Thyme Antimicrobial Effect in Edible Films with High Pressure Thermally Treated Whey Protein Concentrate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Film Preparation
2.2.1. Thermal Treatment
2.2.2. Combined Mild-Thermal High Pressure Treatment
2.3. Film Characterization
2.3.1. Film Thickness
2.3.2. Moisture Content
2.3.3. Water Activity
2.3.4. Moisture Sorption Isotherms
2.3.5. Water Vapor Permeability
2.3.6. Microstructural Analysis of The Film Forming Mixtures
2.4. Antimicrobial Assay
2.5. Solid-Phase Micro-Extraction (SPME)
2.6. Gas Chromatography-Mass Spectrometric (GC-MS) Analysis
2.7. Statistical Analysis
3. Results and Discussion
3.1. Film Appearance
3.2. Sorption Isotherms
3.3. Water Vapor Permeability (WPV)
3.4. Scanning Electron Microscopy
3.5. Antimicrobial Effect of PFunctionalizing the WPC-EF
3.6. Gas-Chromatography Fingerprint
3.7. PCA Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- U.S. FDA. Title 21: Food and Drugs Part 182—Substances Generally Recognized As Safe Subpart A—General Provisions; U.S. FDA: Montgomery/Prince Georges, MD, USA, 2009; pp. 26–28.
- Gamage, G.R.; Park, H.J.; Kim, K. Effectiveness of antimicrobial coated oriented polypropylene/polyethylene films in sprout packaging. Food Res. Int. 2009, 42, 832–839. [Google Scholar] [CrossRef]
- Atarés, L.; Chiralt, A. Essential oils as additives in biodegradable films and coatings for active food packaging. Trends Food Sci. Technol. 2016, 48, 51–62. [Google Scholar] [CrossRef]
- Hu, W.; Feng, K.; Xiu, Z.; Jiang, A.; Lao, Y. Thyme oil alginate-based edible coatings inhibit growth of pathogenic microorganisms spoiling fresh-cut cantaloupe. Food Biosci. 2019, 32, 100467. [Google Scholar]
- Cuomo, F.; Iacovino, S.; Messia, M.C.; Sacco, P.; Lopez, F. Protective action of lemongrass essential oil on mucilage from chia (Salvia hispanica) seeds. Food Hydrocoll. 2020, 105, 105860. [Google Scholar] [CrossRef]
- Arfat, Y.A.; Benjakul, S.; Prodpran, T.; Sumpavapol, P.; Songtipya, P. Properties and antimicrobial activity of fish protein isolate/fish skin gelatin film containing basil leaf essential oil and zinc oxide nanoparticles. Food Hydrocoll. 2014, 41, 265–273. [Google Scholar] [CrossRef]
- Froiio, F.; Ginot, L.; Paolino, D.; Lebaz, N.; Bentaher, A.; Fessi, H.; Elaissari, A. Essential oils-loaded polymer particles: Preparation, characterization and antimicrobial property. Polymers 2019, 11, 1017. [Google Scholar] [CrossRef] [Green Version]
- Hossain, F.; Follett, P.; Salmieri, S.; Vu, K.D.; Fraschini, C.; Lacroix, M. Antifungal activities of combined treatments of irradiation and essential oils (EOs) encapsulated chitosan nanocomposite films in in vitro and in situ conditions Int. J. Food Microbiol. 2019, 295, 33–40. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, M.; Bhandari, B.; Xu, J.; Yang, C. Effects of nanoemulsion-based active coatings with composite mixture of star anise essential oil, polylysine, and nisin on the quality and shelf life of ready-to-eat Yao meat products. Food Control. 2020, 107, 106771. [Google Scholar] [CrossRef]
- Seydim, C.; Sarikus, G. Antimicrobial activity of whey protein based edible films incorporated with oregano, rosemary and garlic essential oils. Food Res. Int. 2006, 39, 639–644. [Google Scholar] [CrossRef]
- Zinoviadou, K.G.; Koutsoumanis, K.P.; Biliaderis, C.G. Physico-chemical properties of whey protein isolate films containing oregano oil and their antimicrobial action against spoilage flora of fresh beef. Meat Sci. 2009, 82, 338–345. [Google Scholar] [CrossRef]
- Esmaeili, H.; Cheraghi, N.; Khanjari, A.; Rezaeigolestani, M.; Basti, A.A.; Kamkar, A.; Aghaee, E.M. Incorporation of nanoencapsulated garlic essential oil into edible films: A novel approach for extending shelf life of vacuum-packed sausages. Meat Sci. 2020, 166, 108135. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Diaz, K.; Cobos, Á.; Fernández-Valle, M.E.; Díaz, O.; Cambero, M.I. Characterization of edible films from whey proteins treated with heat, ultrasounds and/or transglutaminase. Application in cheese slices packaging. Food Packag. Shelf Life 2019, 22, 100397. [Google Scholar] [CrossRef]
- Devi, A.F.; Buckow, R.; Hemar, Y.; Kasapis, S. Modification of the structural and rheological properties of whey protein/gelatin mixtures through high pressure processing. Food Chem. 2014, 156, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Ramos, O.L.; Pereira, R.N.; Rodrigues, R.; Teixeira, J.A.; Vicente, A.A.; Malcata, F.X. Physical effects upon whey protein aggregation for nano-coating production. Food Res. Int. 2014, 66, 344–355. [Google Scholar] [CrossRef] [Green Version]
- Gul, O.; Saricaoglu, F.T.; Besir, A.; Atalar, I.; Yazici, F. Effect of ultrasound treatment on the properties of nano-emulsion films obtained from hazelnut meal protein and clove essential oil. Ultrason. Sonochem. 2018, 41, 466–474. [Google Scholar] [CrossRef] [PubMed]
- Bleoanca, I.; Neagu, C.; Dima, S.; Borda, D. Development of multicomponent edible films from milk-serum proteins. J. Biotechnol. 2015, 208, S47. [Google Scholar] [CrossRef]
- Tcholakova, S.; Denkov, N.D.; Ivanov, I.B.; Campbell, B. Coalescence stability of emulsions containing globular milk proteins. Adv. Colloid Interface Sci. 2006, 123, 259–293. [Google Scholar] [CrossRef]
- Bagamboula, C.F.; Uyttendaele, M.; Debevere, J. Inhibitory effect of thyme and basil essential oils, carvacrol, thymol, estragol, linalool and p-cymene towards Shigella sonnei and S. flexneri. Food Microbiol. 2004, 21, 33–42. [Google Scholar] [CrossRef]
- Bleoancă, I.; Saje, K.; Mihalcea, L.; Oniciuc, E.A.; Smole-Mozina, S.; Nicolau, A.I.; Borda, D. Contribution of high pressure and thyme extract to control Listeria monocytogenes in fresh cheese-A hurdle approach. Innov. Food Sci. Emerg. Technol. 2016, 38, 7–14. [Google Scholar] [CrossRef]
- Gounga, M.; Shi-Ying, X.; Wang, Z. Sensory attributes of freshly roasted and roasted freeze dried chinese chestnut coated with wpisolate-pullulan edible coating. Int. J. Agric. Res. 2007, 2, 959–964. [Google Scholar]
- Ramos, O.L.; Silva, S.; Soares, J.C.; Fernandes, J.C.; Poças, M.F.; Pintado, M.E.; Malcata, F.X. Features and performance of edible films, obtained from whey protein isolate formulated with antimicrobial compounds. Food Res. Int. 2012, 45, 351–361. [Google Scholar] [CrossRef] [Green Version]
- ASTM. Standard practice for conditioning plastics for testing. In Annual Book of ASTM Standards; ASTM: Montgomery, PA, USA, 2013. [Google Scholar]
- ASTM. Standard test method for moisture content of paper and paperboard by oven drying. In Annual Book of ASTM Standards; ASTM: Montgomery, PA, USA, 1994; pp. 1–2. [Google Scholar]
- Limmatvapirat, S.; Limmatvapirat, C.; Puttipipatkhachorn, S.; Nuntanid, J.; Luangtana-anan, M. Enhanced enteric properties and stability of shellac films through composite salts formation Eur. J. Pharm. Biopharm. 2007, 67, 690–698. [Google Scholar] [CrossRef]
- van den Berg, C.; Bruin, S. Water activity and its estimation in food systems: Theoretical aspects. In Water Activity: Influences on food Quality; Rockland, L.B., Stewarts, G.F., Eds.; Academic Press: Cambridge, MA, USA, 1981; pp. 2–61. [Google Scholar]
- Tudose, C.; Neagu, C.; Borda, D.; Alexe, P. The impact of water activity on storage stability of a newly reformulated salami: A pilot scale study. Rev. Chim. 2017, 68, 763–767. [Google Scholar] [CrossRef]
- ASTM. Standard Test. Methods for Water Vapor Transmission of Materials; ASTM: Montgomery, PA, USA, 1997. [Google Scholar]
- Du, W.X.; Avena-Bustillos, R.J.; Sheng, S.; Hua, T.; McHugh, T.H. Antimicrobial Volatile Essential Oils in Edible Films for Food Safety In Science Against Microbial Pathogens: Communicating Current Research and Technological Advances; Mendez-Vilas, A., Ed.; Formatex Research Center: Badajoz, Spain, 2011; Volume 2, pp. 1124–1134. [Google Scholar]
- Perestrelo, R.; Silva, C.L.; Silva, P.; Medina, S.; Pereira, R.; Câmara, J.S. Untargeted fingerprinting of cider volatiles from different geographical regions by HS-SPME/GC-MS. Microchem. J. 2019, 148, 643–651. [Google Scholar] [CrossRef]
- Krochta, J.; Perez-Gago, M. Formation and properties of whey protein films and coatings. In Protein-Based Films and Coatings; Gennadios, A., Ed.; CRC Press: Boca Raton, FL, USA, 2002; pp. 159–180. [Google Scholar]
- Le Tien, C.; Letendre, M.; Ispas-Szabo, P.; Mateescu, M.A.; Delmas-Patterson, G.; Yu, H.L.; Lacroix, M. Development of Biodegradable Films from Whey Proteins by Cross-Linking and Entrapment in Cellulose. J. Agric. Food Chem. 2000, 48, 5566–5575. [Google Scholar] [CrossRef]
- Bolumar, T.; Middendorf, D. Structural changes in foods caused by high-pressure processing. In High Pressure Processing of Food: Principles, Technology and Applications; Balasubramaniam, L., Barbosa-Canova, V.M., Eds.; Springer: New York City, NY, USA, 2016; pp. 271–294. [Google Scholar]
- Kokoszka, S.; Debeaufort, F.; Lenart, A.; Voilley, A. Water vapour permeability, thermal and wetting properties of whey protein isolate based edible films. Int. Dairy J. 2010, 20, 53–60. [Google Scholar] [CrossRef]
- Osés, J.; Fernández-Pan, I.; Mendoza, M.; Maté, J.I. Stability of the mechanical properties of edible films based on whey protein isolate during storage at different relative humidity. Food Hydrocoll. 2009, 23, 125–131. [Google Scholar] [CrossRef]
- Simelane, S.; Ustunol, Z. Mechanical properties of heat-cured whey protein–based edible films compared with collagen casings under sausage manufacturing conditions. JFS Food Eng. Phys. Prop. 2005, 69, 271–276. [Google Scholar] [CrossRef]
- Huntrakul, K.; Harnkarnsujarit, N. Effects of plasticizers on water sorption and aging stability of whey protein/carboxy methyl cellulose films. J. Food Eng. 2020, 272, 109809. [Google Scholar] [CrossRef]
- Mali, S.; Sakanaka, L.S.; Yamashita, F.; Grossmann, M.V.E. Water sorption and mechanical properties of cassava starch films and their relation to plasticizing effect. Carbohydr. Polym. 2005, 60, 283–289. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, L.; Zhou, J.; Ruan, X.; Lin, J.; Fu, L. Effect of chitosan nanoparticle coatings on the quality changes of postharvest whiteleg shrimp, litopenaeus vannamei, during Storage at 4 °C. Food Bioprocess Technol. 2014, 8, 907–915. [Google Scholar]
- Andrade, M.A.; Ribeiro-Santos, R.; Costa Bonito, M.C.; Saraiva, M.; Sanches-Silva, A. Characterization of rosemary and thyme extracts for incorporation into a whey protein based film. LWT 2018, 92, 497–508. [Google Scholar] [CrossRef]
- Gontard, N.; Guilbert, S.; Cuq, J. Edible wheat gluten films: Influence of the main process variables on film properties using response surface methodology. J. Food Sci. 1992, 57, 190–195. [Google Scholar] [CrossRef]
- Bahram, S.; Rezaei, M.; Soltani, M.; Kamali, A.; Ojagh, S.M.; Abdollahi, M. Whey protein concentrate edible film activated with cinnamon essential oil. J. Food Process. Preserv. 2014, 38, 1251–1258. [Google Scholar] [CrossRef]
- Ojagh, S.; Rezaei, M.; Razavi, S.; Hosseini, S. Development and evaluation of a novel biodegradable film made from chitosan and cinnamon essential oil with low affinity toward water. Food Chem. 2010, 122, 161–166. [Google Scholar] [CrossRef]
- Cofelice, M.; Cuomo, F.; Chiralt, A. Alginate films encapsulating lemongrass essential oil as affected by spray calcium application. Colloids Interfaces 2019, 3, 58. [Google Scholar] [CrossRef] [Green Version]
- Laird, K.; Phillips, C. Vapour phase: A potential future use for essential oils as antimicrobials? Lett. Appl. Microbiol. 2012, 54, 169–174. [Google Scholar] [CrossRef]
- Mandras, N.; Nostro, A.; Roana, J.; Scalas, D.; Banche, G.; Ghisetti, V.; Del Re, S.; Fucale, G.; Cuffini, A.M. Liquid and vapour-phase antifungal activities of essential oils against Candida albicans and non-albicans Candida. BMC Complement. Altern. Med. 2016, 16, 330. [Google Scholar] [CrossRef]
- Reyes-Jurado, F.; Navarro-Cruz, A.R.; Ochoa-Velasco, C.E.; Palou, E.; López-Malo, A.; Ávila-Sosa, R. Essential oils in vapor phase as alternative antimicrobials: A review. Crit. Rev. Food Sci. Nutr. 2020, 60, 1641–1650. [Google Scholar] [CrossRef]
- Nadjib, B.M.; Amine, F.M.; Abdelkrim, K.; Fairouz, S.; Maamar, M. Liquid and vapour phase antibacterial activity of eucalyptus globulus essential oil=susceptibility of selected respiratory tract pathogens. Am. J. Infect. Dis. 2014, 10, 105–117. [Google Scholar] [CrossRef] [Green Version]
- Goñi, P.; López, P.; Sánchez, C.; Gómez-Lus, R.; Becerril, R.; Nerín, C. Antimicrobial activity in the vapour phase of a combination of cinnamon and clove essential oils. Food Chem. 2009, 116, 982–989. [Google Scholar] [CrossRef]
- Kohiyama, C.Y.; Ribeiro, M.M.Y.; Mossini, S.A.G.; Bando, É.; Bomfim, N.D.S.; Nerilo, S.B.; Rocha, G.H.O.; Grespan, R.; Mikcha, J.M.G.; Machinski, M., Jr. Antifungal properties and inhibitory effects upon aflatoxin production of Thymus vulgaris L. by Aspergillus flavus. Food Chem. 2015, 173, 1006–1010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chizzola, R.; Michitsch, H.; Franz, C. Antioxidative properties of thymus vulgaris leaves : Chemotypes. J. Agric. Food Chem. 2008, 56, 6897–6904. [Google Scholar] [CrossRef] [PubMed]
- Nuin, M.; Alfaro, B.; Cruz, Z.; Argarate, N.; George, S.; Le Marc, Y.; Olley, J.; Pin, C. Modelling spoilage of fresh turbot and evaluation of a time-temperature integrator (TTI) label under fluctuating temperature. Intl. J. Food Microbiol. 2008, 127, 193–199. [Google Scholar] [CrossRef]
- Walkenström, A.-M.; Hermansson, P. Mixed gels of gelatin and whey proteins, formed by combining temperature and high pressure. Food Hydrocoll. 1997, 11, 457–470. [Google Scholar] [CrossRef]
- Krešić, G.; Lelas, V.; Jambrak, A.R.; Herceg, Z.; Brnčić, S.R. Influence of novel food processing technologies on the rheological and thermophysical properties of whey proteins. J. Food Eng. 2008, 87, 64–73. [Google Scholar] [CrossRef]
- Nguyen Van Long, N.; Joly, C.; Dantigny, P. Active packaging with antifungal activities. Int. J. Food Microbiol. 2016, 220, 73–90. [Google Scholar] [CrossRef]
- Uz, M.; Altinkaya, S.A. Development of mono and multilayer antimicrobial food packaging materials for controlled release of potassium sorbate. LWT Food Sci. Technol. 2011, 44, 2302–2309. [Google Scholar] [CrossRef] [Green Version]
Films | Thickness (mm) | ΔRH (%) | WPV·10−11 (g/s·m·Pa) |
---|---|---|---|
Control_TT | 0.171 ± 0.163 a * | 46 | 24.867 ± 2.855 a |
TT | 0.193 ± 0.052 a | 46 | 19.557 ± 2.109 b |
Control_HPT | 0.156 ± 0.043 a | 46 | 13.852 ± 1.137 b,c |
HPT | 0.133 ± 0.071 a | 46 | 10.178 ± 1.690 c |
GAB Model | Halsey Model | ||||
---|---|---|---|---|---|
Film | K | C | M0 | k | n |
(g water/100 g dw b) | |||||
TT | 0.822 ± 0.061 a | 10.871 ± 0.036 | 12.581 ± 3.617 | 1582.915 ± 327.473 | 2.422 ± 0.195 |
R2adj = 0.992 E(%) = 1.212 | R2adj = 0.807 E(%) = 0.856 | ||||
HPT | 0.692 ± 0.096 | 3.331 ± 0.292 | 23.045 ± 2.681 | 260.816 ± 29.281 | 1.925 ± 0.176 |
R2adj = 0.999 E(%) = 0.831 | R2adj = 0.891 E(%) = 0.197 |
TT | HPT | |||
---|---|---|---|---|
Day 1 | Day 10 | Day 1 | Day 10 | |
Torulopsis stellata | 10.50 ± 0.50 b,B,* | 17.50 ± 0.71 a,B | 9.00 ± 1.41 b,B | 15.00 ± 1.41 a,C |
Geotrichum candidum | 16.00 ± 1.41 b,A | 19.50 ± 0.71 a,B | 10.50 ± 0.71 c,B | 20.00 ± 0.00 a,B |
Bacillus subtilis | 16.50 ± 0.71 c,A | 39.00 ± 1.41 a,A | 15.50 ± 0.71 c,A | 35.00 ± 0.00 b,A |
Compound | Class | KI | Ions | HPT1 | HPT10 | TT1 | TT10 |
---|---|---|---|---|---|---|---|
Tricyclene | MT | 935 | 91;93;77;121 | 13.96 ± 1.45 g,A,* | 7.92 ± 0.55 e,B | 2.09 ± 0.19 e,C | 1.69 ± 0.11 e,C |
α-Thujene | MT | 946 | 91;77; 93;65 | 4.68 ± 0.52 g,A | 2.61 ± 0.18 e,B | 0.78 ± 0.06 e,C | 0.63 ± 0.04 e,C |
α-Pinene | MT | 957 | 91;77;93;65 | 26.97 ± 2.13 f,g,A | 14.91 ± 1.22 e,B | 5.23 ± 0.44 d,e,C | 4.38 ± 0.36 e,C |
Camphene | MT | 965 | 91;93;121;136;77 | 60.13 ± 5.25 f,g,A | 24.67 ± 2.31 d,e,B | 12.10 ± 1.14 c,d,e,C | 7.92 ± 0.80 e,C |
1S-α-Pinene | MT | 970 | 91;67;79;93 | 58.50 ± 4.48 f,g,A | 29.97 ± 2.71 d,e,B | 10.70 ± 1.01 d,e,C | 9.26 ± 0.88 d,e,C |
α-Phellandrene | MT | 974 | 91;93;77;139;51 | 18.68 ± 0.95 g,A | 6.62 ± 0.72 e,B | 8.15 ± 0.99 d,e,B | 3.63 ± 0.34 e,C |
α-Terpinene | MT | 983 | 91;93;77;136 | 426.51 ± 38.74 c,A | 213.03 ± 20.19 c,B | 87.70 ± 8.99 c,d,e,C | 65.58 ± 6.69 c,d,e,C |
p-Cymene | MT | 991 | 119;91;134;117 | 1125.78 ± 121.25 a,A | 510.79 ± 49.88 b,B | 377.02 ± 45.20 b,B,C | 256.25 ± 27.48 b,C |
α-Copaene | SQT | 1038 | 105;91;119;161 | 11.38 ± 1.08 g,B | 26.44 ± 2.14 d,e,A | 10.82 ± 1.42 d,e,B | 7.73 ± 0.89 e,B |
β-Phellandrene | MT | 1044 | 91;93;79;77 | 34.44 ± 3.29 f,g,A | 14.18 ± 1.22 e,C | 26.70 ± 2.57 c,d,e,B | 12.74 ± 1.56 c,d,e,C |
γ-Terpinene | MT | 1047 | 67;95;108;193 | 28.72 ± 2.14 f,g,A | 1.88 ± 0.09 e,C | 30.35 ± 3.04 c,d,e,B | 15.22 ± 1.68 c,d,e,A |
Thymol methyl ether | AOMT | 1057 | 149;91;164;117 | 202.55 ± 15.42 d,A | 171.39 ± 16.12 c,A | 52.56 ± 7.88 c,d,e,C | 125.19 ± 11.42 c,d,B |
Caryophyllene | SQT | 1063 | 91;105;133;77 | 193.94 ± 14.69 d,e,A | 189.42 ± 1.56 c,A | 145.30 ± 15.22 c,B | 125.33 ± 14.18 c,d,B |
δ-Cadinene | SQT | 1073 | 93;95;91;121 | 9.69 ± 0.87 g,A | 5.33 ± 0.49 e,B | 10.99 ± 1.25 d,e,A | 4.25 ± 1.77 e,B |
γ-Muurolene | SQT | 1078 | 161;105;91;204 | 88.60 ± 8.36 e,f,g,A | 59.88 ± 5.74 d,e,A | 96.86 ± 44.12 c,d,e,A | 50.19 ± 4.12 c,d,e,A |
Bicyclogermacrene | SQT | 1089 | 91;105;133;189 | 41.64 ± 4.25 f,g,A | 30.97 ± 2.09 d,e,B | 8.35 ± 0.92 d,e,D | 16.48 ± 1.99 c,d,e,C |
γ-Cadinene | SQT | 1092 | 161;105;91;119 | 24.75 ± 2.21 f,g,B | 19.65 ± 1.74 e,B | 43.03 ± 3.39 c,d,e,A | 25.63 ± 2.12 c,d,e,B |
α-Calacorene | SQT | 1124 | 91;93;67;79;121 | 6.27 ± 0.52 g,A | 5.18 ± 0.49 e,A | 5.53 ± 0.55 d,e,A | 5.60 ± 1.13 d,e,A |
Caryophyllene oxide | OSQT | 1243 | 429;355;430;295 | 41.04 ± 3.22 f,g,A | 8.25 ± 0.72 e,B | 4.76 ± 1.12 d,e,B | 10.06 ± 1.31 d,e,B |
α-Guaiene | SQT | 1255 | 185;200;201;204 | 5.17 ± 0.48 g,B | 4.66 ± 0.38 e,B | 10.82 ± 1.22 d,e,A | 6.16 ± 0.74 e,B |
γ-Guaiene | SQT | 1263 | 105;133;148;91 | 17.15 ± 1.62 g,A | 12.94 ± 1.16 e,A | 17.20 ± 1.97 c,d,e,A | 17.16 ± 1.98 c,d,e,A |
α-Maaliene | SQT | 1270 | 221;213;429;187 | 11.83 ± 1.05 g,A,B | 8.66 ± 0.71 e,B | 12.95 ± 1.42 c,d,e,A | 11.22 ± 1.64 d,e,A,B |
Thymol | AOMT | 1391 | 135;150;91;115 | 1674.78 ± 112.88 a,A | 1640.55 ± 154.49 a,A | 1815.69 ± 200.28 a,A | 1611.06 ± 180.14 a,A |
Carvacrol | AOMT | 1396 | 135;150;91;115 | 128.45 ± 13.49 d,e,f,A | 124.47 ± 11.76 c,d,A | 136.06 ± 14.12 c,d,A | 127.65 ± 13.14 c,A |
γ-Himachalene | SQT | 1398 | 161;91;135;105 | 2.68 ± 0.19 g,B | 2.41 ± 0.12 e,B | 4.24 ± 0.51 d,e,A | 3.08 ± 0.28 e,B |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bleoancă, I.; Enachi, E.; Borda, D. Thyme Antimicrobial Effect in Edible Films with High Pressure Thermally Treated Whey Protein Concentrate. Foods 2020, 9, 855. https://doi.org/10.3390/foods9070855
Bleoancă I, Enachi E, Borda D. Thyme Antimicrobial Effect in Edible Films with High Pressure Thermally Treated Whey Protein Concentrate. Foods. 2020; 9(7):855. https://doi.org/10.3390/foods9070855
Chicago/Turabian StyleBleoancă, Iulia, Elena Enachi, and Daniela Borda. 2020. "Thyme Antimicrobial Effect in Edible Films with High Pressure Thermally Treated Whey Protein Concentrate" Foods 9, no. 7: 855. https://doi.org/10.3390/foods9070855
APA StyleBleoancă, I., Enachi, E., & Borda, D. (2020). Thyme Antimicrobial Effect in Edible Films with High Pressure Thermally Treated Whey Protein Concentrate. Foods, 9(7), 855. https://doi.org/10.3390/foods9070855