Influence of Different Dehydration Levels on Volatile Profiles, Phenolic Contents and Skin Hardness of Alkaline Pre-Treated Grapes cv Muscat of Alexandria (Vitis vinifera L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Grape Sampling, Alkaline Pre-Treatment, and Dehydration Process
2.2. Technological Parameters
2.3. Determination of Grape Volatile Composition
2.4. Determination of Polyphenols Content
2.5. Determination of Berry Skin Hardness by Texture Analysis
2.6. Statistical Analysis
3. Results and Discussion
3.1. Dehydration Kinetics and Berries Chemical Composition
3.2. Free Volatile Compounds
3.3. Glycosylated Volatile Compounds
3.4. Berry Phenolic Compounds and Mechanical Properties of the Berry Skin
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mencarelli, F.; Tonutti, P. Sweet, Reinforced and Fortified Wines: Grape Biochemistry, Technology and Vinification; Wiley-Blackwell, A John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2013. [Google Scholar]
- Giordano, M.; Rolle, L.; Zeppa, G.; Gerbi, V. Chemical and volatile composition of three Italian sweet white passito wines. J. Int. Sci. Vigne Vin. 2009, 43, 159–170. [Google Scholar] [CrossRef] [Green Version]
- Bellincontro, A.; Matarese, F.; D’Onofrio, C.; Accordini, D.; Tosi, E.; Mencarelli, F. Management of postharvest grape withering to optimise the aroma of the final wine: A case study on Amarone. Food Chem. 2016, 213, 378–387. [Google Scholar] [CrossRef] [PubMed]
- Urcan, D.-E.; Giacosa, S.; Torchio, F.; Río Segade, S.; Raimondi, S.; Bertolino, M.; Gerbi, V.; Pop, N.; Rolle, L. ‘Fortified’ wines volatile composition: Effect of different postharvest dehydration conditions of winegrapes cv. Malvasia moscata (Vitis vinifera L.). Food Chem. 2017, 219, 346–356. [Google Scholar] [CrossRef] [PubMed]
- Di Stefano, R.; Maggiorotto, G.; Di Bernardi, D.; Melia, V.; Sparacio, A.; Fina, B.; Sparla, S. Evoluzione dei composti terpenici durante il processo di appassimento dell’uva Zibibbo di Pantelleria. L’Enotecnico 1995, 31, 73–84. [Google Scholar]
- Ruiz, M.J.; Zea, L.; Moyano, L.; Medina, M. Aroma active compounds during the drying of grapes cv. Pedro Ximenez destined to the production of sweet Sherry wine. Eur. Food Res. Technol. 2009, 230, 429–435. [Google Scholar] [CrossRef]
- Corona, O.; Torchio, F.; Giacosa, S.; Río Segade, S.; Planeta, D.; Gerbi, V.; Squadrito, M.; Mencarelli, F.; Rolle, L. Assessment of postharvest dehydration kinetics and skin mechanical properties of “Muscat of Alexandria” grapes by response surface methodology. Food Bioprocess Technol. 2016, 9, 1060–1069. [Google Scholar] [CrossRef]
- Rolle, L.; Giordano, M.; Giacosa, S.; Vincenzi, S.; Río Segade, S.; Torchio, F.; Perrone, B.; Gerbi, V. CIEL*a*b* parameters of white dehydrated grapes as quality markers according to chemical composition, volatile profile, and mechanical properties. Anal. Chim. Acta 2012, 732, 105–113. [Google Scholar] [CrossRef]
- Bellincontro, A.; De Santis, D.; Botondi, R.; Villa, I.; Mencarelli, F. Different postharvest dehydration rates affect quality characteristics and volatile compounds of Malvasia, Trebbiano and Sangiovese grapes for wine production. J. Sci. Food Agric. 2004, 84, 1791–1800. [Google Scholar] [CrossRef]
- Costantini, V.; Bellincontro, A.; De Santis, D.; Botondi, R.; Mencarelli, F. Metabolic changes of Malvasia grapes for wine production during postharvest dehydration. J. Agric. Food Chem. 2006, 54, 3334–3340. [Google Scholar] [CrossRef]
- Chkaiban, L.; Botondi, R.; Bellincontro, A.; De Santis, D.; Kefalas, P.; Mencarelli, F. Influence of postharvest water stress on lipoxygenase and alcohol dehydrogenase activities, and on the composition of some volatile compounds of Gewurztraminer grapes dehydrated under controlled and uncontrolled thermohygrometric conditions. Aust. J. Grape Wine Res. 2007, 13, 142–149. [Google Scholar] [CrossRef]
- Moreno, J.J.; Cerpa-Caldero, F.; Cohen, S.D.; Fang, Y.; Qian, M.; Kennedy, J.A. Effect of postharvest dehydration on the composition of Pinot noir grapes (Vitis vinifera L.) and wine. Food Chem. 2008, 109, 755–762. [Google Scholar] [CrossRef] [PubMed]
- Rolle, L.; Giacosa, S.; Río Segade, S.; Ferrarini, R.; Torchio, F.; Gerbi, V. Influence of different thermohygrometric conditions on changes in instrumental texture properties and phenolic composition during postharvest withering of ‘Corvina’ winegrapes (Vitis vinifera L.). Dry. Technol. 2013, 31, 549–564. [Google Scholar] [CrossRef]
- Zoccatelli, G.; Zenoni, S.; Savoi, S.; Santo, S.D.; Tononi, P.; Zandonà, V.; Dal Cin, A.; Guantieri, V.; Pezzotti, M.; Tornielli, G. Skin pectin metabolism during the postharvest dehydration of berries from three distinct grapevine cultivars. Aust. J. Grape Wine Res. 2013, 19, 171–179. [Google Scholar] [CrossRef]
- Rolle, L.; Gerbi, V.; Schneider, A.; Spanna, F.; Río Segade, S. Varietal relationship between instrumental skin hardness and climate for grapevines (Vitis vinifera L.). J. Agric. Food Chem. 2011, 59, 10624–10634. [Google Scholar] [CrossRef] [PubMed]
- Giacosa, S.; Torchio, F.; Río Segade, S.; Caudana, A.; Gerbi, V.; Rolle, L. Varietal relationship between skin break force and off-vine withering process for winegrapes. Dry. Technol. 2012, 30, 726–732. [Google Scholar] [CrossRef]
- Rolle, L.; Caudana, A.; Giacosa, S.; Gerbi, V.; Río Segade, S. Influence of skin hardness on dehydration kinetics of wine grapes. J. Sci. Food Agric. 2011, 91, 505–511. [Google Scholar] [CrossRef]
- Doymaz, I.; Pala, M. The effects of dipping pretreatments on air-drying rates of the seedless grapes. J. Food Eng. 2002, 52, 413–417. [Google Scholar] [CrossRef]
- Doymaz, I.; Altıner, P. Effect of pretreatment solution on drying and color characteristics of seedless grapes. Food Sci. Biotechnol. 2012, 21, 43–49. [Google Scholar] [CrossRef]
- Lara, I.; Belge, B.; Goulao, L.F. The fruit cuticle as a modulator of postharvest quality. Postharvest Biol. Technol. 2014, 87, 103–112. [Google Scholar] [CrossRef] [Green Version]
- Bingol, G.; Roberts, J.S.; Balaban, M.O.; Onur Devres, Y. Effect of dipping temperature and dipping time on drying rate and color change of grapes. Dry. Technol. 2012, 30, 597–606. [Google Scholar] [CrossRef]
- Chong, C.H.; Law, C.L.; Cloke, M.; Abdullah, L.C.; Daud, W.R.W. Drying kinetics, texture, color, and determination of effective diffusivities during sun drying of Chempedak. Dry. Technol. 2008, 26, 1286–1293. [Google Scholar] [CrossRef]
- Femenia, A.; Sánchez, E.S.; Simal, S.; Rosselló, C. Effects of drying pretreatments on the cell wall composition of grape tissues. J. Agric. Food Chem. 1998, 46, 271–276. [Google Scholar] [CrossRef] [PubMed]
- López de Lerma, N.; Moreno, J.; Peinado, R.A. Determination of the optimum sun-drying time for Vitis vinifera L. cv. Tempranillo grapes by E-nose analysis and characterization of their volatile composition. Food Bioprocess Technol. 2014, 7, 732–740. [Google Scholar] [CrossRef]
- Torchio, F.; Giacosa, S.; Vilanova, M.; Río Segade, S.; Gerbi, V.; Giordano, M.; Rolle, L. Use of response surface methodology for the assessment of changes in the volatile composition of Moscato bianco (Vitis vinifera L.) grape berries during ripening. Food Chem. 2016, 212, 576–584. [Google Scholar] [CrossRef] [PubMed]
- Negri, S.; Lovato, A.; Boscaini, F.; Salvetti, E.; Torriani, S.; Commisso, M.; Danzi, R.; Ugliano, M.; Polverari, A.; Tornielli, G.B.; et al. The induction of noble rot (Botrytis cinerea) infection during postharvest withering changes the metabolome of grapevine berries (Vitis vinifera L., CV. Garganega). Front. Plant Sci. 2017, 8, 1002. [Google Scholar] [CrossRef] [PubMed]
- Simonato, B.; Lorenzini, M.; Cipriani, M.; Finato, F.; Zapparoli, G. Correlating noble rot infection of Garganega withered grapes with key molecules and odorants of botrytized passito wine. Foods 2019, 8, 642. [Google Scholar] [CrossRef] [Green Version]
- Bordiga, M.; Rinaldi, M.; Locatelli, M.; Piana, G.; Travaglia, F.; Coïsson, J.D.; Arlorio, M. Characterization of Muscat wines aroma evolution using comprehensive gas chromatography followed by a post-analytic approach to 2D contour plots comparison. Food Chem. 2013, 140, 57–67. [Google Scholar] [CrossRef]
- Lukić, I.; Lotti, C.; Vrhovsek, U. Evolution of free and bound volatile aroma compounds and phenols during fermentation of Muscat blanc grape juice with and without skins. Food Chem. 2017, 232, 25–35. [Google Scholar] [CrossRef] [PubMed]
- Schievano, E.; Dambrosio, M.; Mazzaretto, I.; Ferrarini, R.; Magno, F.; Mammi, S.; Favaro, G. Identification of wine aroma precursors in Moscato Giallo grape juice: A nuclear magnetic resonance and liquid chromatography–mass spectrometry tandem study. Talanta 2013, 116, 841–851. [Google Scholar] [CrossRef]
- Stamatopoulos, P.; Brohan, E.; Prevost, C.; Siebert, T.E.; Henderich, M.; Darriet, P. Influence of chirality of lactones on the perception of some typical fruity notes through perceptual interaction phenomena in Bordeaux dessert wines. J. Agric. Food Chem. 2016, 64, 8160–8167. [Google Scholar] [CrossRef]
- Williams, P.J.; Strauss, C.R.; Wilson, B. Classification of the monoterpenoid composition of Muscat grapes. Am. J. Enol. Vitic. 1981, 32, 230–235. [Google Scholar]
- Oliveira, C.; Barbosa, A.; Silva Ferreira, A.C.; Guerra, J.; Guedes de Pinho, P. Carotenoid profile in grapes related to aromatic compounds in wines from Douro region. J. Food Sci. 2006, 71, S1–S7. [Google Scholar] [CrossRef]
- OIV. Recueil International des Méthodes d’Analyse des Vins et des Moûts; OIV: Paris, France, 2008. [Google Scholar]
- Squadrito, M.; Corona, O.; Augugliaro, M.; Fiorino, F.; Ansaldi, G.; Di Stefano, R. Evoluzione degli aromi varietali liberi e glicosilati durante l’appassimento dell’uva Moscato d’Alessandria. Riv. Vitic. Enol. 2009, 62, 69–92. [Google Scholar]
- Fracassetti, D.; Gabrielli, M.; Corona, O.; Tirelli, A. Characterisation of Vernaccia Nera (Vitis vinifera L.) grapes and wine. S. Afr. J. Enol. Vitic. 2017, 38, 72–81. [Google Scholar]
- Corona, O.; Liguori, L.; Albanese, D.; Di Matteo, M.; Cinquanta, L.; Russo, P. Quality and volatile compounds in red wine at different degrees of dealcoholization by membrane process. Eur. Food Res.Technol. 2019, 245, 2601–2611. [Google Scholar] [CrossRef]
- Di Stefano, R.; Cravero, M.C. Metodi per lo studio dei polifenoli dell’uva. Riv. Vitic. Enol. 1991, 44, 37–45. [Google Scholar]
- Letaief, H.; Rolle, L.; Zeppa, G.; Gerbi, V. Assessment of grape skin hardness by a puncture test. J. Sci. Food Agric. 2008, 88, 1567–1575. [Google Scholar] [CrossRef]
- Serratosa, M.P.; Lopez-Toledano, A.; Merida, J.; Medina, M. Changes in color and phenolic compounds during the raisining of grape cv. Pedro Ximenez. J. Agric. Food Chem. 2008, 56, 2810–2816. [Google Scholar] [CrossRef]
- Río Segade, S.; Vilanova, M.; Giacosa, S.; Perrone, I.; Chitarra, W.; Pollon, M.; Torchio, F.; Boccacci, P.; Gambino, G.; Gerbi, V.; et al. Ozone improves the aromatic fingerprint of white grapes. Sci. Rep. 2017, 7, 16301. [Google Scholar] [CrossRef] [Green Version]
- Giacosa, S.; Giordano, M.; Vilanova, M.; Cagnasso, E.; Río Segade, S.; Rolle, L. On-vine withering process of ‘Moscato bianco’ grapes: Effect of cane-cut system on volatile composition. J. Sci. Food Agric. 2019, 99, 1135–1144. [Google Scholar] [CrossRef]
- Toğrul, I.T. Modelling of heat and moisture transport during drying black grapes. Int. J. Food Sci. Technol.-Mysore 2010, 45, 1146–1152. [Google Scholar]
- Vázquez, G.; Chenlo, F.; Moreira, R.; Costoyas, A. Effects of various treatments on the drying kinetics of Muscatel grapes. Dry. Technol. 2000, 18, 2131–2144. [Google Scholar] [CrossRef]
- Esmaiili, M.; Sotudeh-Gharebagh, R.; Cronin, K.; Mousavi, E.; Rezazadeh, G. Grape Drying: A review. Food Rev. Int. 2007, 23, 257–280. [Google Scholar] [CrossRef]
- Azzouz, S.; Guizani, A.; Jomaa, W.; Belghith, A. Moisture diffusivity and drying kinetic equation of convective drying of grapes. J. Food Eng. 2002, 55, 323–330. [Google Scholar] [CrossRef]
- Casado, C.G.; Heredia, A. Structure and dynamics of reconstituted cuticular waxes of grape berry cuticle (Vitis vinifera L.). J. Exp. Bot. 1999, 50, 175–182. [Google Scholar] [CrossRef]
- Pahlavanzadeh, H.; Basiri, A.; Zarrabi, M. Determination of parameters and pretreatment solution for grape drying. Dry. Technol. 2001, 19, 217–226. [Google Scholar] [CrossRef]
- Doymaz, I. Drying kinetics of black grapes treated with different solutions. J. Food Eng. 2006, 76, 212–217. [Google Scholar] [CrossRef]
- Giordano, M.; Zecca, O.; Belviso, S.; Reinotti, M.; Gerbi, V.; Rolle, L. Volatile fingerprint and physico-mechanical properties of ‘Muscat blanc’ grapes grown in mountain area: A first evidence of the influence of water regimes. Ital. J. Food Sci. 2013, 25, 329–338. [Google Scholar]
- Wilson, B.; Strauss, C.R.; Williams, P.J. Changes in free and glycosidically bound monoterpenes in developing Muscat grapes. J. Agric. Food Chem. 1984, 32, 919–924. [Google Scholar] [CrossRef]
- Bureau, S.M.; Razuncles, A.J.; Baumes, R.L. The aroma of Muscat de Frontignan grapes: Effect of the light environment of vine or bunch on volatiles and glycoconjugates. J. Sci. Food Agric. 2000, 80, 2012–2020. [Google Scholar] [CrossRef]
- Rowland, C.Y.; Blackman, A.J.; D’Arcy, B.R.; Rintoul, G.B. Comparison of organic extractives found in leatherwood (Eucryphia lucida) honey and leatherwood flowers and leaves. J. Agric. Food Chem. 1995, 43, 753–763. [Google Scholar] [CrossRef]
- Williams, P.J.; Straws, C.R.; Wilson, B. Hydroxylated linalool derivatives as precursors of volatile monoterpenes of Muscat grapes. J. Agric. Food Chem. 1980, 28, 766–771. [Google Scholar] [CrossRef]
- Dugelay, I.; Günata, Z.; Sapis, J.-C.; Baumes, R.L.; Bayonove, C.L. Étude de l’ origen du citronellol dans les vins. J. Int. Sci. Vigne Vin. 1992, 26, 177–184. [Google Scholar]
- Kim, B.; Cho, B.R.; Hahn, J.S. Metabolic engineering of Saccharomyces cerevisiae for the production of 2-phenylethanol via Ehrlich pathway. Biotechnol. Bioeng. 2014, 111, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Pilati, S.; Brazzale, D.; Guella, G.; Milli, A.; Ruberti, C.; Biasioli, F.; Zottini, M.; Moser, C. The onset of grapevine berry ripening is characterized by ROS accumulation and lipoxygenase-mediated membrane peroxidation in the skin. BMC Plant Biol. 2014, 14, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fenoll, J.; Manso, A.; Hellín, P.; Ruiz, L.; Flores, P. Changes in the aromatic composition of the Vitis vinifera grape Muscat Hamburg during ripening. Food Chem. 2009, 114, 420–428. [Google Scholar] [CrossRef]
- Strauss, C.R.; Wilson, B.; Williams, P.J. Novel monoterpene diols and diol glycosides in Vitis vinifera grapes. J. Agric. Food Chem. 1988, 36, 569–573. [Google Scholar] [CrossRef]
- Bonnländer, B.; Baderschneider, B.; Messerer, M.; Winterhalter, P. Isolation of two novel terpenoid glucose esters from Riesling wine. J. Agric. Food Chem. 1998, 46, 1474–1478. [Google Scholar] [CrossRef]
- Bäcktorp, C.; Johnson Wass, J.R.T.; Panas, I.; Sköld, M.; Börje, A.; Nyman, G. Theoretical investigation of linalool oxidation. J. Phys. Chem. A 2006, 110, 12204–12212. [Google Scholar] [CrossRef]
- Turek, C.; Stintzing, F.C. Stability of essential oils: A review. Compr. Rev. Food. Sci. Food Saf. 2013, 12, 40–53. [Google Scholar] [CrossRef]
- Rolle, L.; Torchio, F.; Zeppa, G.; Gerbi, V. Anthocyanin extractability assessment of grape skins by texture analysis. J. Int. Sci. Vigne Vin. 2008, 42, 157–162. [Google Scholar]
- Cadot, Y.; Miñana-Castelló, M.T.; Chevalier, M. Anatomical, histological, and histochemical changes in grape seeds from Vitis vinifera L. cv. Cabernet franc during fruit development. J. Agric. Food Chem. 2006, 54, 9206–9215. [Google Scholar] [CrossRef] [PubMed]
- Río Segade, S.; Torchio, F.; Gerbi, V.; Quijada-Morín, N.; García-Estévez, I.; Giacosa, S.; Escribano-Bailón, M.T.; Rolle, L. Impact of postharvest dehydration process of winegrapes on mechanical and acoustic properties of the seeds and their relationship with flavanol extraction during simulated maceration. Food Chem. 2016, 199, 893–901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Days | 0 | 5 | 8 | 13 | Sign | |
---|---|---|---|---|---|---|
Weight Loss% | Fresh Grapes | 35% | 50% | 65% | ||
Mean berry weight (g) | 4.97 ± 0.54d | 3.09 ± 0.12c | 2.31 ± 0.19b | 1.63 ± 0.11a | *** | |
Δ% | −37.9 | −53.6 | −67.2 | |||
Reducing sugars (g/L) | 189 ± 8a | 266 ± 6b | 344 ± 8c | 387 ± 10d | *** | |
Δ% | 40.7 | 82.0 | 104.8 | |||
Total acidity (g/L as tartaric acid) | 5.40 ± 0.16b | 3.97 ± 0.16a | 5.15 ± 0.08b | 5.25 ± 0.21b | *** | |
Δ% | −26.5 | −4.6 | −2.8 | |||
pH | 3.20 ± 0.04 | 3.26 ± 0.02 | 3.25 ± 0.01 | 3.24 ± 0.02 | ns | |
Δ% | 1.9 | 1.6 | 1.2 |
Days | 0 | 5 | 8 | 13 | Sign |
---|---|---|---|---|---|
Weight Loss% | Fresh Grapes | 35% | 50% | 65% | |
Terpenes compounds | |||||
trans-Furan-linalool oxide | 15.4 ± 2.3 | 19.7 ± 7.4 | 23.5 ± 6.9 | 18.2 ± 3.9 | ns |
cis-Furan-linalool oxide | 34.9 ± 8.7 | 29.7 ± 9.0 | 34.1 ± 6.7 | 18.9 ± 4.6 | ns |
Linalool | 531.7 ± 32.0b | 52.6 ± 10.7a | 42.5 ± 5.3a | 50.8 ± 1.9a | *** |
Hotrienol | 28.5 ± 3.9 | 22.8 ± 9.1 | 39.6 ± 7.5 | 39.1 ± 11.4 | ns |
α-Terpineol | 20.2 ± 3.4a | 26.9 ± 2.5b | 32.5 ± 5.2c | 37.3 ± 2.5d | *** |
trans-Piran-linalool oxide | 192.3 ± 12.2d | 99.8 ± 9.8c | 43.7 ± 12.9b | 24.5 ± 8.5a | *** |
cis-Piran-linalool oxide | 94.0 ± 12.4b | 116.2 ± 23.7b | 107.1 ± 13.5b | 48.7 ± 9.8a | *** |
Citronellol | 3.3 ± 0.9 | 1.7 ± 0.6 | 2.0 ± 0.6 | 2.2 ± 0.1 | ns |
Nerol | 36.1 ± 3.4b | 39.9 ± 2.1b | 11.1 ± 4.5a | 8.4 ± 2.9a | *** |
Geraniol | 268.9 ± 31.4b | 214.6 ± 27.9b | 79.6 ± 31.8a | 28.1 ± 12.4a | *** |
2,6-dimethyl-3,7-Octadiene-2,6-diol | 390.5 ± 67.0 | 554.3 ± 205.8 | 522.5 ± 154.3 | 555.5 ± 96.2 | ns |
2,6-dimethyl-7-Octadiene-2,6-diol | 5.2 ± 1.7a | 10.2 ± 4.7a | 16.3 ± 4.5ab | 26.0 ± 6.5b | *** |
3,7-dimethyl-1,7-Octadiene-3,6-diol | 94.0 ± 12.3c | 66.3 ± 8.7bc | 39.5 ± 21.9ab | 26.6 ± 7.7a | *** |
trans-8-hydroxy-linalool | 32.1 ± 5.8b | 15.4 ± 5.9a | 17.4 ± 4.9a | 23.4 ± 6.9ab | * |
cis-8-hydroxy-linalool | 17.8 ± 4.6 | 19.8 ± 7.6 | 8.9 ± 1.9 | 8.2 ± 5.7 | ns |
hydroxy-Geraniol | 24.4 ± 11.2 | 16.2 ± 4.6 | 9.1 ± 1.7 | 9.9 ± 6.0 | ns |
trans-Geranic acid | 216.6 ± 49.6c | 137.2 ± 22.9b | 31.5 ± 15.2a | 18.8 ± 17.5a | *** |
∑ Terpenes | 2005.9 ± 262.7b | 1443.4 ± 362.8ab | 1061.0 ± 299.1a | 944.4 ± 204.5a | ** |
Δ% | −28.0 | −47.1 | −52.9 | ||
Benzenoids | |||||
2-Phenylethanol | 79.5 ± 14.3a | 115.2 ± 50.0ab | 60.8 ± 10.4a | 162.7 ± 26.0b | * |
Benzyl Alcohol | 8.6 ± 3.5ab | 10.6 ± 2.6b | 2.5 ± 1.7a | 4.7 ± 2.5ab | * |
∑ Benzenoids | 88.1 ± 17.8a | 125.8 ± 52.7ab | 63.4 ± 12.1a | 167.5 ± 28.4b | * |
Δ% | 42.7 | −28.1 | 90.0 |
Days | 0 | 5 | 8 | 13 | Sign |
---|---|---|---|---|---|
Weight Loss% | Fresh Grapes | 35% | 50% | 65% | |
Terpenes | |||||
trans-Furan-linalool oxide | 31.1 ± 5.4a | 64.4 ± 26.9ab | 101.1 ± 22.7b | 111.0 ± 16.9b | *** |
cis-Furan-linalool oxide | 70.2 ± 16.6a | 96.9 ± 33.5ab | 148.9 ± 35.1ab | 115.0 ± 21.6b | * |
Linalool | 1074.1 ± 71.2c | 170.8 ± 36.7a | 186.0 ± 37.3a | 312.2 ± 16.6b | *** |
Hotrienol | 57.5 ± 8.1a | 73.9 ± 29.6a | 174.3 ± 47.3b | 237.2 ± 55.7b | *** |
α-Terpineol | 41.3 ± 10.4a | 87.5 ± 11.5a | 142.7 ± 34.3b | 229.1 ± 17.4c | *** |
trans-Piran-linalool oxide | 388.3 ± 22.3b | 323.5 ± 32.3b | 192.5 ± 71.4a | 149.2 ± 45.0a | *** |
cis-Piran-linalool oxide | 189.6 ± 21.9a | 378.5 ± 92.4b | 469.3 ± 94.7b | 296.5 ± 40.5ab | *** |
Citronellol | 6.6 ± 2.0a | 5.5 ± 1.7a | 9.0 ± 3.1a | 13.7 ± 0.2b | *** |
Nerol | 72.7 ± 1.1a | 129.6 ± 11.9b | 47.3 ± 15.3a | 50.6 ± 14.5a | *** |
Geraniol | 541.1 ± 28.6b | 694.9 ± 85.7b | 339.5 ± 109.2a | 169.5 ± 64.5a | *** |
2,6-dimethyl-3,7-Octadiene-2,6-diol | 784.7 ± 93.6a | 1813.1 ± 747.7ab | 2308.8 ± 833.4bc | 3390.4 ± 371.8c | *** |
2,6-dimethyl-7-Octadiene-2,6-diol | 10.3 ± 2.1a | 33.5 ± 16.6ab | 72.1 ± 25.7b | 158.6 ± 32.6c | *** |
3,7-dimethyl-1,7-Octadiene-3,6-diol | 191.2 ± 37.1 | 215.6 ± 36.0 | 177.2 ± 112.4 | 161.6 ± 37.7 | ns |
trans-8-hydroxy-linalool | 64.4 ± 7.2a | 50.4 ± 21.3a | 77.0 ± 27.7a | 142.1 ± 33.2b | *** |
cis-8-hydroxy-linalool | 35.4 ± 6.7 | 64.9 ± 27.6 | 38.8 ± 8.4 | 49.0 ± 31.5 | ns |
hydroxy-Geraniol | 48.1 ± 16.5 | 52.7 ± 17.3 | 39.7 ± 9.4 | 59.2 ± 33.0 | ns |
trans-Geranic acid | 432.8 ± 56.2b | 443.8 ± 66.7b | 134.2 ± 54.9a | 112.0 ± 98.6a | *** |
∑ Terpenes | 4039.2 ± 407.0a | 4699.6 ± 1295.4ab | 4658.2 ± 1542.4ab | 5756.8 ± 931.2b | * |
Δ% | 18.0 | 25.4 | 56.5 | ||
Alcohols | |||||
2-Phenylethanol | 161.5 ± 38.0a | 371.2 ± 156.1a | 267.4 ± 67.4a | 1001.0 ± 170.3b | *** |
Benzyl Alcohol | 17.1 ± 5.9 | 34.3 ± 9.2 | 11.0 ± 7.2 | 28.5 ± 13.1 | ns |
∑ Alcohols | 178.6 ± 44.0a | 405.5 ± 165.3a | 278.4 ± 74.6a | 1029.5 ± 183.5b | *** |
Δ% | 127.0 | 55.8 | 476.3 |
Days | 0 | 5 | 8 | 13 | Sign |
---|---|---|---|---|---|
Weight Loss% | Fresh Grapes | 35% | 50% | 65% | |
Terpenes Compounds | |||||
trans-Furan-linalool oxide | 161.5 ± 13.3 | 254.9 ± 99.8 | 214.9 ± 66.8 | 170.1 ± 69.1 | ns |
cis-Furan-linalool oxide | 36.2 ± 6.8 | 36.0 ± 6.6 | 36.8 ± 9.2 | 34.2 ± 7.5 | ns |
Linalool | 976.4 ± 90.0b | 601.8 ± 73.2a | 415.6 ± 109.2a | 381.7 ± 92.4a | *** |
Hotrienol | 43.2 ± 7.8 | 61.7 ± 30.3 | 43.3 ± 3.9 | 22.2 ± 4.3 | ns |
Neral | 7.4 ± 0.4 | 10.2 ± 3.5 | 8.5 ± 3.0 | 5.2 ± 0.9 | ns |
α-Terpineol | 51.6 ± 6.0 | 84.9 ± 21.6 | 69.4 ± 15.4 | 63.5 ± 7.0 | ns |
Geranial | 18.7 ± 3.9b | 16.8 ± 2.4b | 14.2 ± 1.4ab | 10.6 ± 1.4a | * |
trans-Piran-linalool oxide | 58.4 ± 7.5 | 51.4 ± 18.7 | 37.6 ± 9.4 | 26.3 ± 10.0 | ns |
cis-Piran-linalool oxide | 16.4 ± 3.7 | 26.1 ± 9.1 | 29.7 ± 10.6 | 18.5 ± 10.1 | ns |
Citronellol | 14.3 ± 0.2 | 12.0 ± 0.5 | 11.9 ± 7.1 | 8.3 ± 0.3 | ns |
Nerol | 227.8 ± 100.3 | 233.0 ± 31.0 | 183.4 ± 23.8 | 167.6 ± 13.6 | ns |
Geraniol | 771.4 ± 279.7 | 620.7 ± 83.9 | 495.6 ± 48.8 | 423.0 ± 36.6 | ns |
2,6-dimethyl-3,7-Octadiene-2,6-diol | 784.9 ± 174.3 | 933.0 ± 188.8 | 884.4 ± 217.2 | 664.9 ± 150.0 | ns |
2,6-dimethyl-7-Octadiene-2,6-diol | 121.7 ± 114.0 | 96.7 ± 16.4 | 108.3 ± 26.5 | 112.0 ± 16.4 | ns |
3,7-dimethyl-1,7-Octadiene-3,6-diol | 92.6 ± 2.1 | 73.6 ± 19.6 | 72.3 ± 35.4 | 52.7 ± 12.2 | ns |
hydroxy Citronellol | 5.0 ± 3.3a | 11.9 ± 1.9ab | 12.1 ± 2.9ab | 15.2 ± 2.6b | * |
8-hydroxy dihydrolinalool | 67.5 ± 12.7 | 64.5 ± 8.7 | 65.7 ± 16.6 | 60.5 ± 9.9 | ns |
hydroxy Nerol | 4.9 ± 3.4a | 17.5 ± 3.6b | 17.8 ± 1.9b | 23.0 ± 4.8b | *** |
trans-8-hydroxy-linalool | 257.5 ± 53.8 | 256.9 ± 56.7 | 255.9 ± 66.1 | 241.4 ± 47.6 | ns |
cis-8-hydroxy-linalool | 194.3 ± 70.1 | 151.5 ± 111.0 | 145.8 ± 11.6 | 107.5 ± 20.5 | ns |
hydroxy Geraniol | 75.9 ± 48.0a | 194.3 ± 20.2c | 122.5 ± 22.3ab | 181.8 ± 13.9bc | *** |
trans-Geranic acid | 433.3 ± 41.9b | 395.5 ± 72.0ab | 395.0 ± 22.4ab | 288.7 ± 26.0a | * |
p-menth-1-ene-7,8-diol | n.d. | 14.3 ± 3.9ab | 9.5 ± 8.8a | 22.6 ± 4.3b | * |
trans-8-hydroxy-Nerol | 11.4 ± 2.9 | 20.1 ± 6.1 | 22.8 ± 5.2 | 22.6 ± 4.7 | ns |
cis-8-hydroxy-Geraniol | 81.4 ± 27.8 | 54.4 ± 6.0 | 57.1 ± 5.4 | 56.1 ± 10.6 | ns |
trans-8-hydroxy-Geraniol | 28.7 ± 8.2a | 43.8 ± 8.5ab | 47.8 ± 4.5ab | 52.9 ± 7.5b | * |
2,6-dimethyl-6-hydroxy-2,7-octadienoic acid | 23.1 ± 9.2 | 34.9 ± 22.3 | 28.4 ± 9.5 | 26.3 ± 1.7 | ns |
∑ Terpenes | 4565.3 ± 1091.2 | 4372.5 ± 926.1 | 3806.6 ± 764.6 | 3259.2 ± 585.7 | ns |
Δ% | −4.2 | −16.6 | −28.6 | ||
Norisoprenoids | |||||
4-oxo-α-Damascenone | 9.1 ± 0.1a | 10.3 ± 4.3ab | 14.7 ± 3.4ab | 20.1 ± 4.3b | * |
3,4-dihydro-3-oxo-actinidol 1 | 6.6 ± 2.7 | 13.2 ± 2.1 | 10.5 ± 2.1 | 10.3 ± 1.4 | ns |
3-oxo-α-ionol | 60.0 ± 0.4 | 53.7 ± 6.1 | 57.2 ± 8.3 | 52.7 ± 7.9 | ns |
Vomifoliol | 82.0 ± 10.4 | 120.9 ± 47.8 | 118.5 ± 40.4 | 153.2 ± 36.5 | ns |
∑ Norisoprenoids | 157.8 ± 13.7 | 198.0 ± 60.3 | 200.9 ± 54.1 | 236.4 ± 50.1 | ns |
Δ% | 25.5 | 27.3 | 49.8 | ||
Benzenoids | |||||
Benzyl Alcohol | 27.5 ± 17.0 | 39.7 ± 14.5 | 26.3 ± 16.6 | 48.7 ± 11.6 | ns |
2-Phenylethanol | 57.7 ± 6.4a | 83.9 ± 21.2a | 64.7 ± 28.4a | 148.4 ± 50.1b | * |
4-Vinylguaiacol | 115.6 ± 9.2 | 172.6 ± 85.3 | 150.8 ± 25.6 | 163.4 ± 23.4 | ns |
Vanillin | 12.6 ± 0.1 | 16.0 ± 2.4 | 10.4 ± 2.0 | 15.1 ± 2.5 | ns |
dihydrocoliferyl alcohol | 44.3 ± 7.2 | 65.2 ± 23.4 | 72.0 ± 8.2 | 45.1 ± 9.7 | ns |
∑ Benzenoids | 257.7 ± 39.9 | 377.4 ± 146.9 | 323.2 ± 80.8 | 420.7 ± 97.4 | ns |
Δ% | 46.5 | 25.8 | 63.3 |
Days | 0 | 5 | 8 | 13 | Sign |
---|---|---|---|---|---|
Weight Loss% | Fresh Grapes | 35% | 50% | 65% | |
Terpenes Compounds | |||||
trans-Furan-linalool oxide | 346.8 ± 40.7 | 817.8 ± 296.4 | 944.6 ± 352.1 | 1029.1 ± 381.8 | ns |
cis-Furan-linalool oxide | 77.4 ± 11.8a | 116.5 ± 20.0ab | 162.6 ± 53.5ab | 208.5 ± 32.7b | * |
Linalool | 2090.9 ± 119.9 | 1956.7 ± 314.8 | 1827.0 ± 564.9 | 2322.5 ± 441.6 | ns |
Hotrienol | 93.0 ± 20.0 | 197.8 ± 90.6 | 189.1 ± 31.0 | 137.0 ± 31.3 | ns |
Neral | 15.8 ± 0.3 | 32.7 ± 10.3 | 36.9 ± 13.6 | 31.7 ± 4.1 | ns |
α-Terpineol | 110.5 ± 9.0a | 273.4 ± 60.0b | 305.5 ± 92.6b | 388.7 ± 18.1b | *** |
Geranial | 39.9 ± 7.0a | 54.4 ± 5.7ab | 62.0 ± 9.7b | 65.1 ± 6.4b | * |
trans-Piran-linalool oxide | 125.5 ± 20.3 | 165.0 ± 55.0 | 164.7 ± 49.4 | 159.1 ± 53.6 | ns |
cis-Piran-linalool oxide | 35.0 ± 6.6 | 84.0 ± 26.5 | 130.7 ± 53.7 | 111.5 ± 57.9 | ns |
Citronellol | 30.7 ± 0.6 | 38.7 ± 2.0 | 53.5 ± 34.3 | 50.7 ± 1.5 | ns |
Nerol | 484.8 ± 198.1a | 754.1 ± 90.4ab | 804.4 ± 170.5ab | 1026.7 ± 18.9b | * |
Geraniol | 1644.1 ± 542.1 | 2014.8 ± 321.1 | 2159.2 ± 281.3 | 2590.8 ± 66.8 | ns |
2,6-dimethyl-3,7-Octadiene-2,6-diol | 1677.0 ± 315.1 | 3020.9 ± 585.5 | 3895.2 ± 1270.6 | 4066.6 ± 817.1 | ns |
2,6-dimethyl-7-Octadiene-2,6-diol | 256.8 ± 235.3a | 313.4 ± 52.6a | 476.8 ± 154.0ab | 685.5 ± 79.8b | * |
3,7-dimethyl-1,7-Octadiene-3,6-diol | 198.5 ± 2.5 | 237.3 ± 55.4 | 322.0 ± 183.5 | 322.1 ± 63.9 | ns |
hydroxy Citronellol | 10.7 ± 6.6a | 38.5 ± 4.7b | 52.3 ± 11.2b | 93.5 ± 15.8c | *** |
8-hydroxy dihydrolinalool | 144.2 ± 22.1a | 208.8 ± 24.2ab | 289.9 ± 97.2ab | 370.8 ± 54.7b | * |
hydroxy Nerol | 10.4 ± 6.9a | 56.4 ± 9.6b | 78.0 ± 13.7b | 141.1 ± 28.0c | *** |
trans-8-hydroxy-linalool | 550.4 ± 96.2a | 834.9 ± 200.8ab | 1129.3 ± 386.1ab | 1474.7 ± 237.9b | * |
cis-8-hydroxy-linalool | 414.2 ± 135.8 | 499.7 ± 385.5 | 637.0 ± 99.9 | 661.1 ± 128.7 | ns |
hydroxy Geraniol | 160.9 ± 97.3a | 629.7 ± 67.8b | 528.6 ± 59.1b | 1115.5 ± 64.5c | *** |
trans-Geranic acid | 927.7 ± 57.5a | 1281.0 ± 226.2ab | 1725.3 ± 240.2b | 1770.6 ± 116.9b | *** |
p-menth-1-ene-7,8-diol | n.d. | 46.5 ± 14.8a | 42.2 ± 40.9a | 138.8 ± 25.9b | *** |
trans-8-hydroxy-Nerol | 24.4 ± 5.4a | 64.7 ± 17.9ab | 100.4 ± 30.2bc | 138.7 ± 28.9c | *** |
cis-8-hydroxy-Geraniol | 175.7 ± 65.8a | 176.5 ± 21.7a | 249.9 ± 41.9ab | 343.2 ± 54.9b | * |
trans-8-hydroxy-Geraniol | 61.3 ± 15.4a | 142.3 ± 30.1b | 207.9 ± 19.7b | 324.2 ± 39.9c | *** |
2,6-dimethyl-6-OH-2,7-Octadienoic acid | 49.2 ± 17.9 | 114.6 ± 77.2 | 125.8 ± 52.5 | 161.3 ± 8.3 | ns |
∑ Terpenes | 9755.4 ± 2056.1a | 14171.0 ± 3057.7ab | 16700.8 ± 4407.3ab | 19928.6 ± 2580.0b | ** |
Δ% | 45.3 | 71.2 | 104.3 | ||
Norisoprenoids | |||||
4-oxo-α-Damascenone | 19.5 ± 0.4a | 33.6 ± 15.5a | 64.5 ± 17.3a | 122.7 ± 20.8b | *** |
3,4-dihydro-3-oxo-actinidol 1 | 14.1 ± 5.4a | 42.9 ± 8.3b | 45.4 ± 8.0b | 63.4 ± 9.1b | *** |
3-oxo-α-ionol | 128.7 ± 3.6a | 173.7 ± 16.7ab | 249.6 ± 46.6bc | 323.1 ± 41.4c | *** |
Vomifoliol | 175.5 ± 16.2a | 394.7 ± 168.8a | 524.3 ± 221.5ab | 943.3 ± 231.9b | * |
∑ Norisoprenoids | 337.9 ± 25.5a | 644.9 ± 209.4a | 883.8 ± 293.4ab | 1452.4 ± 303.2b | *** |
Δ% | 90.9 | 161.6 | 329.8 | ||
Benzenoids | |||||
2-Phenylethanol | 123.9 ± 18.0a | 272.7 ± 74.9a | 288.3 ± 146.6a | 919.8 ± 331.8b | *** |
Benzyl Alcohol | 58.4 ± 34.4a | 129.7 ± 52.6ab | 118.5 ± 83.1ab | 302.4 ± 90.1b | * |
4-Vinylguaiacol | 248.3 ± 28.4a | 562.7 ± 288.4ab | 657.7 ± 133.5ab | 1009.3 ± 191.2b | * |
Vanillin | 26.9 ± 0.7a | 51.9 ± 7.3b | 45.8 ± 12.7b | 92.3 ± 9.3b | *** |
dihydrocoliferyl alcohol | 94.8 ± 12.2a | 212.7 ± 83.9ab | 311.5 ± 10.9b | 279.9 ± 81.0b | * |
∑ Benzenoids | 552.3 ± 93.6a | 1229.7 ± 507.1ab | 1421.8 ± 386.7ab | 2603.7 ± 703.4b | ** |
Δ% | 122.7 | 157.4 | 371.4 |
Days | 0 | 5 | 8 | 13 | Sign | |
---|---|---|---|---|---|---|
Weight Loss% | Fresh Grapes | 35% | 50% | 65% | ||
Berry skin | ||||||
Total flavonoids index | 153 ± 18c | 71 ± 3a | 93 ± 1ab | 101 ± 10b | *** | |
(mg/100 berries as (+)-catechin) | Δ% | −53.4 | −39.4 | −34.0 | ||
Total flavonoids index | 308 ± 41b | 217 ± 8a | 332 ± 19b | 544 ± 33c | *** | |
(mg/kg berries as (+)-catechin) | Δ% | -29.6 | +7.9 | +76.9 | ||
Fsk (N) | 0.694 ± 0.138c | 0.572 ± 0.345bc | 0.469 ± 0.337b | 0.193 ± 0.198a | *** | |
Δ% | −17.6 | −32.4 | −72.2 | |||
Berry seeds | ||||||
Total flavonoids index | 273 ± 62b | 122 ± 26a | 130 ± 22a | 249 ± 22b | ** | |
(mg/100 seeds as (+)-catechin) | Δ% | −55.3 | −52.4 | −8.9 | ||
Total flavonoids index | 1074 ± 402a | 1135 ± 235a | 1403 ± 197a | 4040 ± 547b | *** | |
(mg/kg berries as (+)-catechin) | Δ% | +5.6 | +30.6 | +276.0 | ||
Berry juice | ||||||
Total flavonoids index | 584 ± 73 | 719 ± 83 | 745 ± 98 | − # | ns | |
(mg/L as (+)-catechin) | Δ% | +23.1 | +27.5 | − # |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Corona, O.; Planeta, D.; Bambina, P.; Giacosa, S.; Paissoni, M.A.; Squadrito, M.; Torchio, F.; Río Segade, S.; Cinquanta, L.; Gerbi, V.; et al. Influence of Different Dehydration Levels on Volatile Profiles, Phenolic Contents and Skin Hardness of Alkaline Pre-Treated Grapes cv Muscat of Alexandria (Vitis vinifera L.). Foods 2020, 9, 666. https://doi.org/10.3390/foods9050666
Corona O, Planeta D, Bambina P, Giacosa S, Paissoni MA, Squadrito M, Torchio F, Río Segade S, Cinquanta L, Gerbi V, et al. Influence of Different Dehydration Levels on Volatile Profiles, Phenolic Contents and Skin Hardness of Alkaline Pre-Treated Grapes cv Muscat of Alexandria (Vitis vinifera L.). Foods. 2020; 9(5):666. https://doi.org/10.3390/foods9050666
Chicago/Turabian StyleCorona, Onofrio, Diego Planeta, Paola Bambina, Simone Giacosa, Maria Alessandra Paissoni, Margherita Squadrito, Fabrizio Torchio, Susana Río Segade, Luciano Cinquanta, Vincenzo Gerbi, and et al. 2020. "Influence of Different Dehydration Levels on Volatile Profiles, Phenolic Contents and Skin Hardness of Alkaline Pre-Treated Grapes cv Muscat of Alexandria (Vitis vinifera L.)" Foods 9, no. 5: 666. https://doi.org/10.3390/foods9050666
APA StyleCorona, O., Planeta, D., Bambina, P., Giacosa, S., Paissoni, M. A., Squadrito, M., Torchio, F., Río Segade, S., Cinquanta, L., Gerbi, V., & Rolle, L. (2020). Influence of Different Dehydration Levels on Volatile Profiles, Phenolic Contents and Skin Hardness of Alkaline Pre-Treated Grapes cv Muscat of Alexandria (Vitis vinifera L.). Foods, 9(5), 666. https://doi.org/10.3390/foods9050666