against the foodborne pathogens Escherichia coli, Listeria monocytogenes, Salmonella enterica, and Staphylococcus aureus. J. Food Sci. 2013, 78, M270–M275. [Google Scholar] [CrossRef] [PubMed]
- Friedman, M.; Levin, C.; Lee, S.U.; Kozukue, N. Stability of green tea catechins in commercial tea leaves during storage for 6 months. J. Food Sci. 2009, 74, H47–H51. [Google Scholar] [CrossRef]
- Ravishankar, S.; Zhu, L.; Reyna-Granados, J.; Law, B.; Joens, L.; Friedman, M. Carvacrol and cinnamaldehyde inactivate antibiotic-resistant Salmonella enterica in buffer and on celery and oysters. J. Food Prot. 2010, 73, 234–240. [Google Scholar] [CrossRef]
- Serra, A.T.; Matias, A.A.; Nunes, A.V.; Leitão, M.; Brito, D.; Bronze, R.; Silva, S.; Pires, A.; Crespo, M.; San Romão, M. In vitro evaluation of olive-and grape-based natural extracts as potential preservatives for food. Innov. Food Sci. Emerg. Technol. 2008, 9, 311–319. [Google Scholar] [CrossRef]
- Tassou, C.; Nychas, G.; Board, R. Effect of phenolic compounds and oleuropein on the germination of Bacillus cereus T spores. Biotechnol. Appl. Biochem. 1991, 13, 231–237. [Google Scholar] [CrossRef]
- Albertos, I.; Avena-Bustillos, R.J.; Martín-Diana, A.B.; Du, W.-X.; Rico, D.; McHugh, T.H. Antimicrobial Olive Leaf Gelatin films for enhancing the quality of cold-smoked Salmon. Food Packag. Shelf Life 2017, 13, 49–55. [Google Scholar] [CrossRef]
- Gök, V.; Bor, Y. Effect of olive leaf, blueberry and Zizyphus jujuba extracts on the quality and shelf life of meatball during storage. J. FoodAgric. Environ. 2012, 10, 190–195. [Google Scholar]
- Thielmann, J.; Kohnen, S.; Hauser, C. Antimicrobial activity of Olea europaea Linné extracts and their applicability as natural food preservative agents. Int. J. Food Microbiol. 2017, 251, 48–66. [Google Scholar] [CrossRef]
- Covas, M.-I. Olive oil and the cardiovascular system. Pharmacol. Res. 2007, 55, 175–186. [Google Scholar] [CrossRef] [PubMed]
- Khayyal, M.T.; El-Ghazaly, M.A.; Abdallah, D.M.; Nassar, N.N.; Okpanyi, S.N.; Kreuter, M.-H. Blood pressure lowering effect of an olive leaf extract {Olea europaed) in L-NAME induced hypertension in rats. Arzneimittelforschung 2002, 52, 797–802. [Google Scholar] [CrossRef] [PubMed]
- Visioli, F.; Galli, C. Biological properties of olive oil phytochemicals. Crit. Rev. Food Sci. Nutr. 2002, 42, 209–221. [Google Scholar] [CrossRef] [PubMed]
- Ghanem, M.T.; Tawfik, W.A.; Mahdy, E.-S.M.; Abdelgawad, M.E.; Abdel-Azim, N.S.; El-Missiry, M.M. Chemical and biological evaluation of olive leaves as a waste by-product of olive oil industry. Egypt. Pharm. J. 2019, 18, 172–177. Available online: http://epj.eg.net/temp/EgyptPharmaceutJ182172-8340263_231002. (accessed on 23 April 2020).
- Debib, A.; Tir-Touil, M.; Meddah, B.; Hamaidi-Chergui, F.; Menadi, S.; Alsayadi, M. Evaluation of antimicrobial and antioxidant activities of oily macerates of Algerian dried figs (Ficus carica L.). Int. Food Res. J. 2018, 25, 351–356. [Google Scholar]
- Acar-Tek, N.; Ağagündüz, D. Olive Leaf (Olea europaea L. folium): Potential Effects on Glycemia and Lipidemia. Ann. Nutr. Metab. 2020, 1–6. [Google Scholar] [CrossRef]
- Leporatti, M.L.; Ivancheva, S. Preliminary comparative analysis of medicinal plants used in the traditional medicine of Bulgaria and Italy. J. Ethnopharmacol. 2003, 87, 123–142. [Google Scholar] [CrossRef]
- Guarrera, P.M. Food medicine and minor nourishment in the folk traditions of Central Italy (Marche, Abruzzo and Latium). Fitoterapia 2003, 74, 515–544. [Google Scholar] [CrossRef]
- Jeong, M.-R.; Kim, H.-Y.; Cha, J.-D. Antimicrobial activity of methanol extract from Ficus carica leaves against oral bacteria. J. Bacteriol. Virol. 2009, 39, 97–102. [Google Scholar] [CrossRef] [Green Version]
- Wally, A. Food and Agricultural Import Regulations and Standards; EG18034, Report, 2018; Egyptian National Food Safety Authority: Cairo, Egypt, 2018; p. 24.
- Ibrahim, F.Y.; EL-Khateeb, A.Y.; Mohamed, A.H. Rhus and Safflower Extracts as Potential Novel Food Antioxidant, Anticancer, and Antimicrobial Agents Using Nanotechnology. Foods 2019, 8, 139. [Google Scholar] [CrossRef] [Green Version]
- Palmeri, R.; Monteleone, J.I.; Spagna, G.; Restuccia, C.; Raffaele, M.; Vanella, L.; Li Volti, G.; Barbagallo, I. Olive leaf extract from sicilian cultivar reduced lipid accumulation by inducing thermogenic pathway during adipogenesis. Front. Pharmacol. 2016, 7, 143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- AOAC Association of Official Analytical Chemists. Official Methods of Analysis, 20th ed.; The Association: Washington, DC, USA, 2016. [Google Scholar]
- Hesse, P. A Textbook of Soil Chemical Analysis 1971; Cambridge University Press: Cambridge, UK, 1972; Volume 8, p. 184. [Google Scholar] [CrossRef]
- Cottenie, A.; Velghe, G.; Verloo, M.; Kiekens, L. Biological and analytical aspects of soil pollution. Lab. Anal. Agro. State Univ. Ghent-Belg. 1982, 317, 389–393. [Google Scholar]
- Page, A. Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties; American Society of Agronomy, Soil Science Society of America: Madison, WI, USA, 1965. [Google Scholar]
- Thilagavathi, T.; Rajasekar, A.; Doss, V. Preliminary phytochemical screening of different solvent mediated medicinal plant extracts evaluated. Int. Res. J. Pharm. 2015, 6, 10–13. [Google Scholar]
- Yang, L.; Yan, Q.-H.; Ma, J.-Y.; Wang, Q.; Zhang, J.-W.; Xi, G.-X. High performance liquid chromatographic determination of phenolic compounds in propolis. Trop. J. Pharm. Res. 2013, 12, 771–776. [Google Scholar] [CrossRef] [Green Version]
- Hsouna, A.B.; Trigui, M.; Mansour, R.B.; Jarraya, R.M.; Damak, M.; Jaoua, S. Chemical composition, cytotoxicity effect and antimicrobial activity of Ceratonia siliqua essential oil with preservative effects against Listeria inoculated in minced beef meat. Int. J. Food Microbiol. 2011, 148, 66–72. [Google Scholar] [CrossRef] [PubMed]
- Brand-Williams, W.; Cuvelier, M.-E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. Lwt-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- ISO. Microbiology of the food chain-Horizontal method for the enumeration of microorganisms-Part 1: Colony count at 30 degrees C by the pour plate technique. Int. Organ. Stand. GenevaSwitz. 2013, 4833-1. Available online: https://www.iso.org/obp/ui/#iso:std:iso:4833:-1:ed-1:v1:en (accessed on 15 April 2020).
- ISO. Milk–enumeration of colony-forming units of psychrotrophic microorganisms–colony-count technique at 6.5° C. Idf Stand. 2015, 101, 1–7. [Google Scholar]
- Frank, J.; Yousef, A.; Wehr, H.; Frank, J. Standard Methods for The Examination of Diary Product; American Public Health Association: Washington, DC, USA, 2004; Available online: https://ajph.aphapublications.org/doi/pdf/10.2105/AJPH.42.9.1131 (accessed on 15 April 2020).
- ISO. Microbiology of Food and Animal Feeding Stuffs. Horizontal Methods for the Detection and Enumeration of Enterobacteriaceae. Part 2: Colony-Count Method; International Organization for Standardization: Geneva, Switzerland, 2004; Available online: https://www.iso.org/standard/63504.html (accessed on 15 April 2020).
- Ziyaina, M.; Govindan, B.N.; Rasco, B.; Coffey, T.; Sablani, S.S. Monitoring shelf life of pasteurized whole milk under refrigerated storage conditions: Predictive models for quality loss. J. Food Sci. 2018, 83, 409–418. [Google Scholar] [CrossRef]
- Bendicho, S.; Martı, G.; Hernández, T.; Martın, O. Determination of proteolytic activity in different milk systems. Food Chem. 2002, 79, 245–249. [Google Scholar] [CrossRef]
- Cappozzo, J.C.; Koutchma, T.; Barnes, G. Chemical characterization of milk after treatment with thermal (HTST and UHT) and nonthermal (turbulent flow ultraviolet) processing technologies. J. Dairy Sci. 2015, 98, 5068–5079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chouliara, E.; Georgogianni, K.; Kanellopoulou, N.; Kontominas, M. Effect of ultrasonication on microbiological, chemical and sensory properties of raw, thermized and pasteurized milk. Int. Dairy J. 2010, 20, 307–313. [Google Scholar] [CrossRef]
- Rodriguez, R.N. SAS. Wiley Interdiscip. Rev. Comput. Stat. 2011, 3, 1–11. Available online: http://statweb.stanford.edu/~tibs/stat315a/Supplements/bootstrap.pdf (accessed on 15 April 2020). [CrossRef]
- Cavalheiro, C.V.; Picoloto, R.S.; Cichoski, A.J.; Wagner, R.; de Menezes, C.R.; Zepka, L.Q.; Da Croce, D.M.; Barin, J.S. Olive leaves offer more than phenolic compounds–Fatty acids and mineral composition of varieties from Southern Brazil. Ind. Crop. Prod. 2015, 71, 122–127. [Google Scholar] [CrossRef]
- Ibrahim, E.; Abdelgaleel, M.; Salama, A.; Metwalli, S. Chemical and nutritional evaluation of olive leaves and selection the optimum conditions for extraction their phenolic compounds. J. Agric. Res. Kafr. El-Sheikh Univ. 2016, 42, 445–459. [Google Scholar] [CrossRef]
- Adebisi, G.; Oyeleke, G. Studies on Ficus capensis (Fruit and Leaf): Proximate and Mineral Compositions. Int. J. Chem. Sci. 2009, 7, 1761–1765. Available online: https://www.semanticscholar.org/paper/Studies-on-Ficus-Carpensis-(Fruit-and-Leaf)%3A-and-AdebisiOyeleke/ab7a125eacb6bad2085783bf1512dd126355cb10 (accessed on 15 April 2020).
- Liu, Y.; McKeever, L.C.; Malik, N.S. Assessment of the antimicrobial activity of olive leaf extract against foodborne bacterial pathogens. Front. Microbiol. 2017, 8, 113. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, W.; Khan, A.Q.; Malik, A. Two triterpenes from the leaves of Ficus carica. Planta Med. 1988, 54, 481. Available online: https://www.thieme-connect.de/products/ejournals/abstract/10.1055/s-2006-962522 (accessed on 15 April 2020). [CrossRef]
- Ayinde, B.A.; Omogbai, E.; Amaechina, F.C. Pharmacognosy and hypotensive evaluation of Ficus exasperata Vahl (Moraceae) leaf. Acta Pol. Pharm. 2007, 64, 543–546. [Google Scholar]
- El-Khateeb, A.Y.; Elsherbiny, E.A.; Tadros, L.K.; Ali, S.M.; Hamed, H.B. Phytochemical analysis and antifungal activity of fruit leaves extracts on the mycelial growth of fungal plant pathogens. J. Plant Pathol. Microbiol. 2013, 4, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Cutter, C.N. Antimicrobial effect of herb extracts against Escherichia coli O157: H7, Listeria monocytogenes, and Salmonella typhimurium associated with beef. J. Food Prot. 2000, 63, 601–607. [Google Scholar] [CrossRef] [PubMed]
- Galván, I.J.; Mir-Rashed, N.; Jessulat, M.; Atanya, M.; Golshani, A.; Durst, T.; Petit, P.; Amiguet, V.T.; Boekhout, T.; Summerbell, R. Antifungal and antioxidant activities of the phytomedicine pipsissewa, Chimaphila umbellata. Phytochemistry 2008, 69, 738–746. [Google Scholar] [CrossRef] [PubMed]
- Nimse, S.B.; Pal, D. Free radicals, natural antioxidants, and their reaction mechanisms. RSC Adv. 2015, 5, 27986–28006. [Google Scholar] [CrossRef] [Green Version]
- Dekdouk, N.; Malafronte, N.; Russo, D.; Faraone, I.; De Tommasi, N.; Ameddah, S.; Severino, L.; Milella, L. Phenolic compounds from Olea europaea L. possess antioxidant activity and inhibit carbohydrate metabolizing enzymes in vitro. Evid. Based Complement. Altern. Med. 2015, 2015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, S.; Gomes, L.; Leitao, F.; Coelho, A.; Boas, L.V. Phenolic compounds and antioxidant activity of Olea europaea L. fruits and leaves. Food Sci. Technol. Int. 2006, 12, 385–395. [Google Scholar] [CrossRef]
- Ayoub, L.; Hassan, F.; Hamid, S.; Abdelhamid, Z.; Souad, A. Phytochemical screening, antioxidant activity and inhibitory potential of Ficus carica and Olea europaea leaves. Bioinformation 2019, 15, 226. [Google Scholar] [CrossRef] [PubMed]
- Vlahov, G. Flavonoids in three olive (Olea europaea) fruit varieties during maturation. J. Sci. Food Agric. 1992, 58, 157–159. [Google Scholar] [CrossRef]
- Piluzza, G.; Bullitta, S. Correlations between phenolic content and antioxidant properties in twenty-four plant species of traditional ethnoveterinary use in the Mediterranean area. Pharm. Biol. 2011, 49, 240–247. [Google Scholar] [CrossRef]
- Huang, W.-Y.; Cai, Y.-Z.; Zhang, Y. Natural phenolic compounds from medicinal herbs and dietary plants: Potential use for cancer prevention. Nutr. Cancer 2009, 62, 1–20. [Google Scholar] [CrossRef]
- Nadeem, M.; Zeb, A. Impact of maturity on phenolic composition and antioxidant activity of medicinally important leaves of Ficus carica L. Physiol. Mol. Biol. Plants 2018, 24, 881–887. [Google Scholar] [CrossRef]
- Pereira, A.P.; Ferreira, I.C.; Marcelino, F.; Valentão, P.; Andrade, P.B.; Seabra, R.; Estevinho, L.; Bento, A.; Pereira, J.A. Phenolic compounds and antimicrobial activity of olive (Olea europaea L. Cv. Cobrançosa) leaves. Molecules 2007, 12, 1153–1162. [Google Scholar] [CrossRef] [PubMed]
- Jaisinghani, R.N. Antibacterial properties of quercetin. Microbiol. Res. 2017, 8. [Google Scholar] [CrossRef] [Green Version]
- Kępa, M.; Miklasińska-Majdanik, M.; Wojtyczka, R.D.; Idzik, D.; Korzeniowski, K.; Smoleń-Dzirba, J.; Wąsik, T.J. Antimicrobial potential of caffeic acid against Staphylococcus aureus clinical strains. Biomed. Res. Int. 2018, 2018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abeed, A.A.; Bennour, E.M.; Sawadi, A.M.M.; Elbaz, A.K. Synergistic Antibacterial Activity of Ethanolic Extracts of Olea europaea and Ficus carica Leaves Against Methicillin-resistant Staphylococcus aureus. Lebda Med. J. 2018, 4, 127–131. Available online: http://www.elmergib.edu.ly/euj/index.php/LMJ/article/view/70 (accessed on 15 April 2020).
- Mahmoudi, S.; Khali, M.; Benkhaled, A.; Benamirouche, K.; Baiti, I. Phenolic and flavonoid contents, antioxidant and antimicrobial activities of leaf extracts from ten Algerian Ficus carica L. varieties. Asian Pac. J. Trop. Biomed. 2016, 6, 239–245. [Google Scholar] [CrossRef] [Green Version]
- Directive, H. Council Directive 92/46/EEC of 16 June 1992 laying down the health rules for the production and placing on the market of raw milk, heat-treated milk and milk-based products. Off. J. L 1992, 268, 31–101. [Google Scholar]
- Egyptian Organization for Standardization and Quality. Milk and Milk Products, Part 2: Pasteurized Milk; Egyptian Organization for Standardization and Quality: Cairo, Egypt, 2005; Volume 154/2/2005, p. 10.
- Fromm, H.I.; Boor, K. Characterization of pasteurized fluid milk shelf-life attributes. J. Food Sci. 2004, 69, M207–M214. [Google Scholar] [CrossRef]
- Nasr, N.; Elshaghabee, F. Enhancement of Shelf Life of Pasteurized Milk Using NisplinŪ Essential Oils Emulsion. Int. J. Curr. Microbiol. App. Sci. 2019, 8, 257–266. [Google Scholar] [CrossRef]
- Sboui, A.; Khorchani, T.; Djegham, M.; Belhadj, O. Comparaison de la composition physicochimique du lait camelin et bovin du Sud tunisien; variation du pH et de l’acidité à différentes températures. Afr. Sci. Rev. Int. Des Sci. Et Technol. 2009, 5, 239–304. Available online: https://www.ajol.info/index.php/afsci/article/view/61744 (accessed on 15 April 2020). [CrossRef]
- BERMÚDEZ-AGUIRRE, D.; Mawson, R.; Versteeg, K.; BARBOSA-CÁNOVAS, G.V. Composition properties, physicochemical characteristics and shelf life of whole milk after thermal and thermo-sonication treatments. J. Food Qual. 2009, 32, 283–302. [Google Scholar] [CrossRef]
- Jensen, R.G. Handbook of Milk Composition; Academic Press: New York, NY, USA, 1995; Available online: http://agris.fao.org/agris-search/search.do?recordID=US9620789 (accessed on 15 April 2020).
- Boor, K.J. ADSA foundation scholar award fluid dairy product quality and safety: Looking to the future. J. Dairy Sci. 2001, 84, 1–11. [Google Scholar] [CrossRef]
- Walstra, P.; Walstra, P.; Wouters, J.T.; Geurts, T.J. Dairy Science and Technology; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Franz, C.; Von Holy, A. Thermotolerance of meat spoilage lactic acid bacteria and their inactivation in vacuum-packaged Vienna sausages. Int. J. Food Microbiol. 1996, 29, 59–73. [Google Scholar] [CrossRef]
- Ludwig, W.; Schleifer, K.; Whitman, W. Order II. Lactobacillales Ord. Nov. Bergey’s Manual of Systematic Bacteriology; Springer: New York, NY, USA, 2009; Volume 3. [Google Scholar]
- Johnston, D.W.; Bruce, J. Incidence of thermoduric psychrotrophs in milk produced in the west of Scotland. J. Appl. Bacteriol. 1982, 52, 333–337. [Google Scholar] [CrossRef] [PubMed]
- Palomba, R.; Formisano, G.; Arrichiello, A.; Auriemma, G.; Sarubbi, F. Development of a laboratory technique for the evaluation of protease enzymes activity in goat and sheep milk. Food Chem. 2017, 221, 1637–1641. [Google Scholar] [CrossRef]
- McKellar, R.C. Enzymes of Psychrotrophs in Raw Food; CRC Press Inc.: Boca Raton, FL, USA, 1989. [Google Scholar]
- Mitchell, G.; Ewings, K. Quantification of bacterial proteolysis causing gelation in UHT-treated milk. N. Z. J. Dairy Sci. Technol. 1985, 20, 65–76. [Google Scholar]
- Kishonti, E.; Sjöstrom, G. Influence of heat resistant lipases and proteases in psychrotrophic bacteria on product quality. In Proceedings of the XVIII International Dairy Congress, Sidney, Australia, 12–16 October 1970. [Google Scholar]
- Odriozola-Serrano, I.; Bendicho-Porta, S.; Martín-Belloso, O. Comparative study on shelf life of whole milk processed by high-intensity pulsed electric field or heat treatment. J. Dairy Sci. 2006, 89, 905–911. [Google Scholar] [CrossRef]
Leaves | Moisture % | Ash % | Crude Protein % | Crude Lipid % | Crude Fiber % | Total Carbohydrates % | Soluble Carbohydrates % |
---|---|---|---|---|---|---|---|
Olive | 8.12 ± 0.15 | 2.87 ± 0.22 | 12.38 ± 0.2 | 3.12 ± 0.34 | 27.73 ± 0.36 | 53.90 ± 0.24 | 26.17 ± 0.36 |
Fig | 9.57 ± 0.11 | 1.66 ± 0.19 | 7.22 ± 0.18 | 2.08 ± 0.31 | 30.81 ± 0.26 | 58.23 ± 0.76 | 27.42 ± 0.11 |
Leaves | Minerals Content (mg/100 g DW) | |||||
---|---|---|---|---|---|---|
Calcium | Phosphorus | Iron | Potassium | Magnesium | Manganese | |
Olive | 1570 ± 0.14 | 120 ± 0.18 | 19.1 ± 0.21 | 660 ± 0.11 | 200 ± 0.20 | 4.3 ± 0.26 |
Fig | 1400 ± 0.36 | 365.97 ± 0.13 | 115.3 ± 0.41 | 118.47 ± 0.27 | 400 ± 0.13 | 22.6 ± 0.36 |
Aqueous Leaves Extract | Flavonoids | Steroids | Tannins | Saponins | Alkaloids | Glycosides |
---|---|---|---|---|---|---|
Olive | + * | + | + | − | + | + |
Fig | + | + | + | + | + | + |
Leaves | Total Phenolic (mg of Gallic Acid Equivalent/g Extract) | Antioxidant Activity (IC50) µg/mL |
---|---|---|
Fig | 224.33 ± 0.55 | 30.21 ± 0.54 |
Olive | 387.00 ± 0.55 | 22.43 ± 0.54 |
Entry | Compound | Fig Leaves Extract (mg/g Dried Extract) | Olive Leaves Extract (mg/g Dried Extract) |
---|---|---|---|
1 | Pyrogallol | 0.006 | 0.005 |
2 | Quinol | 0.011 | - |
3 | Gallic acid | 1.5 | 0.029 |
4 | p-Hydroxy benzoic acid | 3.5 | - |
5 | Chlorogenic acid | 0.002 | 0.03 |
6 | Vanillic acid | 0.079 | - |
7 | Caffeic acid | 2.48 | 0.032 |
8 | Syringic acid | 0.097 | 0.005 |
9 | p-Coumaric acid | 0.013 | 0.018 |
10 | Ferulic acid | 0.032 | 0.015 |
11 | Benzoic acid | 0.32 | 0.128 |
12 | Caftaric acid | 40.2 | - |
13 | Ellagic acid | 0.524 | 0.269 |
14 | o-Coumaric acid | 0.011 | - |
15 | Salicylic acid | 0.045 | 0.040 |
16 | Myricetin | 0.414 | 0.131 |
17 | Oleuropein | - | 32.2 |
18 | Quercitin | 13.4 | 0.218 |
19 | Rosmarinic acid | 0.270 | - |
20 | Ligstroside | 0.188 | 4.2 |
21 | Kampherol | 0.88 | 0.32 |
Treatments | Concentration (%) | Inhibition Zone (mm) | |||||
---|---|---|---|---|---|---|---|
P. aeruginosa | Salmonella Typhi | Staphylococcus aureus | Escherichia coli | Enterococcus facials | Bacillus cereus | ||
FLE | 0.2 | 16 ± 0.11 d | 18 ± 0.54 c | 14 ± 0.41 e | 13 ± 0.13 c | 5 ± 0.22 d | 5 ± 0.11 d |
0.4 | 21 ± 0.07 cd | 20 ± 0.23 c | 15 ± 0.15 e | 14 ± 0.09 c | 7 ± 0.13 d | 5 ± 0.16 d | |
0.6 | 24 ± 0.17 c | 22 ± 0.27 bc | 17 ± 0.13 de | 18 ± 0.16 b | 7 ± 0.19 d | 6 ± 0.21 d | |
OLE | 0.2 | 5 ± 0.31 e | 4 ± 0.29 e | 19 ± 0.35 d | 5 ± 0.21 d | 19 ± 0.32 c | 21 ± 0.31 c |
0.4 | 6 ± 0.22 e | 6 ± 0.19 de | 24 ± 0.12 c | 7 ± 0.24 d | 23 ± 0.41 bc | 27 ± 0.45 b | |
0.6 | 6 ± 0.41 e | 8 ± 0.27 d | 28 ± 0.38 b | 8 ± 0.51 d | 26 ± 0.25 b | 29 ± 0.13 b | |
MLE | 0.2 | 27 ± 0.45 b | 24 ± 0.43 b | 27 ± 0.46 b | 20 ± 0.19 b | 27 ± 0.11 ab | 29 ± 0.22 b |
0.4 | 29 ± 0.42 b | 25 ± 0.14 b | 30 ± 0.64 a | 22 ± 0.26 b | 29 ± 0.36 a | 32 ± 0.18 ab | |
0.6 | 33 ± 0.15 a | 30 ± 0.61 a | 32 ± 0.71 a | 26 ± 0.23 a | 30 ± 0.31 a | 34 ± 0.21 a |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
El Dessouky Abdel-Aziz, M.; Samir Darwish, M.; Mohamed, A.H.; El-Khateeb, A.Y.; Hamed, S.E. Potential Activity of Aqueous Fig Leaves Extract, Olive Leaves Extract and Their Mixture as Natural Preservatives to Extend the Shelf Life of Pasteurized Buffalo Milk. Foods 2020, 9, 615. https://doi.org/10.3390/foods9050615
El Dessouky Abdel-Aziz M, Samir Darwish M, Mohamed AH, El-Khateeb AY, Hamed SE. Potential Activity of Aqueous Fig Leaves Extract, Olive Leaves Extract and Their Mixture as Natural Preservatives to Extend the Shelf Life of Pasteurized Buffalo Milk. Foods. 2020; 9(5):615. https://doi.org/10.3390/foods9050615
Chicago/Turabian StyleEl Dessouky Abdel-Aziz, Mohamed, Mohamed Samir Darwish, Azza H. Mohamed, Ayman Y. El-Khateeb, and Sahar E. Hamed. 2020. "Potential Activity of Aqueous Fig Leaves Extract, Olive Leaves Extract and Their Mixture as Natural Preservatives to Extend the Shelf Life of Pasteurized Buffalo Milk" Foods 9, no. 5: 615. https://doi.org/10.3390/foods9050615
APA StyleEl Dessouky Abdel-Aziz, M., Samir Darwish, M., Mohamed, A. H., El-Khateeb, A. Y., & Hamed, S. E. (2020). Potential Activity of Aqueous Fig Leaves Extract, Olive Leaves Extract and Their Mixture as Natural Preservatives to Extend the Shelf Life of Pasteurized Buffalo Milk. Foods, 9(5), 615. https://doi.org/10.3390/foods9050615