Green Processing, Germinating and Wet Milling Brown Rice (Oryza sativa) for Beverages: Physicochemical Effects
Abstract
:1. Introduction
2. Materials and Methods
2.1. Rice Source, Germination, Thermal Softening, Wet-Milling and Saccharification
2.2. RVA (Rapid Visco-Analyzer) Appraisals
2.3. Starch Determinations
2.4. Laser Scattering Particle Size Distribution
2.5. Viscometry
2.6. Phenolics by Folin–Ciocalteu Method and γ-Aminobutyric Acid (GABA) Analysis
2.7. Arsenic Evaluations
2.8. Statistical Analysis
3. Results
3.1. RVA Characterization of White, Brown and Germinated Rondo Rice and Commercial Samples
3.2. Starch Characteristics
3.3. Particle Size and Viscometry
3.4. γ-Aminobutyric Acid (GABA) and Phenolics
3.5. Arsenic Evaluations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pagand, J.; Heirbaut, P.; Pierre, A.; Pareyt, B. The Magic and Challenges of Sprouted Grains. Cereal Foods World 2017, 62, 221–226. [Google Scholar] [CrossRef]
- Champagne, E.T.; Wood, D.F.; Juliano, B.O.; Bechtel, D.B. The rice grain and its gross composition. In Rice: Chemistry and Technology, 3rd ed.; Champagne, E.T., Ed.; American Association of Cereal Chemists, Inc.: Saint Paul, MN, USA, 2004; pp. 77–107. ISBN 1-891127-34-9. [Google Scholar]
- Liu, R.H. Whole grain phytochemicals and health. J. Cereal Sci. 2007, 46, 207–219. [Google Scholar] [CrossRef]
- Qureshi, A.A.; Mo, H.; Packer, L.; Peterson, D.M. Isolation and identification of novel tocotrienols from rice bran with hypocholesterolemic, antioxidant, and antitumor properties. J. Agric. Food Chem. 2000, 48, 3130–3140. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Hua, N.; Godber, J.S. Antioxidant activity of tocopherols, tocotrienols, and γ-oryzanol components from rice bran against cholesterol oxidation accelerated by 2,2-Azobis(2-methylpropionamidine) dihydrochloride. J. Agric. Food Chem. 2001, 49, 2077–2081. [Google Scholar] [CrossRef]
- Okarter, N.; Liu, C.-S.; Sorrells, M.E.; Liu, R.H. Phytochemical content and antioxidant activity of six diverse varieties of whole wheat. Food Chem. 2010, 119, 249–257. [Google Scholar] [CrossRef]
- Wu, F.; Yang, N.; Toure, A.; Jin, Z.; Xu, X. Germinated Brown Rice and Its Role in Human Health. Crit. Rev. Food Sci. Nutr. 2013, 53, 451–463. [Google Scholar] [CrossRef]
- Cho, D.-H.; Lim, S.-T. Germinated brown rice and its bio-functional compounds. Food Chem. 2016, 196, 259–271. [Google Scholar] [CrossRef]
- Cáceres, P.J.; Martinez-Villaluenga, C.; Amigo, L.; Frias, J. Maximising the phytochemical content and antioxidant activity of Ecuadorian brown rice sprouts through optimal germination conditions. Food Chem. 2014, 152, 407–414. [Google Scholar] [CrossRef] [Green Version]
- Han, A.; Arijaje, E.O.; Jinn, J.-R.; Mauromoustakos, A.; Wang, Y.-J. Effects of Germination Duration on Milling, Physicochemical, and Textural Properties of Medium- and Long-Grain Rice. Cereal Chem. 2016, 93, 39–46. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.Y.; Hwang, I.G.; Kim, T.M.; Woo, K.S.; Park, D.-S.; Kim, J.H.; Kim, D.J.; Lee, J.; Lee, Y.R.; Jeong, H.S. Chemical and functional components in different parts of rough rice (Oryza sativa L.) before and after germination. Food Chem. 2012, 134, 288–293. [Google Scholar] [CrossRef]
- Shao, Y.; Bao, J. Polyphenols in whole rice grain: Genetic diversity and health benefits. Food Chem. 2015, 180, 86–97. [Google Scholar] [CrossRef]
- Tian, S.; Nakamura, K.; Kayahara, H. Analysis of Phenolic Compounds in White Rice, Brown Rice, and Germinated Brown Rice. J. Agric. Food Chem. 2004, 52, 4808–4813. [Google Scholar] [CrossRef]
- Zhang, Q.; Xiang, J.; Zhang, L.; Zhu, X.; Evers, J.; van der Werf, W.; Duan, L. Optimizing soaking and germination conditions to improve γ-aminobutyric acid content in japonica and indica germinated brown rice. J. Funct. Foods 2014, 10, 283–291. [Google Scholar] [CrossRef]
- Adom, K.K.; Liu, R.H. Antioxidant Activity of Grains. J. Agric. Food Chem. 2002, 50, 6182–6187. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Jiménez, J.; Saura-Calixto, F. Literature Data May Underestimate the Actual Antioxidant Capacity of Cereals. J. Agric. Food Chem. 2005, 53, 5036–5040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oh, S.H.; Oh, C.H. Brown rice extracts with enhanced levels of GABA stimulate immune cells. Food Sci. Biotechnol. 2003, 12, 248–252. [Google Scholar]
- Esa, N.M.; Abdul-Kadir, K.-K.; Amom, Z.; Azlan, A. Antioxidant activity of white rice, brown rice and germinated brown rice (in vivo and in vitro) and the effects on lipid peroxidation and liver enzymes in hyperlipidaemic rabbits. Food Chem. 2013, 141, 1306–1312. [Google Scholar] [CrossRef]
- Imam, M.U.; Azmi, N.H.; Bhanger, M.I.; Ismail, N.; Ismail, M. Antidiabetic Properties of Germinated Brown Rice: A Systematic Review. Evid. Based Complement. Altern. Med. 2012, 2012, 816501. [Google Scholar] [CrossRef]
- Ardiansyah, A.; Shirakawa, H.; Koseki, T.; Ohinata, K.; Hashizume, K.; Komai, M. Rice Bran Fractions Improve Blood Pressure, Lipid Profile, and Glucose Metabolism in Stroke-Prone Spontaneously Hypertensive Rats. J. Agric. Food Chem. 2006, 54, 1914–1920. [Google Scholar] [CrossRef]
- Jung, E.H.; Kim, S.R.; Hwang, I.K.; Ha, T.Y. Hypoglycemic Effects of a Phenolic Acid Fraction of Rice Bran and Ferulic Acid in C57BL/KsJ-db/db Mice. J. Agric. Food Chem. 2007, 55, 9800–9804. [Google Scholar] [CrossRef]
- Hudson, E.A.; Dinh, P.A.; Kokubun, T.; Simmonds, M.S.; Gescher, A. Characterization of potentially chemopreventive phenols in extracts of brown rice that inhibit the growth of human breast and colon cancer cells. Cancer Epidemiol. Biomark. Prev. 2000, 9, 1163–1170. [Google Scholar]
- USDA. Crop Production 2018 Summary (February 2019). United States Department of Agriculture. National Agricultural Statistics Service. 2019. Available online: https://www.nass.usda.gov/Publications/Todays_Reports/reports/cropan19.pdf (accessed on 4 May 2020).
- USDA. Dairy Products: Per Capita Consumption, United States (Annual). Table: Pcconsp_1_.xlsx. United States Department of Agriculture, Economic Research Service. Available online: http://www.ers.usda.gov/data-products/dairy-data.aspx (accessed on 19 March 2020).
- Sethi, S.; Tyagi, S.K.; Anurag, R.K. Plant-based milk alternatives an emerging segment of functional beverages: A review. J. Food Sci. Technol. 2016, 53, 3408–3423. [Google Scholar] [CrossRef]
- Global Dairy Alternatives Market, Consumption Volume (by Source, Region & Application) and 20 Company Profile—Forecast to 2024; ID: 4458877; Research and Markets: Dublin, Ireland, 2018; 172p, Available online: https://www.researchandmarkets.com/reports/4458877/global-dairy-alternatives-market-consumption#pos-1 (accessed on 25 July 2020).
- Grzebinski, T. The Surge of Plant-Based Foods [Public Webinar. FMI.org]. Information Resources Inc. IRI POS (Point-of-Sale), MURLOC (Multi Outlet Plus Convenience Stores), 52 Weeks Ending 10-06-19. 2019. Available online: https://www.fmi.org/events-education/webinars/webinar-recordings/view/webinar-recordings-public/2019/11/19/the-surge-of-plant-based-foods (accessed on 1 May 2020).
- Beaulieu, J.C.; Reed, S.S.; Obando-Ulloa, J.M.; McClung, A.M. Green processing protocol for germinating and wet milling brown rice for beverage formulations: Sprouting, milling and gelatinization effects. Food Sci. Nutr. 2020, 8, 2445–2457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitchell, C.R.; Mitchell, P.R.; Nissenbaum, R. Nutritional Rice Milk Production. U.S. Patent 4,744,992A, 17 May 1988. [Google Scholar]
- Mitchell, C.R.; Mitchell, P.R.; Nissenbaum, R. Nutritional rice milk product. U.S. Patent 4,894,242, 16 January 1990. [Google Scholar]
- Taylor, N. Consumers Are Going Nuts for Plant-Based Beverages. Winsight Grocery Business. 2018. Available online: https://www.winsightgrocerybusiness.com/center-store/consumers-are-going-nuts-plant-based-beverages (accessed on 2 November 2018).
- Patindol, J.A.; Guraya, H.S.; Champagne, E.T.; McClung, A.M. Nutritionally Important Starch Fractions of Rice Cultivars Grown in Southern United States. J. Food Sci. 2010, 75, H137–H144. [Google Scholar] [CrossRef] [PubMed]
- Bergman, C.J.; Bhattacharaya, K.R.; Ohtsubo, K. Rice end-use quality analysis. In Rice: Chemistry and Technology, 3rd ed.; Champagne, E.T., Ed.; American Association of Cereal Chemists, Inc.: Saint Paul, MN, USA, 2004; pp. 415–472. ISBN 1-891127-34-9. [Google Scholar]
- AACCI. Method 61-02.01. Determination of the Pasting Properties of Rice with the Rapid Visco Analyser, 11th ed.; AACC International Approved Methods of Analysis; AACCI, American Association of Cereal Chemists International: Saint Paul, MN, USA, 1999. [Google Scholar]
- Dang, J.M.C.; Bason, M.L. AACCI Approved Methods Technical Committee Report: Collaborative Study on a Method for Determining the Gelatinization Temperature of Milled Rice Flour Using the Rapid Visco Analyser. Cereal Foods World 2014, 59, 31–34. [Google Scholar] [CrossRef]
- Cole, M.R.; Eggleston, G.; Gilbert, A.; Chung, Y.J. Development of an analytical method to measure insoluble and soluble starch in sugarcane and sweet sorghum products. Food Chem. 2016, 190, 50–59. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Tsukatani, T.; Higuchi, T.; Matsumoto, K. Enzyme-based microtiter plate assay for γ-aminobutyric acid: Application to the screening of γ-aminobutyric acid-producing lactic acid bacteria. Anal. Chim. Acta 2005, 540, 293–297. [Google Scholar] [CrossRef]
- AOAC. AOAC Official Method 2013.06, Arsenic, Cadmium, Mercury, and Lead in Foods. Official Methods of Analysis of AOAC International, 20th ed.; Association of Official Analytical Chemists, AOAC International: Gaithersburg, MD, USA, 2013. [Google Scholar]
- Huang, J.-H.; Fecher, P.; Ilgen, G.; Hu, K.-N.; Yang, J. Speciation of arsenite and arsenate in rice grain – Verification of nitric acid based extraction method and mass sample survey. Food Chem. 2012, 130, 453–459. [Google Scholar] [CrossRef]
- Kubachka, K.M.; Shockey, N.V.; Hanley, T.A.; Conklin, S.D.; Heitkemper, D.T. FDA. Elemental Analysis Manual (EAM) for Food and Related Products. 4.11 Arsenic Speciation in Rice and Rice Products Using High Performance Liquid Chromatography-Inductively Coupled Plasma-Mass Spectrometric Determination; Version Draft 1.1 (November 2012); FDA. Department of Health & Human Services: College Park, MD, USA, 2012; pp. 1–23. [Google Scholar]
- Bao, J.-S. Accurate Measurement of Pasting Temperature by the Rapid Visco-Analyser: A Case Study Using Rice Flour. Rice Sci. 2008, 15, 69–72. [Google Scholar] [CrossRef]
- Patindol, J.; Guraya, H.; Champagne, E.; Chen, M.-H.; McClung, A. Relationship of cooked-rice nutritionally important starch fractions with other physicochemical properties. Starch Stärke 2010, 62, 246–256. [Google Scholar] [CrossRef] [Green Version]
- Crosbie, G.B.; Ross, A.S. The RVA Handbook; American Association of Cereal Chemists, International: Saint Paul, MN, USA, 2018. [Google Scholar]
- Fitzgerald, M.A.; Martin, M.; Ward, R.M.; Park, W.D.; Shead, H.J. Viscosity of Rice Flour: A Rheological and Biological Study. J. Agric. Food Chem. 2003, 51, 2295–2299. [Google Scholar] [CrossRef] [PubMed]
- Champagne, E.T.; Bett, K.L.; Vinyard, B.T.; McClung, A.M.; Barton, F.E., II; Moldenhauser, K.; Linscombe, S.; Mckenzie, S. Correlation between cooked rice texture and rapid visco analyzer measurements. Cereal Chem. 1999, 76, 764–771. [Google Scholar] [CrossRef]
- Carvalho, A.V.; Bassinello, P.Z.; Rios, A.D.O.; Ferreira, T.F.; Carvalho, R.N.; Koakuzu, S.N. Characterization of pre-gelatinized rice and bean flour. Food Sci. Technol. 2013, 33, 245–250. [Google Scholar] [CrossRef] [Green Version]
- Marshall, W.E. Effect of degree of milling of brown rice and particle size of milled rice on starch gelatinization. Cereal Chem. 1992, 69, 632–636. [Google Scholar]
- Beaulieu, J.C.; Hojilla-Evangelista, M.P.; Obando-Ulloa, J.M.; Boue, S.M. Green processing, germinating and wet milling brown rice (Oryza sativa) for beverages: Protein characteristics. Food Chem. 2020. resubmitted. [Google Scholar]
- Beaulieu, J.C.; Moreau, R.A.; Powell, M.J.; Obando-Ulloa, J.M. Green processing, germinating and wet milling brown rice (Oryza sativa) for beverages: Lipid characterization. Food Chem. 2020. to be submitted. [Google Scholar]
- Hu, Y.-T.; Ting, Y.; Hu, J.-Y.; Hsieh, S. Techniques and methods to study functional characteristics of emulsion systems. J. Food Drug Anal. 2017, 25, 16–26. [Google Scholar] [CrossRef] [PubMed]
- Shih, F.F.; Champagne, E.T.; Daigle, K.; Zarins, Z. Use of enzymes in the processing of protein products from rice bran and rice flour. Food/Nahrung 1999, 43, 14–18. [Google Scholar] [CrossRef]
- Shih, F.F.; Daigle, K.W. Preparation and characterization of rice protein isolates. J. Am. Oil Chem. Soc. 2000, 77, 885–889. [Google Scholar] [CrossRef]
- Sen, Y.; Tewu, Y.; Lijun, Z.H.; Shanbai, X. The variation of γ-aminobutyric acid content in germinated brown rice among different cultivars. Sci. Agric. Sin. 2008, 41, 3974–3982. [Google Scholar]
- Lin, Y.-T.; Pao, C.-C.; Wu, S.-T.; Chang, C.-Y. Effect of Different Germination Conditions on Antioxidative Properties and Bioactive Compounds of Germinated Brown Rice. BioMed Res. Int. 2015, 2015, 608761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Min, B.; McClung, A.M.; Chen, M.-H. Phytochemicals and Antioxidant Capacities in Rice Brans of Different Color. J. Food Sci. 2011, 76, C117–C126. [Google Scholar] [CrossRef]
- Ti, H.; Zhang, R.; Zhang, M.; Li, Q.; Wei, Z.; Zhang, Y.; Tang, X.; Deng, Y.; Liu, L.; Ma, Y. Dynamic changes in the free and bound phenolic compounds and antioxidant activity of brown rice at different germination stages. Food Chem. 2014, 161, 337–344. [Google Scholar] [CrossRef] [PubMed]
- Ng, L.T.; Huang, S.H.; Chen, Y.T.; Su, C.H. Changes of tocopherols, tocotrienols, γ-oryzanol, and γ-aminobutyric acid levels in the germinated brown rice of pigmented and nonpigmented cultivars. J. Agric. Food Chem. 2013, 61, 12604–12611. [Google Scholar] [CrossRef]
- Chung, S.I.; Ryu, S.N.; Kang, M.Y. Germinated Pigmented Rice (Oryza Sativa L. cv. Superhongmi) Improves Glucose and Bone Metabolisms in Ovariectomized Rats. Nutrients 2016, 8, 658. [Google Scholar] [CrossRef]
- Afify, A.E.-M.M.R.; El-Beltagi, H.S.; El-Salam, S.M.A.; Omran, A.A. Protein Solubility, Digestibility and Fractionation after Germination of Sorghum Varieties. PLoS ONE 2012, 7, e31154. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.G.; Gu, Z.X.; Wang, Z.J.; Fang, W.M.; Duan, Y. Nutrition compositions of brown rice and its change during germination. J. Nanjing Agric. Univ. 2003, 26, 84–87. [Google Scholar]
- Choi, I.; Suh, S.J.; Kim, J.H.; Kim, S.L. Effects of germination on fatty acid and free amino acid profiles of brown rice ‘Keunnun’. Food Sci. Biotechnol. 2009, 18, 799–802. [Google Scholar]
- Moongngarm, A.; Saetung, N. Comparison of chemical compositions and bioactive compounds of germinated rough rice and brown rice. Food Chem. 2010, 122, 782–788. [Google Scholar] [CrossRef]
- Shu, X.-L.; Frank, T.; Shu, Q.; Engel, K.-H. Metabolite Profiling of Germinating Rice Seeds. J. Agric. Food Chem. 2008, 56, 11612–11620. [Google Scholar] [CrossRef] [PubMed]
- Min, B.; McClung, A.; Chen, M. Effects of hydrothermal processes on antioxidants in brown, purple and red bran whole grain rice (Oryza sativa L.). Food Chem. 2014, 159, 106–115. [Google Scholar] [CrossRef] [PubMed]
- Beaulieu, J.C.; Stein-Chisholm, R.E.; Lloyd, S.; Bett-Garber, K.; Grimm, C.C.; Watson, M.A.; Lea, J.M. Volatile, anthocyanidin, quality and sensory changes in rabbiteye blueberry from whole fruit through pilot plant juice processing. J. Sci. Food Agric. 2017, 97, 469–478. [Google Scholar] [CrossRef] [PubMed]
- Horvath-Kerkai, E. Manufacturing Fruit Beverages. In Handbook of Fruits and Fruit Processing; Hui, Y.H., Barta, J., Cano, M.P., Gusek, T.W., Sidhu, J.S., Sinha, N.K., Eds.; Wiley-Blackwell: Ames, IA, USA, 2006. [Google Scholar]
- Karagas, M.R.; Punshon, T.; Sayarath, V.; Jackson, B.P.; Folt, C.L.; Cottingham, K.L. Association of Rice and Rice-Product Consumption with Arsenic Exposure Early in Life. JAMA Pediatr. 2016, 170, 609–616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lai, P.Y.; Cottingham, K.L.; Steinmaus, C.; Karagas, M.R.; Miller, M. Arsenic and Rice: Translating Research to Address Health Care Providers’ Needs. J. Pediatr. 2015, 167, 797–803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, G.-X.; Williams, P.N.; Carey, A.-M.; Zhu, Y.-G.; Deacon, C.; Raab, A.; Feldmann, J.; Islam, R.M.; Meharg, A.A. Inorganic Arsenic in Rice Bran and Its Products Are an Order of Magnitude Higher than in Bulk Grain. Environ. Sci. Technol. 2008, 42, 7542–7546. [Google Scholar] [CrossRef]
Peak Viscosity † | Trough | Break Down | Final Viscosity | Setback | Total Setback | Pasting Temp (°C) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
White rice (WR ‡) | ||||||||||||||
WR (Run-1) | 3788 | a § | 3549 | a | 240 | e | 7511 | a | 4088 | a | 4328 | a | 90.5 | a |
WR (Run-2) | 3245 | a,b | 2798 | b | 447 | d | 5226 | b,c | 1981 | c | 2428 | c | 87.6 | b |
WR, CRF-1 | 2810 | b | 1751 | c | 1059 | b | 4390 | c | 1580 | d | 2639 | c | 87.2 | b |
WR, CRF-3 | 3082 | b | 2395 | b | 687 | c | 5480 | b | 2398 | b | 3085 | b | 87.1 | b |
WR, CRF-2 (cooked) | 1758 | c | 504 | d | 1254 | a | 694 | d | n.d. | 190 | d | 72.5 | c | |
Brown rice (BRR) | ||||||||||||||
BRR (Run-1) | 2067 | a,b | 2046 | a,b | 21 | b | 4181 | a | 2114 | a | 2135 | a | 90.7 | b |
BRR (Run-2) | 2754 | a | 2337 | a | 417 | a | 4501 | a | 1747 | a,b | 2164 | a | 87.8 | c |
BRR preheated, 75 °C | 2093 | a,b | 1894 | a,b | 199 | a,b | 3171 | a | 1079 | b | 1277 | a | 93.8 | a |
BRR preheated, 85 °C | 2086 | b | 1724 | b | 362 | a | 3221 | a | 1135 | b | 1497 | a | 94.7 | a |
Polished or sprouted BRR | ||||||||||||||
BRR → WR (Run-1) | 3788 | a | 3549 | a | 240 | b | 7877 | a | 4088 | a | 4328 | a | 90.5 | b |
BRR (Run-1, control) | 2067 | b | 2046 | c | 21 | c | 4181 | b,c | 2114 | b | 2135 | b | 90.7 | a,b |
BRR (Run-3, control) | 1536 | b | 1543 | c | n.d. | 3703 | c | 2167 | b | 2159 | b | 92.3 | a | |
BRR → GBR (Run-3) | 305 | c | 135 | d | 169 | b,c | 352 | d | 48 | c | 217 | c | 92.2 | a,b |
Preheated or cooked | ||||||||||||||
BRR preheated, 75 °C | 2093 | a | 1894 | a | 199 | b | 3171 | a | 1079 | a | 1277 | a | 93.8 | a |
BRR preheated, 85 °C | 2086 | a | 1724 | a | 362 | b | 3221 | a | 1135 | a | 1497 | a | 94.7 | a |
WR, CRF-2 (cooked) | 1758 | a | 504 | b | 1254 | a | 694 | b | n.d. | 190 | b | 72.5 | b |
Rice Type | Treatment | Median Size † (D50, µm) | Mean Size (µm) | D10, Diameter on Cumulative 10 % (µm) | D90, Diameter on Cumulative 90 % (µm) | Viscosity (cP) | Shear Stress | Calculated Viscosity (cP) |
---|---|---|---|---|---|---|---|---|
GBR ‡ | PWM | 10.0 b,B,§ | 65.1 b,B | 5.7 b,B | 235.1 a,B | 14.2 a,B | 18.8 a,B | 1208.7 a,B |
PNZ | 78.4 a,Z | 120.7 a,Z | 10.6 a,Y | 296.8 a,Z | 2.9 b,Y | 3.2 b,Y | 243.2 b,Y | |
BRR | PWM | 75.2 a,A | 123.1 a,A | 8.3 b,A | 311.3 a,A | 16.4 a,A | 21.7 a,A | 1405.7 a,A |
PNZ | 45.4 b,X | 67.0 b,X | 11.1 a,Y | 159.2 b,X | 3.1 b,Y | 4.0 b,Y | 262.8 b,Y | |
WR | PWM | 84.6 a,A | 96.6 a,B | 7.8 b,B | 189.0 a,B | 16.1 b,A | 21.0 b,A | 1308.7 b,A |
PNZ | 66.7 b,Y | 86.5 a,Y | 13.7 a,Z | 191.2 a,Y | 19.4 a,Z | 25.9 a,Z | 1433.0 a,Z | |
BRR | CRB#1 | 65.6 a | 61.3 a | 2.5 b | 134.5 a | 1.9 b | 5.2 b | 166.0 b |
GBR | CRB#2, fort. ¶ | 47.4 a,b | 59.2 a | 5.6 a | 134.4 a | 4.6 a | 12.1 a | 392.5 a |
BRR | CRB#3,#4, fort. | 29.0 b | 53.0 a | 3.0 b | 130.3 a | 1.9 b | 5.0 b | 161.3 b |
CRF | White flours | 74.8 b | 88.1 b | 8.6 b | 192.5 b | --- | --- | --- |
Cooked flour | 244.7 a | 260.7 a | 29.0 a | 508.3 a | --- | --- | --- |
Horiba Particle Size, D90 Diameter on Cumulative % (µm) | Horiba Particle Size, Mean Size (µm) | Brookfield Viscometer, Calculated Centipoise (cP) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Rice type (Rt) | Rice type (Rt) | Rice type (Rt) | ||||||||||||
GBR † | 265.9 | a | GBR | 92.9 | GBR | 726.0 | b | |||||||
BRR | 235.3 | a | BRR | 95.0 | BRR | 834.2 | b | |||||||
WR | 190.1 | b | WR | 82.7 | WR | 1406.9 | a | |||||||
Treatment (T) | Treatment (T) | Treatment (T) | ||||||||||||
PWM | 245.2 | a | PWM | 90.7 | PWM | 1331.7 | a | |||||||
PNZ | 215.8 | b | PNZ | 87.7 | PNZ | 646.3 | b | |||||||
Interaction (Rt×T) | Interaction (Rt×T) | Interaction (Rt×T) | ||||||||||||
PWM | PNZ | PWM | PNZ | PWM | PNZ | |||||||||
GBR | 235.1 | b,c | 296.8 | a,b | GBR | 65.1 | b | 120.7 | a | GBR | 1208.7 | a | 243.2 | b |
BRR | 311.3 | a | 159.2 | d | BRR | 123.1 | a | 67.0 | b | BRR | 1405.7 | a | 262.8 | b |
WR | 189.0 | c,d | 191.2 | c,d | WR | 79.0 | b | 86.5 | c | WR | 1380.7 | a | 1433.0 | a |
Significance level ‡ | Significance level | Significance level | ||||||||||||
Rt | **** | Rt | NS | Rt | **** | |||||||||
T | * | T | NS | T | **** | |||||||||
Rt × T | **** | Rt × T | **** | Rt × T | **** |
Rice | Treatment | GABA (mg/g) | Phenolics (GAE, mg/g) |
---|---|---|---|
GBR † | BRR (control) | 0.41 | 7.44 |
GBR | 0.49 | 7.79 (8.33) ‡ | |
PWM | 0.39 | 7.94 (8.23) | |
PWM-L | 0.41 | 7.13 | |
Gelatinization | 0.35 | 6.51 | |
PNZ | 0.68 * § | d.r. ¶ | |
BRR | BRR (control) | 0.42 | 10.48 |
PWM | 0.28 * | 2.43 * | |
PNZ | 0.67 * | d.r. | |
WR | WR (control) | 0.23 | 2.97 |
PWM | 0.63 * | 0.02 * | |
PNZ | 0.59 * | d.r. |
Processing Step/Treatment | Total Arsenic (mg/kg) | Inorganic Arsenic (mg/kg) | Organic Arsenic (mg/kg) |
---|---|---|---|
GBR † | 0.237 * ‡ | 0.113 * | 0.140 * |
Controls | |||
BRR | 0.463 a | 0.199 b | 0.226 a |
WR | 0.413 a | 0.160 b | 0.217 a |
Rough | 0.507 a | 0.317 a | 0.193 a |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beaulieu, J.C.; Reed, S.S.; Obando-Ulloa, J.M.; Boue, S.M.; Cole, M.R. Green Processing, Germinating and Wet Milling Brown Rice (Oryza sativa) for Beverages: Physicochemical Effects. Foods 2020, 9, 1016. https://doi.org/10.3390/foods9081016
Beaulieu JC, Reed SS, Obando-Ulloa JM, Boue SM, Cole MR. Green Processing, Germinating and Wet Milling Brown Rice (Oryza sativa) for Beverages: Physicochemical Effects. Foods. 2020; 9(8):1016. https://doi.org/10.3390/foods9081016
Chicago/Turabian StyleBeaulieu, John C., Shawndrika S. Reed, Javier M. Obando-Ulloa, Stephen M. Boue, and Marsha R. Cole. 2020. "Green Processing, Germinating and Wet Milling Brown Rice (Oryza sativa) for Beverages: Physicochemical Effects" Foods 9, no. 8: 1016. https://doi.org/10.3390/foods9081016
APA StyleBeaulieu, J. C., Reed, S. S., Obando-Ulloa, J. M., Boue, S. M., & Cole, M. R. (2020). Green Processing, Germinating and Wet Milling Brown Rice (Oryza sativa) for Beverages: Physicochemical Effects. Foods, 9(8), 1016. https://doi.org/10.3390/foods9081016