Evaluation of the Toxicity of Satureja intermedia C. A. Mey Essential Oil to Storage and Greenhouse Insect Pests and a Predator Ladybird
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Essential Oil Extraction
2.2. Essential Oil Characterization
2.3. Insects
2.4. Fumigant Toxicity
2.5. Contact Toxicity
2.6. Data Analysis
3. Results
3.1. Chemical Composition of Essential Oil
3.2. Fumigant Toxicity
3.3. Contact Toxicity
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Edde, P.A. A review of the biology and control of Rhyzopertha dominica (F.) the lesser grain borer. J. Stored Prod. Res. 2012, 48, 1–18. [Google Scholar] [CrossRef]
- Bosly, H.A.; Kawanna, M.A. Fungi species and red flour beetle in stored wheat flour under Jazan region conditions. Toxicol. Ind. Health 2014, 30, 304–310. [Google Scholar] [CrossRef] [PubMed]
- Garcia, D.; Girardi, N.S.; Passone, M.A.; Nesci, A.; Etcheverry, M. Harmful effects on Oryzaephilus surinamensis (L.) and Tribolium castaneum by food grade antioxidants and their formulations in peanut kernel. J. Food Chem. Nanotechnol. 2017, 3, 86–92. [Google Scholar] [CrossRef]
- Özberk, F. Impacts of khapra beetle (T. granarium Everts) onto marketing price and relevant traits in bread wheat (T. aestivum L.). Appl. Ecol. Environ. Res. 2018, 16, 6143–6153. [Google Scholar] [CrossRef]
- Athanassiou, C.G.; Phillips, T.W.; Wakil, W. Biology and control of the khapra beetle, Trogoderma granarium, a major quarantine threat to global food security. Annu. Rev. Entomol. 2019, 64, 131–148. [Google Scholar] [CrossRef]
- Blackman, R.L.; Eastop, V.F. Aphids on the World’s Crops, 2nd ed.; John Wiley & Sons Ltd.: Chichester, UK, 2000; ISBN 978-0471851912. [Google Scholar]
- Zehnder, C.B.; Hunter, M.D. A comparison of maternal effects and current environment on vital rates of Aphis nerii, the milkweed-oleander aphid. Ecol. Entomol. 2007, 32, 172–180. [Google Scholar] [CrossRef]
- Colvin, S.M.; Yeargan, K.V. Predator fauna associated with oleander aphids on four milkweed species and the effect of those host plants on the development and fecundity of Cycloneda munda and Harmonía axyridis. J. Kans. Entomol. Soc. 2014, 87, 280–298. [Google Scholar] [CrossRef]
- Gupta, G.; Kumar, N.R. Growth and development of ladybird beetle Coccinella septempunctata L. (Coleoptera: Coccinellidae), on plant and animal based protein diets. J. Asia Pac. Entomol. 2017, 20, 959–963. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhi, J.; Li, F.; Jin, J.; Zhou, Y. An artificial diet for continuous maintenance of Coccinella septempunctata adults (Coleoptera: Coccinellidae). Biocontrol Sci. Technol. 2018, 28, 242–252. [Google Scholar] [CrossRef]
- Liu, T.; Wang, Y.; Zhang, L.; Xu, Y.; Zhang, Z.; Mu, W. Sublethal effects of four insecticides on the seven-spotted lady beetle (Coleoptera: Coccinellidae). J. Econ. Entomol. 2019, 112, 2177–2185. [Google Scholar]
- Damalas, C.A.; Eleftherohorinos, I.G. Pesticide exposure, safety issues, and risk assessment indicators. Int. J. Environ. Res. Public Health 2011, 8, 1402–1419. [Google Scholar] [CrossRef] [PubMed]
- Mulé, R.; Sabella, G.; Robba, L.; Manachini, B. Systematic review of the effects of chemical insecticides on four common butterfly families. Front. Environ. Sci. 2017, 5, 32. [Google Scholar] [CrossRef]
- Zikankuba, V.L.; Mwanyika, G.; Ntwenya, J.E.; James, A. Pesticide regulations and their malpractice implications on food and environment safety. Cogent Food Agric. 2019, 5, 1601544. [Google Scholar] [CrossRef]
- Isman, M.B.; Grieneisen, M.L. Botanical insecticide research: Many publications, limited useful data. Trends Plant Sci. 2014, 19, 140–145. [Google Scholar] [CrossRef] [PubMed]
- Chau, D.T.M.; Chung, N.T.; Huong, L.T.; Hung, N.H.; Ogunwande, I.A.; Dai, D.N.; Setzer, W.N. Chemical compositions, mosquito larvicidal and antimicrobial activities of leaf essential oils of eleven species of Lauraceae from Vietnam. Plants 2020, 9, 606. [Google Scholar] [CrossRef]
- Pavela, R.; Benelli, G. Essential oils as ecofriendly biopesticides? Challenges and constraints. Trends Plant Sci. 2016, 21, 1000–1007. [Google Scholar] [CrossRef]
- Spochacz, M.; Chowański, S.; Walkowiak-Nowicka, K.; Szymczak, M.; Adamski, Z. Plant-derived substances used against beetles–Pests of stored crops and food–and their mode of action: A review. Compr. Rev. Food Sci. Food Saf. 2018, 17, 1339–1366. [Google Scholar] [CrossRef] [Green Version]
- Alizadeh, A. Essential oil composition, phenolic content, antioxidant, and antimicrobial activity of cultivated Satureja rechingeri Jamzad at different phenological stages. Zeitschrift für Naturforschung C 2015, 70, 51–58. [Google Scholar] [CrossRef]
- Sefidkon, F.; Jamzad, Z. Chemical composition of the essential oil of three Iranian Satureja species (S. mutica, S. macrantha and S. intermedia). Food Chem. 2005, 91, 1–4. [Google Scholar] [CrossRef]
- Shahnazi, S.; Khalighi-Sigaroodi, F.; Ajani, Y.; Yazdani, D.; Taghizad-Farid, R.; Ahvazi, M.; Abdoli, M. The chemical composition and antimicrobial activity of essential oil of Satureja intermedia CA Mey. J. Med. Plants 2008, 1, 85–92. [Google Scholar]
- Ghorbanpour, M.; Hadian, J.; Hatami, M.; Salehi-Arjomand, H.; Aliahmadi, A. Comparison of chemical compounds and antioxidant and antibacterial properties of various Satureja species growing wild in Iran. J. Med. Plants 2016, 3, 58–72. [Google Scholar]
- Sadeghi, I.; Yousefzadi, M.; Behmanesh, M.; Sharifi, M.; Moradi, A. In vitro cytotoxic and antimicrobial activity of essential oil from Satureja intermedia. Iran. Red Crescent Med. J. 2013, 15, 70–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michaelakis, A.; Theotokatos, S.A.; Koliopoulos, G.; Chorianopoulos, N.G. Essential oils of Satureja species: Insecticidal effect on Culex pipiens larvae (Diptera: Culicidae). Molecules 2007, 12, 2567–2578. [Google Scholar] [CrossRef] [PubMed]
- Tozlu, E.; Cakir, A.; Kordali, S.; Tozlu, G.; Ozer, H.; Akcin, T.A. Chemical compositions and insecticidal effects of essential oils isolated from Achillea gypsicola, Satureja hortensis, Origanum acutidens and Hypericum scabrum against broadbean weevil (Bruchus dentipes). Sci. Hortic. 2011, 130, 9–17. [Google Scholar] [CrossRef]
- Magierowicz, K.; Górska-Drabik, E.; Sempruch, C. The insecticidal activity of Satureja hortensis essential oil and its active ingredient carvacrol against Acrobasis advenella (Zinck.) (Lepidoptera, Pyralidae). Pestic. Biochem. Physiol. 2019, 153, 122–128. [Google Scholar] [CrossRef]
- Jamzad, Z. Thymus and Satureja Species of Iran, 1st ed.; Research Institute of Forests and Rangelands: Tehran, Iran, 2009. [Google Scholar]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing: Carol Stream, IL, USA, 2007. [Google Scholar]
- Mondello, L. FFNSC 3; Shimadzu Scientific Instruments: Columbia, MD, USA, 2016. [Google Scholar]
- NIST. NIST17; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2017.
- Alkan, M. Chemical composition and insecticidal potential of different Origanum spp. (Lamiaceae) essential oils against four stored product pests. Turk. Entomol. Derg. 2020, 44, 149–163. [Google Scholar] [CrossRef]
- Behi, F.; Bachrouch, O.; Boukhris-Bouhachem, S. Insecticidal activities of Mentha pulegium L., and Pistacia lentiscus L., essential oils against two citrus aphids Aphis spiraecola Patch and Aphis gossypii Glover. J. Essent. Oil Bear. Plants 2019, 22, 516–525. [Google Scholar] [CrossRef]
- Ikbal, C.; Pavela, R. Essential oils as active ingredients of botanical insecticides against aphids. J. Pest Sci. 2019, 92, 971–986. [Google Scholar] [CrossRef]
- Islam, R.; Khan, R.I.; Al-Reza, S.M.; Jeong, Y.T.; Song, C.H.; Khalequzzaman, M. Chemical composition and insecticidal properties of Cinnamomum aromaticum (Nees) essential oil against the stored product beetle Callosobruchus maculatus (F.). J. Sci. Food Agric. 2009, 89, 1241–1246. [Google Scholar] [CrossRef]
- Ebadollahi, A.; Safaralizadeh, M.H.; Pourmirza, A.A.; Gheibi, S.A. Toxicity of essential oil of Agastache foeniculum (Pursh) Kuntze to Oryzaephilus surinamensis L. and Lasioderma serricorne F. J. Plant Prot. Res. 2010, 50, 215–219. [Google Scholar] [CrossRef]
- Ebadollahi, A. Essential oil isolated from Iranian yarrow as a bio-rational agent to the management of saw-toothed grain beetle, Oryzaephilus surinamensis (L.). Korean J. Appl. Entomol. 2017, 56, 395–402. [Google Scholar]
- Ebadollahi, A.; Safaralizadeh, M.H.; Pourmirza, A.A. Fumigant toxicity of essential oils of Eucalyptus globulus Labill and Lavandula stoechas L., grown in Iran, against the two coleopteran insect pests; Lasioderma serricorne F. and Rhyzopertha dominica F. Egypt. J. Biol. Pest Control 2010, 20, 1–5. [Google Scholar]
- Ebadollahi, A. Fumigant toxicity and repellent effect of seed essential oil of celery against lesser grain borer, Rhyzopertha dominica. J. Essent. Oil Bear. Plants 2018, 21, 146–154. [Google Scholar] [CrossRef]
- Ebadollahi, A.; Ashrafi Parchin, R.; Farjaminezhad, M. Phytochemistry, toxicity and feeding inhibitory activity of Melissa officinalis L. essential oil against a cosmopolitan insect pest; Tribolium castaneum Herbst. Toxin Rev. 2016, 35, 77–82. [Google Scholar] [CrossRef]
- Ebadollahi, A.; Razmjou, J. Chemical composition and toxicity of the essential oils of Lippia citriodora from two different locations against Rhyzopertha dominica and Tribolium castaneum. Agric. For. 2019, 65, 135–146. [Google Scholar] [CrossRef]
- Ebadollahi, A.; Taghinezhad, E. Modeling and optimization of the insecticidal effects of Teucrium polium L. essential oil against red flour beetle (Tribolium castaneum Herbst) using response surface methodology. Inf. Process. Agric. 2019, in press. [Google Scholar] [CrossRef]
- Abdel-Sattar, E.; Zaitoun, A.A.; Farag, M.A.; El Gayed, S.H.; Harraz, F.M.H. Chemical composition, insecticidal and insect repellent activity of Schinus molle L. leaf and fruit essential oils against Trogoderma granarium and Tribolium castaneum. Nat. Prod. Res. 2010, 24, 226–235. [Google Scholar] [CrossRef]
- Nouri-Ganbalani, G.; Borzoui, E. Acute toxicity and sublethal effects of Artemisia sieberi Besser on digestive physiology, cold tolerance and reproduction of Trogoderma granarium Everts (Col.: Dermestidae). J. Asia Pac. Entomol. 2017, 20, 285–292. [Google Scholar] [CrossRef]
- Sefidkon, F.; Abbasi, K.; Khaniki, G.B. Influence of drying and extraction methods on yield and chemical composition of the essential oil of Satureja hortensis. Food Chem. 2006, 99, 19–23. [Google Scholar] [CrossRef]
- Hadian, J.; Ebrahimi, S.N.; Salehi, P. Variability of morphological and phytochemical characteristics among Satureja hortensis L. accessions of Iran. Ind. Crop. Prod. 2010, 32, 62–69. [Google Scholar] [CrossRef]
- Lee, B.-H.; Choi, W.-S.; Lee, S.-E.; Park, B.-S. Fumigant toxicity of essential oils and their constituent compounds towards the rice weevil, Sitophilus oryzae (L.). Crop Prot. 2001, 20, 317–320. [Google Scholar] [CrossRef]
- Lee, B.-H.; Lee, S.-E.; Annis, P.C.; Pratt, S.J.; Park, B.-S.; Tumaalii, F. Fumigant toxicity of essential oils and monoterpenes against the red flour beetle, Tribolium castaneum Herbst. J. Asia Pac. Entomol. 2002, 5, 237–240. [Google Scholar] [CrossRef]
- Yildirim, E.; Emsen, B.; Kordali, S. Insecticidal effects of monoterpenes on Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae). J. Appl. Bot. Food Qual. 2013, 86, 198–204. [Google Scholar]
- Saad, M.M.G.; Abou-Taleb, H.K.; Abdelgaleil, S.A.M. Insecticidal activities of monoterpenes and phenylpropenes against Sitophilus oryzae and their inhibitory effects on acetylcholinesterase and adenosine triphosphatases. Appl. Entomol. Zool. 2018, 53, 173–181. [Google Scholar] [CrossRef]
- Liu, T.-T.; Chao, L.K.-P.; Hong, K.-S.; Huang, Y.-J.; Yang, T.-S. Composition and insecticidal activity of essential oil of Bacopa caroliniana and interactive effects of individual compounds on the activity. Insects 2020, 11, 23. [Google Scholar] [CrossRef] [Green Version]
- Youssefi, M.R.; Tabari, M.A.; Esfandiari, A.; Kazemi, S.; Moghadamnia, A.A.; Sut, S.; Acqua, S.D.; Benelli, G.; Maggi, F. Efficacy of two monoterpenoids, carvacrol and thymol, and their combinations against eggs and larvae of the West Nile vector Culex pipiens. Molecules 2019, 24, 1867. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.; Weng, H.; Li, C.; He, J.; Zhang, X.; Ma, Z. Efficacy of essential oil from Mosla chinensis Maxim. cv. Jiangxiangru and its three main components against insect pests. Ind. Crop. Prod. 2020, 147, 112237. [Google Scholar] [CrossRef]
- Russo, S.; Yaber Grass, M.A.; Fontana, H.C.; Leonelli, E. Insecticidal activity of essential oil from Eucalyptus globulus against Aphis nerii (Boyer) and Gynaikothrips ficorum (Marchal). AgriScientia 2018, 35, 63–67. [Google Scholar] [CrossRef]
- Abramson, C.I.; Wanderley, P.A.; Wanderley, M.J.A.; Miná, A.J.S.; de Souza, O.B. Effect of essential oil from citronella and alfazema on fennel aphids Hyadaphis foeniculi Passerini (Hemiptera: Aphididae) and its predator Cycloneda sanguinea L. (Coleoptera: Coccinelidae). Am. J. Environ. Sci. 2007, 3, 9–10. [Google Scholar] [CrossRef]
- Kimbaris, A.C.; Papachristos, D.P.; Michaelakis, A.; Martinou, A.F.; Polissiou, M.G. Toxicity of plant essential oil vapours to aphid pests and their coccinellid predators. Biocontrol Sci. Technol. 2010, 20, 411–422. [Google Scholar] [CrossRef]
- Faraji, N.; Seraj, A.A.; Yarahmadi, F.; Rajabpour, A. Contact and fumigant toxicity of Foeniculum vulgare and Citrus limon essential oils against Tetranychus turkestani and its predator Orius albidipennis. J. Crop Prot. 2016, 5, 283–292. [Google Scholar] [CrossRef]
- Ribeiro, N.; Camara, C.; Ramos, C. Toxicity of essential oils of Piper marginatum Jacq. against Tetranychus urticae Koch and Neoseiulus californicus (McGregor). Chil. J. Agric. Res. 2016, 76, 71–76. [Google Scholar] [CrossRef] [Green Version]
- Seixas, P.T.L.; Demuner, A.J.; Alvarenga, E.S.; Barbosa, L.C.A.; Marques, A.; Farias, E.D.S.; Picanço, M.C. Bioactivity of essential oils from Artemisia against Diaphania hyalinata and its selectivity to beneficial insects. Sci. Agric. 2018, 75, 519–525. [Google Scholar] [CrossRef]
- Titouhi, F.; Amri, M.; Messaoud, C.; Haouel, S.; Youssfi, S.; Cherif, A.; Mediouni Ben Jemâa, J. Protective effects of three Artemisia essential oils against Callosobruchus maculatus and Bruchus rufimanus (Coleoptera: Chrysomelidae) and the extended side-effects on their natural enemies. J. Stored Prod. Res. 2017, 72, 11–20. [Google Scholar] [CrossRef]
- Haouel-Hamdi, S.; Abdelkader, N. Combined use of Eucalyptus salmonophloia essential oils and the parasitoid Dinarmus basalis for the control of the cowpea seed beetle Callosobruchus maculatus. Tunis. J. Plant Prot. 2018, 13, 123–137. [Google Scholar]
- De Souza, M.T.; de Souza, M.T.; Bernardi, D.; Krinski, D.; de Melo, D.J.; Oliveira, D.C.; Rakes, M.G.; Zarbin, P.H.; de Noronha Sales Maia, B.H.L.; Zawadneak, M.A.C. Chemical composition of essential oils of selected species of Piper and their insecticidal activity against Drosophila suzukii and Trichopria anastrephae. Environ. Sci. Pollut. Res. 2020, 27, 13056–13065. [Google Scholar] [CrossRef]
RIcalc | RIdb | Compound | % | RIcalc | RIdb | Compound | % |
---|---|---|---|---|---|---|---|
929 | 932 | α-Pinene | 2.7 | 1384 | 1387 | β-Bourbonene | 0.1 |
984 | 974 | 1-Octen-3-ol | 0.3 | 1389 | 1379 | Geranyl acetate | tr |
990 | 988 | Myrcene | 0.4 | 1423 | 1417 | β-Caryophyllene | 2.4 |
1016 | 1020 | p-Cymene | 8.1 | 1428 | 1431 | β-Gurjunene | 0.1 |
1034 | 1024 | Limonene | 0.5 | 1432 | 1442 | α-Maaliene | 0.1 |
1037 | 1026 | 1,8-Cineole | 1.7 | 1438 | 1439 | Aromadendrene | 0.7 |
1060 | 1054 | γ-Terpinene | 8.1 | 1454 | 1452 | α-Humulene | 0.3 |
1066 | 1065 | cis-Sabinene hydrate | 0.4 | 1476 | 1478 | γ-Muurolene | 0.5 |
1083 | 1086 | Terpinolene | 0.2 | 1487 | 1489 | β-Selinene | 0.2 |
1083 | 1089 | p-Cymenene | 0.2 | 1496 | 1496 | Viridiflorene | 0.7 |
1092 | 1095 | Linalool | 0.2 | 1500 | 1500 | α-Muurolene | 0.2 |
1094 | 1098 | trans-Sabinene hydrate | 0.1 | 1510 | 1505 | β-Bisabolene | 1.3 |
1121 | 1128 | allo-Ocimene | 0.2 | 1515 | 1513 | γ-Cadinene | 0.3 |
1164 | 1165 | Borneol | 0.4 | 1523 | 1522 | δ-Cadinene | 0.7 |
1176 | 1174 | Terpinen-4-ol | 0.8 | 1530 | 1533 | trans-Cadina-1,4-diene | 0.1 |
1187 | 1191 | Hexyl butyrate | 0.1 | 1535 | 1537 | α-Cadinene | tr |
1239 | 1241 | Carvacryl methyl ether | 4.0 | 1540 | 1544 | α-Calacorene | 0.3 |
1284 | 1282 | (E)-Anethole | 0.7 | 1557 | 1553 | Thymohydroquinone | 0.5 |
1290 | 1289 | Thymol | 48.1 | 1578 | 1577 | Spathulenol | 0.9 |
1298 | 1298 | Carvacrol | 11.8 | 1581 | 1582 | Caryophyllene oxide | 0.8 |
1340 | 1340 | Piperitenone | tr | Monoterpene hydrocarbons | 20.5 | ||
1346 | 1346 | α-Terpinyl acetate | 0.1 | Oxygenated monoterpenoids | 68.4 | ||
1349 | 1349 | Thymyl acetate | 0.2 | Sesquiterpene hydrocarbons | 8.0 | ||
1357 | 1356 | Eugenol | 0.1 | Oxygenated sesquiterpenoids | 1.7 | ||
1365 | 1373 | α-Ylangene | 0.1 | Phenylpropanoids | 0.8 | ||
1371 | 1374 | α-Copaene | 0.2 | Others | 0.4 | ||
1376 | 1372 | Carvacryl acetate | 0.1 | Total identified | 99.8 |
Insect | Time (h) | Concentration (µL/L) | ||||
---|---|---|---|---|---|---|
4.71 | 6.18 | 8.24 | 11.18 | 14.71 | ||
O. surinamensis | 24 | 25.00 ± 0.41 j | 38.75 ± 0.63 i | 50.00 ± 0.41 g | 60.00 ±0.41 f | 80.00 ± 0.41 d |
48 | 41.25 ± 0.48 h | 57.50 ± 0.29 f,g | 70.00 ± 0.41 e | 81.25 ± 0.48 d | 93.75 ± 0.48 c | |
72 | 53.75 ± 0.48 g | 68.75 ± 0.48 e | 80.00 ± 0.58 d | 96.25 ± 0.48 b | 100.00 ± 0.00 a | |
7.06 | 9.12 | 12.35 | 16.18 | 20.88 | ||
R. dominica | 24 | 25.00 ± 0.41 l | 33.75 ± 0.48 k | 46.25 ± 0.48 i | 58.75 ± 0.29 h | 75.00 ± 0.58 e |
48 | 33.75 ± 0.48 k | 43.75 ± 0.48 j | 56.25 ± 0.48 h | 67.50 ± 0.29 g | 82.50 ± 0.29 c | |
72 | 57.50 ± 0.29 h | 70.00 ± 0.41 f | 78.75 ± 0.25 d | 88.75 ± 0.48 b | 97.50 ± 0.29 a | |
20.59 | 27.06 | 34.71 | 45.29 | 58.82 | ||
T. castaneum | 24 | 23.75 ± 0.48 k | 38.75 ± 0.48 i | 46.25 ± 0.48 g | 60.00 ±0.41 e | 76.25 ± 0.25 c |
48 | 35.00 ± 0.58 j | 50.00 ± 0.58 f | 58.75 ± 0.63 e | 71.25 ± 0.48 d | 82.50 ± 0.50 b | |
72 | 43.75 ± 0.48 h | 60.00 ± 0.41 e | 71.25 ± 0.25 d | 83.75 ± 0.63 b | 90.00 ± 0.50 a | |
8.82 | 12.53 | 17.68 | 25.00 | 35.29 | ||
T. granarium | 24 | 22.50 ± 0.48 j | 35.00 ± 0.29 i | 42.50 ± 0.25 h | 50.00 ± 0.41 g | 75.00 ± 0.29 c |
48 | 37.50 ± 0.25 i | 45.00 ± 0.29 h | 55.00 ± 0.29 f | 70.00 ± 0.41 d | 87.50 ± 0.48 b | |
72 | 47.50 ± 0.25 g | 62.50 ± 0.48 e | 77.50 ± 0.48 c | 87.50 ± 0.48 b | 100.00 ± 0.00 a |
Insect | Time (h) | LC50 with 95% Confidence Limits (µL/L) | LC90 with 95% Confidence Limits (µL/L) | χ2 (df = 3) | Slope ± SE | Sig. * |
---|---|---|---|---|---|---|
O. surinamensis | 24 | 8.151 (7.396–8.970) | 23.177 (18.675–32.578) | 1.99 | 2.824 ± 0.344 | 0.574 |
48 | 5.542 (4.853–6.119) | 13.710 (11.971–16.756) | 1.288 | 3.258 ± 0.378 | 0.732 | |
72 | 4.716 (4.143–5.174) | 9.200 (8.413–10.405) | 5.134 | 4.415 ± 0.504 | 0.162 | |
R. dominica | 24 | 12.825 (11.661–14.189) | 36.901 (29.147–54.0970) | 0.885 | 2.792 ± 0.356 | 0.829 |
48 | 10.398 (9.265–11.454) | 30.455 (24.687–42.838) | 1.056 | 2.746 ± 0.358 | 0.788 | |
72 | 6.358 (5.126–7.296) | 15.970 (14.160–19.138) | 2.488 | 3.204 ± 0.432 | 0.477 | |
T. granarium | 24 | 20.489 (18.114–23.612) | 81.507 (58.604–140.911) | 4.233 | 2.137 ± 0.283 | 0.237 |
48 | 13.654 (11.811–15.364) | 49.192 (38.852–71.499) | 3.978 | 2.302 ± 0.289 | 0.264 | |
72 | 9.785 (6.082–12.258) | 24.075 (18.870–42.027) | 5.842 | 3.277 ± 0.360 | 0.12 | |
T. castaneum | 24 | 35.612 (32.538–39.070) | 95.948 (77.352–135.744) | 0.967 | 2.977 ± 0.376 | 0.809 |
48 | 28.048 (24.747–30.916) | 80.251 (65.751–111.454) | 0.297 | 2.807 ± 0.378 | 0.961 | |
72 | 22.861 (19.648–25.415) | 57.584 (50.068–71.481) | 0.139 | 3.194 ± 0.405 | 0.987 |
Insect | Concentration (μg/mL) | ||||
---|---|---|---|---|---|
200 | 300 | 400 | 500 | 750 | |
A. nerii | 22.50 ± 0.25 e | 32.50 ± 0.25 d | 40.00 ± 0.41 c | 62.50 ± 0.25 b | 77.50 ± 0.75 a |
500 | 700 | 900 | 1100 | 1400 | |
C. septempunctata | 17.50 ± 0.48 e | 30.00 ± 0.41 d | 45.00 ± 0.29 c | 62.50 ± 0.48 b | 80.00 ± 0.41 a |
Insect | LC50 with 95% Confidence Limits (μg/mL) | LC90 with 95% Confidence Limits (μg/mL) | χ2 (df = 3) | Slope ± SE | Sig. * |
---|---|---|---|---|---|
A. nerii | 418.379 (379.586–464.130) | 1224.788 (975.704–1738.840) | 4.363 | 2.747 ± 0.318 | 0.225 |
C. septempunctata | 913.722 (853.739–980.799) | 1908.099 (1652.748–2352.473) | 1.932 | 4.008 ± 0.413 | 0.587 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ebadollahi, A.; Setzer, W.N. Evaluation of the Toxicity of Satureja intermedia C. A. Mey Essential Oil to Storage and Greenhouse Insect Pests and a Predator Ladybird. Foods 2020, 9, 712. https://doi.org/10.3390/foods9060712
Ebadollahi A, Setzer WN. Evaluation of the Toxicity of Satureja intermedia C. A. Mey Essential Oil to Storage and Greenhouse Insect Pests and a Predator Ladybird. Foods. 2020; 9(6):712. https://doi.org/10.3390/foods9060712
Chicago/Turabian StyleEbadollahi, Asgar, and William N. Setzer. 2020. "Evaluation of the Toxicity of Satureja intermedia C. A. Mey Essential Oil to Storage and Greenhouse Insect Pests and a Predator Ladybird" Foods 9, no. 6: 712. https://doi.org/10.3390/foods9060712
APA StyleEbadollahi, A., & Setzer, W. N. (2020). Evaluation of the Toxicity of Satureja intermedia C. A. Mey Essential Oil to Storage and Greenhouse Insect Pests and a Predator Ladybird. Foods, 9(6), 712. https://doi.org/10.3390/foods9060712