In Silico and In Vitro Analysis of Multifunctionality of Animal Food-Derived Peptides
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Peptide Screening by In Silico Analysis
2.3. Angiotensin Converting Enzyme (ACE)-Inhibitory Activity
2.4. In Vitro Antioxidant Activity
2.4.1. Oxygen Radical Absorbance Capacity (ORAC)-FL Assay
2.4.2. ABTS Assay
2.5. Cell Culture
2.6. Cell Treatment Conditions
2.6.1. Cell Viability
2.6.2. Determination of Intracellular Reactive Oxygen Species (ROS)
2.7. Statistical Analyses
3. Results and Discussion
3.1. In Silico Analysis of Synthetic Peptides
3.2. In Vitro ACE Inhibitory and Antioxidant Activities of Synthetic Peptides
3.3. Antioxidant Activity of Synthetic Peptides in Cell Models
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Olivieri, C. The current state of heart disease: Statins, cholesterol, fat and sugar. Int. J. Evid. Based Healthc. 2019, 17, 1. [Google Scholar] [CrossRef]
- Ghaedi, E.; Mohammadi, M.; Mohammadi, H.; Ramezani-Jolfaie, N.; Malekzadeh, J.; Hosseinzadeh, M.; Salehi-Abargouei, A. Effects of a paleolithic diet on cardiovascular disease risk factors: A systematic review and meta-analysis of randomized controlled trials. Adv. Nutr. 2019, 10, 634–646. [Google Scholar] [CrossRef] [PubMed]
- Agyei, D.; Potumarthi, R.; Danquah, M.K. Food-derived multifunctional bioactive proteins and peptides: Applications and recent advances. In Biotechnology of Bioactive Compounds: Sources and Applications; Gupta, V.K., Tuohy, M.G., Lohani, M., O’Donovan, A., Eds.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2015; Chapter 20. [Google Scholar]
- Agyei, D.; Potumarthi, R.; Danquah, M.K. Food-derived multifunctional bioactive proteins and peptides: Sources and production. In Biotechnology of Bioactive compounds: Sources and Applications; Gupta, V.K., Tuohy, M.G., Lohani, M., O’Donovan, A., Eds.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2015; Chapter 19. [Google Scholar]
- Daliri, E.B.M.; Lee, B.H.; Park, M.H.; Kim, J.-H.; Oh, D.-H. Novel angiotensin I-converting enzyme inhibitory peptides from soybean protein isolates fermented by Pediococcus pentosaceus SDL1409. LWT Food Sci. Technol. 2018, 93, 88–93. [Google Scholar] [CrossRef]
- Aguilar-Toalá, J.E.; Santiago-López, L.; Peres, C.M.; Peres, C.; Garcia, H.S.; Vallejo-Cordoba, B.; Hernández-Mendoza, A. Assessment of multifunctional activity of bioactive peptides derived from fermented milk by specific Lactobacillus plantarum strains. J. Dairy Sci. 2017, 100, 65–75. [Google Scholar] [CrossRef]
- Nongonierma, A.B.; Fitzgerald, R.J. The scientific evidence for the role of milk protein-derived bioactive peptides in humans: A Review. J. Funct. Foods 2015, 17, 640–656. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Wang, X.M.; Hao, Y.; Teng, D.; Wang, J.H. Research and development on lactoferrin and its derivatives in China from 2011–2015. Biochem. Cell Biol. 2017, 95, 162–170. [Google Scholar] [CrossRef] [PubMed]
- de Almeida, A.J.P.O.; Rezende, M.S.A.; Dantas, S.H.; Silva, S.L.; de Oliveira, J.C.P.L.; de Azevedo, F.L.A.A.; Alves, R.M.F.R.; de Menezes, G.M.S.; dos Santos, P.F.; Gonçalves, T.A.F.; et al. Unveiling the role of inflammation and oxidative stress on age-related cardiovascular diseases. Oxid. Med. Cell. Longev. 2020, 2020, 1954398. [Google Scholar] [CrossRef] [PubMed]
- Garcia, B.D.; de Barros, M.; Rocha, T.D. Bioactive peptides from beans with the potential to decrease the risk of developing noncommunicable chronic diseases. Crit. Rev. Food Sci. Nutr. 2020. [Google Scholar] [CrossRef]
- Hernández-Ledesma, B.; Hsieh, C.-C.; de Lumen, B.O. Antioxidant and anti-inflammatory properties of cancer preventive peptide lunasin in RAW264.7 macrophages. Biochem. Biophys. Res. Commun. 2009, 390, 803–808. [Google Scholar] [CrossRef]
- Rajendran, P.; Chen, Y.F.; Chen, Y.F.; Chung, L.C.; Tamilselvi, S.; Shen, C.Y.; Huang, C.Y. The multifaceted link between inflammation and human diseases. J. Cell. Phys. 2018, 233, 6458–6471. [Google Scholar] [CrossRef]
- Singharaj, B.; Pisarski, K.; Martirosyan, D.M. Managing hypertension: Relevant biomarkers and combating bioactive compounds. Funct. Foods Health Dis. 2017, 7, 442–461. [Google Scholar] [CrossRef] [Green Version]
- Capriotti, A.L.; Cavaliere, C.; Piovesana, S.; Sampery, R.; Laganá, A. Recent trends in the analysis of bioactive peptides in milk and dairy products. Anal. Bioanal. Chem. 2016, 408, 2677–2685. [Google Scholar] [CrossRef]
- Fitzgerald, R.J.; Cermeño, M.; Khalesi, M.; Kleekayai, T.; Amigo-Benavent, M. Application of in silico approaches for the generation of milk protein-derived bioactive peptides. J. Funct. Foods 2020, 64, 103636. [Google Scholar] [CrossRef]
- Søren Drud, N.; Beverly, R.L.; Qu, Y.; Dallas, D.C. Milk bioactive peptide database: A comprehensive database of milk protein-derived bioactive peptides and novel visualization. Food Chem. 2017, 232, 673–682. [Google Scholar]
- Minkiewicz, P.; Iwaniak, A.; Darewicz, M. BIOPEP-UWM Database of bioactive peptides: Current opportunities. Int. J. Mol. Sci. 2019, 20, 5978. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sentandreu, M.A.; Toldrá, F. A rapid, simple and sensitive fluorescence method for the assay of angiotensin-I converting enzyme. Food Chem. 2006, 97, 546–554. [Google Scholar] [CrossRef]
- Quirós, A.; Contreras, M.M.; Ramos, M.; Amigo, L.; Recio, I. Stability to gastrointestinal enzymes and structure–activity relationship of β-casein-peptides with antihypertensive properties. Peptides 2009, 30, 1848–1853. [Google Scholar] [CrossRef]
- Hernández-Ledesma, B.; Dávalos, A.; Bartolomé, B.; Amigo, L. Preparation of antioxidant enzymatic hydrolyzates from α-lactalbumin and β-lactoglobulin. Identification of active peptides by HPLC-MS/MS. J. Agric. Food Chem. 2005, 53, 588–593. [Google Scholar] [CrossRef]
- Hernandez-Ledesma, B.; Miralles, B.; Amigo, L.; Ramos, M.; Recio, I. Identification of antioxidant and ACE-inhibitory peptides in fermented milk. J. Sci. Food Agric. 2005, 85, 1041–1048. [Google Scholar] [CrossRef]
- García-Nebot, M.J.; Recio, I.; Hernández-Ledesma, B. Antioxidant activity and protective effects of peptide lunasin against oxidative stress in intestinal Caco-2 cells. Food Chem. Toxicol. 2014, 65, 155–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsufuji, H.; Matsui, T.; Seki, E.; Osajima, K.; Nakashima, M.; Osajima, Y. Angiotensin I-converting enzyme inhibitory peptides in an alkaline proteinase hydrolysate derived from sardine muscle. Biosci. Biotech. Biochem. 1994, 58, 2244–2245. [Google Scholar] [CrossRef] [PubMed]
- Contreras, M.M.; Sánchez-Infantes, D.; Sevilla, M.A.; Recio, I.; Amigo, L. Resistance of casein-derived bioactive peptides to simulated gastrointestinal digestión. Int. Dairy J. 2013, 32, 71–78. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Wei, Y.N.; Chang, Q.; Sun, H.J.; Chai, K.G.; Huang, Z.Q.; Zhao, Z.X.; Zhao, Z.X. Ultrafast screening of a novel, moderately hydrophilic Angiotensin-converting-enzyme-inhibitory peptide, RYL, from silkworm pupa using an fe-doped-silkworm-excrement-derived biocarbon: Waste conversion by waste. J. Agric. Food Chem. 2017, 65, 11202–11211. [Google Scholar] [CrossRef] [PubMed]
- Contreras, M.M.; Carrón, R.; Montero, M.J.; Ramos, M.; Recio, I. Novel casein-derived peptides with antihypertensive activity. Int. Dairy J. 2009, 19, 566–573. [Google Scholar] [CrossRef]
- Suetsuna, K.; Ukeda, H.; Ochi, H. Isolation and characterization of free radical scavenging activities peptides derived from casein. J. Nutr. Biochem. 2000, 11, 128–131. [Google Scholar] [CrossRef]
- Kohmura, M.; Nio, N.; Kubo, K.; Minoshima, Y.; Munekata, E.; Ariyoshi, Y. Inhibition of angiotensin-converting enzyme by synthetic peptides of human beta-casein. Agric. Biol. Chem. 1989, 53, 2107–2114. [Google Scholar] [CrossRef]
- Chiba, H.; Yoshikawa, M. Biologically functional peptides from food proteins: New opioid peptides from milk proteins. In Protein Tailoring for Food and Medical Purposes; Feeney, R.E., Whitaker, J.R., Eds.; Marcel Dekker: New York, NY, USA, 1986. [Google Scholar]
- Mullally, M.M.; Meisel, H.; FitzGerald, R.J. Synthetic peptides corresponding to alpha-lactalbumin and beta-lactoglobulin sequences with angiotensin-I-converting enzyme inhibitory activity. Biol. Chem. Hoppe-Seyler 1996, 377, 259–261. [Google Scholar]
- Martínez-Maqueda, D.; Miralles, B.; Pascual-Teresa, S.; Reverón, I.; Muñoz, R.; Recio, I. Food-derived peptides stimulate mucin secretion and gene expression in intestinal cells. J. Agric. Food Chem. 2012, 60, 8600–8605. [Google Scholar] [CrossRef] [Green Version]
- Loukas, S.; Varoucha, D.; Zioudrou, C.; Streaty, R.A.; Werner, A.; Klee, W.A. Opioid activities and structures of alpha-casein-derived exorphins. Biochemistry 1983, 22, 4567–4573. [Google Scholar] [CrossRef]
- Hatzoglou, A.; Bakogeorgou, E.; Hatzoglou, C.; Martin, P.-M.; Castanas, E. Antiproliferative and receptor binding properties of α- and β-casomorphins in the T47D human breast cancer cell line. Eur. J. Pharmacol. 1996, 310, 217–223. [Google Scholar] [CrossRef]
- Xu, R.J. Bioactive peptides in milk and their biological and health implications. Food Rev. Int. 1998, 14, 1–16. [Google Scholar] [CrossRef]
- Yamamoto, N.; Akino, A.; Takano, T. Antihypertensive effects of peptides derived from casein by an extracellular proteinase from Lactobacillus helveticus CP790. J. Dairy Sci. 1994, 77, 917–922. [Google Scholar] [CrossRef]
- Martínez-Maqueda, D.; Miralles, B.; Cruz-Huerta, E.; Recio, I. Casein hydrolysate and derived peptides stimulate mucin secretion and gene expression in human intestinal cells. Int. Dairy J. 2013, 32, 13–19. [Google Scholar] [CrossRef]
- Fernández-Tomé, S.; Martínez-Maqueda, D.; Girón, R.; Goicochea, C.; Miralles, B.; Recio, I. Novel peptides derived from αs1-casein with opioid activity and mucin stimulatory effect on HT29-MTX cells. J. Funct. Foods 2016, 25, 466–476. [Google Scholar] [CrossRef] [Green Version]
- Hernández-Ledesma, B.; Amigo, L.; Ramos, M.; Recio, I. Release of angiotensin converting enzyme-inhibitory peptides by simulated gastrointestinal digestion of infant formulas. Int. Dairy J. 2004, 14, 889–898. [Google Scholar] [CrossRef]
- Dubynin, V.A.; Asmakova, L.S.; Sokhanenkova, N.Y.; Bespalova, Z.D.; Nezavibat’ko, V.N.; Kamenskii, A.A. Comparative analysis of neurotropic activity of exorphines, derivatives of dietary proteins. Bull. Exp. Biol. Med. 1998, 125, 131–134. [Google Scholar] [CrossRef]
- Haq, M.R.U.; Kapila, R.; Saliganti, R. Consumption of beta-casomorphins-7/5 induce inflammatory immune response in mice gut through Th-2 pathway. J. Funct. Foods 2014, 8, 150–160. [Google Scholar] [CrossRef]
- Kayser, H.; Meisel, H. Stimulation of human peripheral blood lymphocytes by bioactive peptides derived from bovine milk proteins. FEBS Lett. 1996, 383, 18–20. [Google Scholar] [CrossRef] [Green Version]
- Brantl, V.; Teschemacher, H.; Bläsig, J.; Henschen, A.; Lottspeich, F. Opioid activities of β-casomorphins. Life Sci. 1981, 28, 1903–1909. [Google Scholar] [CrossRef]
- Trompette, A.; Claustre, J.; Caillon, F.; Jourdan, G.; Chayvialle, J.A.; Plaisancie, P. Milk bioactive peptides and β-casomorphins induce mucus release in rat jejunum. J. Nutr. 2003, 133, 3499–3503. [Google Scholar] [CrossRef]
- Zoghbi, S.; Trompette, A.; Claustre, J.; Homsi, M.E.; Garzón, J.; Jourdan, G.; Scoazec, J.-I.; Plaisancie, P. β-Casomorphin-7 regulates the secretion and expression of gastrointestinal mucins through a μ-opioid pathway. Am. J. Physiol. Gastrointest. Liver Physiol. 2006, 290, G1105–G1113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Claustre, J.; Toumi, F.; Trompette, A.; Jourdan, G.; Guignard, H.; Chayvialle, J.A.; Plaisancie, P. Effects of peptides derived from dietary proteins on mucus secretion in rat jejunum. Am. J. Physiol. Gastrointest. Liver Physiol. 2002, 283, G521–G528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, H.; Miao, J.; Ma, C.; Sun, G.; Zhang, Y. β-Casomorphin-7 cause decreasing in oxidative stress and inhibiting NF-κB-iNOS-NO signal pathway in pancreas of diabetes rats. J. Food Sci. 2012, 77, C278–C282. [Google Scholar] [CrossRef] [PubMed]
- Osborne, S.; Chen, W.; Addepalli, R.; Colgrave, M.; Singh, T.; Tranc, C.; Day, L. In vitro transport and satiety of a beta-lactoglobulin dipeptide and beta-casomorphin-7 and its metabolites. Food Funct. 2014, 5, 2706–2718. [Google Scholar] [CrossRef] [Green Version]
- Saito, T.; Nakamura, T.; Kitazawa, H.; Kawai, Y.; Itoh, T. Isolation and structural analysis of antihypertensive peptides that exist naturally in Gouda cheese. J. Dairy Sci. 2000, 83, 1434–1440. [Google Scholar] [CrossRef]
- Uenishi, H.; Kabuki, T.; Seto, Y.; Serizawa, A.; Nakajima, H. Isolation and identification of casein-derived dipeptidyl-peptidase 4 (DPP-4)-inhibitory peptide LPQNIPPL from gouda-type cheese and its effect on plasma glucose in rats. Int. Dairy J. 2012, 22, 24–30. [Google Scholar] [CrossRef]
- Martínez-Maqueda, D.; Miralles, B.; Ramos, M.; Recio, I. Effect of β-lactoglobulin hydrolysate and β-lactorphin on intestinal mucin secretion and gene expression in human goblet cells. Food Res. Int. 2013, 54, 1287–1291. [Google Scholar] [CrossRef]
- Nongonierma, A.B.; FitzGerald, R.J. Structure activity relationship modelling of milk protein-derived peptides with dipeptidyl peptidase IV (DPP-IV) inhibitory activity activity. Peptides 2016, 79, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Jinsmaa, Y.; Yoshikawa, M. Enzymatic release of neocasomorphin and β-casomorphin from bovine β-casein. Peptides 1999, 20, 957–962. [Google Scholar] [CrossRef]
- Plaisancié, P.; Boutrou, R.; Estienne, M.; Henry, G.; Jardin, J.; Paquet, A.; Léonil, J. β-casein (94-123)-derived peptides differently modulate production of mucins in intestinal goblet cells. J. Dairy Res. 2015, 82, 36–46. [Google Scholar] [CrossRef]
- Tian, M.; Fang, B.; Jiang, L.; Guo, H.; Cui, J.Y.; Ren, F. Structure-activity relationship of a series of antioxidant tripeptides derived from β-lactoglobulin using QSAR modeling. Dairy Sci. Technol. 2015, 95, 451–463. [Google Scholar] [CrossRef]
- Pihlanto-Leppala, A. Bioactive peptides derived from bovine whey proteins: Opioid and ace-inhibitory peptides. Trends Food Sci. Technol. 2000, 11, 347–356. [Google Scholar] [CrossRef]
- Jacquot, A.; Gauthier, S.F.; Drouin, R.; Boutin, Y. Proliferative effects of synthetic peptides from β-lactoglobulin and α-lactalbumin on murine splenocytes. Int. Dairy J. 2010, 20, 514–521. [Google Scholar] [CrossRef]
- Hernández-Ledesma, B.; Recio, I.; Ramos, M.; Amigo, L. Preparation of ovine and caprine beta-lactoglobulin hydrolysates with ACE-inhibitory activity Identification of active peptides from caprine beta-lactoglobulin hydrolysed with thermolysin. Int. Dairy J. 2002, 12, 805–812. [Google Scholar] [CrossRef]
- Brantl, V.; Gramsch, C.; Lottspeich, F.; Mertz, R.; Jaeger, K.-H.; Herz, A. Novel opioid peptides derived from hemoglobin: Hemorphins. Eur. J. Pharmacol. 1986, 125, 309–310. [Google Scholar] [CrossRef]
- Nakamura, Y.; Yamamoto, N.; Sakai, K.; Okubo, A.; Yamazaki, S.; Takano, T. Purification and characterization of Angiotensin I-converting enzyme inhibitors from sour milk. J. Dairy Sci. 1995, 78, 777–783. [Google Scholar] [CrossRef]
- Cheung, H.-S.; Wang, F.-L.; Ondetti, M.A.; Sabo, E.F.; Cushman, D.W. Binding of peptide substrates and inhibitors of angiotensin-converting enzyme. Importance of the COOH-terminal dipeptide sequence. J. Biol. Chem. 1980, 255, 401–407. [Google Scholar]
- Samaranayaka, A.G.P.; Li-Chan, E.C.Y. Food-derived peptidic antioxidant: A review of their production, assessment, and potential applications. J. Funct. Foods 2011, 3, 229–254. [Google Scholar] [CrossRef]
- Circu, M.L.; Aw, T.Y. Reactive oxygen species, cellular redox systems, and apoptosis. Free Rad. Biol. Med. 2010, 48, 749–762. [Google Scholar] [CrossRef] [Green Version]
- Manna, C.; Migliardi, V.; Sannino, F.; De Martino, A.; Capasso, R. Protective effects of synthetic hydroxytyrosol acetyl derivatives against oxidative stress in human cells. J. Agric. Food Chem. 2005, 53, 9602–9607. [Google Scholar] [CrossRef]
- Kim, H.J.; Lee, E.K.; Parke, M.H.; Ha, Y.M.; Juang, K.J.; Kim, M.-S.; Kim, M.K.; Yu, B.P.; Chung, H.Y. Ferulate protects the epithelial barrier by maintaining tight junction protein expression and preventing apoptosis in tert-butyl hydroperoxide-induced Caco-2 cells. Phytother. Res. 2013, 27, 362–367. [Google Scholar] [CrossRef] [PubMed]
- Bautista-Expósito, S.; Peñas, E.; Frias, J.; Martínez-Villaluenga, C. Pilot-scale produced fermented lentil protects against t-BHP-triggered oxidative stress by activation of Nrf2 dependent on SAPK/JNK phosphorylation. Food Chem. 2019, 274, 750–759. [Google Scholar] [CrossRef] [PubMed]
- Indiano-Romacho, P.; Fernández-Tomé, S.; Amigo, L.; Hernández-Ledesma, B. Multifunctionality of lunasin and peptides released during its simulated gastrointestinal digestion. Food Res. Int. 2019, 125, 108513. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Joseph, J.A. Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Rad. Biol. Med. 1999, 27, 612–616. [Google Scholar] [CrossRef]
- LeBel, C.P.; Ishiropoulos, H.; Bondy, S.C. Evaluation of the probe 2’,7’-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem. Res. Toxicol. 1992, 5, 227–231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Source Protein | Sequence | Fragment | Molecular Mass (Da) | Purity (%) |
---|---|---|---|---|
αS1-casein | RY | f(90–91) | 337.39 | 99.1 |
RYL | f(90–92) | 450.57 | 99.6 | |
RYLG | f(90–93) | 507.64 | 99.4 | |
RYLGY | f(90–94) | 670.83 | 88.0 | |
RYLGYLE | f(90–96) | 913.14 | 73.4 | |
YLG | f(91–93) | 351.44 | 92.0 | |
YLGY | f(91–94) | 514.63 | 97.8 | |
YLGYLE | f(91–96) | 756.94 | 98.9 | |
LGY | f(92–94) | 351.44 | 98.9 | |
αS1-casein | AYFYPE | f(143–148) | 788.92 | 99.2 |
YFYPEL | f(144–149) | 831.01 | 100.0 | |
FYPEL | f(145–149) | 667.82 | 99.0 | |
β-casein A2 | YPFPGPI | f(60–66) | 790.02 | 96.0 |
YPFPGPIP | f(60–67) | 887.15 | 92.9 | |
YPFPGPIN | f(60–68) | 904.14 | 94.0 | |
β-casein | YPFVE | f(51–55) | 653.79 | 95.0 |
YPFVEP | f(51–56) | 750.92 | 100.0 | |
YGFL | f(59–62) | 498.63 | 98.5 | |
YGFLP | f(59–63) | 595.76 | 100.0 | |
YPVEPF | f(114–119) | 750.92 | 92.3 | |
α-La | YGLF | f(50–53) | 498.63 | 97.6 |
β-Lg | YLL | f(102–104) | 407.55 | 100.0 |
YLLF | f(102–105) | 554.74 | 100.0 | |
LLF | f(103–105) | 391.55 | 96.5 | |
β-Hg | YPW | f(34–36) | 464.55 | 84.5 |
YPWT | f(34–37) | 565.67 | 91.7 | |
PWT | f(35–37) | 402.48 | 86.3 |
Peptide | Hydrophobicity | Hydrophilicity | Charge | pI 1 | Toxicity Prediction | Activity Prediction |
---|---|---|---|---|---|---|
RY | −0.87 | 0.35 | 1.00 | 9.10 | Non toxin | 0.5437 |
RYL | −0.40 | −0.37 | 1.00 | 9.10 | Non toxin | 0.5627 |
RYLG | −0.26 | −0.27 | 1.00 | 9.10 | Non toxin | 0.5215 |
RYLGY | −0.21 | −0.68 | 1.00 | 8.93 | Non toxin | 0.4505 |
RYLGYLE | −0.16 | −0.31 | 0.00 | 6.35 | Non toxin | 0.2453 |
YLG | 0.24 | −1.37 | 0.00 | 5.88 | Non toxin | 0.6404 |
YLGY | 0.18 | −1.60 | 0.00 | 5.87 | Non toxin | 0.6138 |
YLGYLE | 0.11 | −0.87 | −1.00 | 4.00 | Non toxin | 0.3219 |
LGY | 0.24 | −1.37 | 0.00 | 5.88 | Non toxin | 0.5959 |
AYFYPE | 0.04 | −0.77 | −1.00 | 4.00 | Non toxin | 0.7126 |
YFYPEL | 0.08 | −0.98 | −1.00 | 4.00 | Non toxin | 0.7603 |
FYPEL | 0.09 | −0.72 | −1.00 | 4.00 | Non toxin | 0.7939 |
YPFPGPI | 0.19 | −0.94 | 0.00 | 5.88 | Non toxin | 0.9175 |
YPFPGPIP | 0.15 | −0.82 | 0.00 | 5.88 | Non toxin | 0.8990 |
YPFPGPIPN | 0.08 | −0.80 | 0.00 | 5.88 | Non toxin | 0.8061 |
YPFVE | 0.10 | −0.66 | −1.00 | 4.00 | Non toxin | 0.4339 |
YPFVEP | 0.07 | −0.55 | −1.00 | 4.00 | Non toxin | 0.5114 |
YGFL | 0.33 | −1.65 | 0.00 | 5.88 | Non toxin | 0.9558 |
YGFLP | 0.25 | −1.32 | 0.00 | 5.88 | Non toxin | 0.9432 |
YPVEPF | 0.07 | −0.55 | −1.00 | 4.00 | Non toxin | 0.6345 |
YGLF | 0.33 | −1.65 | 0.00 | 5.88 | Non toxin | 0.9537 |
YLL | 0.36 | −1.97 | 0.00 | 5.88 | Non toxin | 0.6000 |
YLLF | 0.42 | −2.10 | 0.00 | 5.88 | Non toxin | 0.9038 |
LLF | 0.56 | −2.03 | 0.00 | 5.88 | Non toxin | 0.9389 |
YPW | 0.11 | −1.90 | 0.00 | 5.88 | Non toxin | 0.9751 |
YPWT | 0.04 | −1.52 | 0.00 | 5.88 | Non toxin | 0.8795 |
PWT | 0.04 | −1.27 | 0.00 | 5.88 | Non toxin | 0.8928 |
Sequence | Biological Activity | Results | Reference |
---|---|---|---|
RY | ACE inhibitory | IC50 a = 51.00 µM */54.43 µM ** | [23] */[24] ** |
Antioxidant | ORAC = 1.94 µmol TE/µmol peptide ** | [24] ** | |
RYL | ACE inhibitory | IC50 a = 3.31 µM */106.64 µM ** | [25] */[26] ** |
Antioxidant | ORAC = 1.75 µmol TE/µmol peptide ** | [24] ** | |
RYLG | ACE inhibitory | IC50 a = 224.69 µM ** | [24] ** |
Antioxidant | ORAC = 1.67 µmol TE/µmol peptide ** | [24] ** | |
RYLGY | ACE inhibitory | IC50 a = 0.71 µM *,** | [26] *,** |
Antioxidant | ORAC = 2.83 µmol TE/µmol peptide ** | [24] ** | |
Opioid | Stimulation of mucin secretion ** | [31] ** | |
RYLGYLE | Opioid | IC50 b = 1.2 µM * | [32] * |
Anticancer | Decrease of breast cancer cell proliferation ** | [33] ** | |
YLG | Antioxidant | ORAC = 1.38 µmol TE/µmol peptide ** | [24] ** |
YLGY | ACE inhibitory | IC50 a = 41.86 µM *,** | [24] *,** |
Antioxidant | ORAC = 1.46 µmol TE/µmol peptide ** | [26] ** | |
YLGYLE | Opioid | IC50 b = 45.00 µM * | [32] * |
Stimulation of mucin secretion ** | [31] ** | ||
LGY | Immunostimulating | n.d. | [34] * |
ACE inhibitory | IC50 a = 21.46 µM ** | [24] ** | |
Antioxidant | ORAC = 2.31 µmol TE/µmol peptide ** | [24] ** | |
AYFYPE | ACE inhibitory | IC50 a = 106.00 µM *,**/260.82 µM ** | [35] *,**/[24] ** |
YFYPEL | Antioxidant | DPPH value = 79.20 µM ** | [27] ** |
Opioid | Increase MUC5AC expression | [36,37] ** | |
FYPEL | ACE inhibitory | IC50 a = 80.60 µM ** | [24] ** |
Antioxidant | ORAC = 1.77 µmol TE/µmol peptide **/DPPH = 127.50 µM ** | [24] **/[27] ** | |
YPFPGPI | ACE inhibitory | IC50 a = 500.00 µM ** | [38] ** |
Anticancer | Decrease of breast cancer cell proliferation ** | [33] ** | |
Anxiolytic | Induction of inflammatory immune response in gut ** | [39] ** | |
Immunomodulatory | Inhibition/stimulation of lymphocyte proliferation at low/high concentrations ** | [40] ** | |
Opioid | Stimulation of lymphocyte proliferation d = −21/+26 ** | [41] ** | |
IC50 c = 14 µM ** | [42] ** | ||
Increase of jejunal mucus secretion and mucus discharge ** | [43] ** | ||
Increase of MUC2 and MUC3 expression in DHE cells ** | |||
Increase of MUC5A expression in HT29-MTX cells ** | [44] ** | ||
Stimulation of mucin secretion ** | [36,45] ** | ||
Antidiabetic | Reduction of pancreas MDA level in diabetic rats ** | [46] ** | |
Satiating | Induction of CCK-8 ** | [47] ** | |
YPFPGPIP | n.d. | n.d | n.d |
YPFPGPIPN | ACE inhibitory | IC50 a = 14.80 µM ** | [48] ** |
Antidiabetic | IC50 e = 6.70 µM ** | [49] ** | |
YPFVE | Opioid | Stimulation of mucin secretion ** | [50] ** |
YPFVEP | n.d. | n.d | n.d |
YGFL | n.d. | n.d | n.d |
YGFLP | ACE inhibitory | IC50 a = 260.00 µM * | [28] * |
Opioid agonist | n.d. | n.d. | |
YPVEPF | Antidiabetic | IC50 e = 124.70 µM * | [51] * |
Opioid | IC50 c = 59.00 µM ** | [52] ** | |
Increase of MUC4 expression ** | [53] ** | ||
YGLF | ACE inhibitory | IC50 a = 733.30 µM * | [30] * |
Opioid agonist | IC50 c = 300.00 µM ** | [29] ** | |
YLL | Antioxidant | FRAP = 81.76 mmol Fe/mol peptide ** | [54] ** |
YLLF | ACE inhibitory | IC50 a = 171.80 µM * | [30] * |
Opioid agonist | IC50 c = 160.00 µM * | [29] * | |
Stimulation of mucin secretion ** | [36,50,55] ** | ||
Cytotoxic | Stimulation of murine splenocytes ** | [56] ** | |
LLF | ACE inhibitory | IC50 a = 79.80 µM * | [57] * |
YPW | n.d. | n.d. | n.d. |
YPWT | Opioid | IC50 c = 45.20 µM * | [58] * |
PWT | Antioxidant | Inhibition of linoleic acid peroxidation * | [48] * |
Sequence | ACE 1 Inhibitory Activity (IC50-µM) | Antioxidant Activity (µmol TE2/µmol Peptide) | |
---|---|---|---|
ORAC | TEAC | ||
RY | * | 1.83 ± 0.13 | 1.38 ± 0.03 |
RYL | * | 1.72 ± 0.14 | 1.90 ± 0.03 |
RYLG | * | 1.70 ± 0.11 | 2.91 ± 0.21 |
RYLGY | 3.08 ± 0.11 | 2.97 ± 0.09 | 1.38 ± 0.14 |
RYLGYLE | * | 2.88 ± 0.07 | 3.10 ± 0.01 |
YLG | * | 0.93 ± 0.08 | 1.40 ± 0.04 |
YLGY | 9.87 ± 0.31 | 2.96 ± 0.20 | 2.14 ± 0.11 |
YLGYLE | 85.76 ± 4.66 | 2.28 ± 0.22 | 5.96 ± 0.35 |
LGY | 26.10 ± 0.83 | 2.00 ± 0.09 | 1.54 ± 0.01 |
AYFYPE | 774.36 ± 38.22 | 2.60 ± 0.13 | 1.99 ± 0.19 |
YFYPEL | 8.82 ± 0.58 | 2.66 ± 0.16 | 2.59 ± 0.17 |
FYPEL | 62.00 ± 6.27 | 1.88 ± 0.13 | 1.74 ± 0.04 |
YPFPGPI | 685.91 ± 102.91 | 1.91 ± 0.14 | 1.62 ± 0.08 |
YPFPGPIP | 224.05 ± 43.94 | 1.09 ± 0.02 | 1.86 ± 0.01 |
YPFPGPIN | 378.65 ± 11.15 | 1.26 ± 0.06 | 1.22 ± 0.17 |
YPFVE | * | 1.53 ± 0.15 | 1.78 ± 0.02 |
YPFVEP | 7.48 ± 0.03 | 1.96 ± 0.14 | 1.43 ± 0.08 |
YGFL | 292.53 ± 0.83 | 1.42 ± 0.04 | 2.12 ± 0.03 |
YGFLP | 272.39 ± 0.25 | 2.27 ± 0.15 | 2.22 ± 0.02 |
YPVEPF | * | 1.62 ± 0.09 | 1.75 ± 0.10 |
YGLF | * | 0.89 ± 0.01 | 2.08 ± 0.06 |
YLL | 518.54 ± 3.50 | 0.78 ± 0.03 | 2.55 ± 0.29 |
YLLF | n.d. | 0.91 ± 0.04 | 1.96 ± 0.30 |
LLF | 94.79 ± 2.97 | ** | ** |
YPW | * | 3.50 ± 0.02 | 2.32 ± 0.09 |
YPWT | * | 3.19 ± 0.18 | 3.89 ± 0.10 |
PWT | * | 2.15 ± 0.07 | 0.73 ± 0.07 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amigo, L.; Martínez-Maqueda, D.; Hernández-Ledesma, B. In Silico and In Vitro Analysis of Multifunctionality of Animal Food-Derived Peptides. Foods 2020, 9, 991. https://doi.org/10.3390/foods9080991
Amigo L, Martínez-Maqueda D, Hernández-Ledesma B. In Silico and In Vitro Analysis of Multifunctionality of Animal Food-Derived Peptides. Foods. 2020; 9(8):991. https://doi.org/10.3390/foods9080991
Chicago/Turabian StyleAmigo, Lourdes, Daniel Martínez-Maqueda, and Blanca Hernández-Ledesma. 2020. "In Silico and In Vitro Analysis of Multifunctionality of Animal Food-Derived Peptides" Foods 9, no. 8: 991. https://doi.org/10.3390/foods9080991
APA StyleAmigo, L., Martínez-Maqueda, D., & Hernández-Ledesma, B. (2020). In Silico and In Vitro Analysis of Multifunctionality of Animal Food-Derived Peptides. Foods, 9(8), 991. https://doi.org/10.3390/foods9080991