Effects of Endocrine Disruptors o,p′-Dichlorodiphenyltrichloroethane, p,p′-Dichlorodiphenyltrichloroethane, and Endosulfan on the Expression of Estradiol-, Progesterone-, and Testosterone-Responsive MicroRNAs and Their Target Genes in MCF-7 Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Cell Culture
2.3. Viability, Apoptosis and Proliferation Assay
2.4. RNA Isolation
2.5. Reverse Transcription and Real-Time PCR (RT-PCR) of MiRNAs
2.6. MRNA Reverse Transcription and RT-PCR
2.7. Western Blot Analysis
2.8. Bioinformatic Analysis
2.9. Statistical Analysis
3. Results
3.1. The Effects of p,p′-DDT, o,p′-DDT, and Endosulfan on Viability and Proliferation of MCF-7 Cells
3.2. ER-, PR-, and AR-Dependent Changes in the Expression of Hormone-Responsive MiRNAs in Cells Treated with DDT or Endosulfan
3.3. Treatment of Cells with either DDT or Endosulfan Alters Levels of mRNAs That Are Targets of the Studied MiRNAs
3.4. Relative Amounts of Proteins OXTR, APAF1, TP53INP1, and PTPRS in Treated Cells
3.5. The Effects of p,p′-DDT, o,p′-DDT, and Endosulfan on Apoptosis of MCF-7 Cells
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kahn, L.G.; Philippat, C.; Nakayama, S.F.; Slama, R.; Trasande, L. Endocrine-disrupting chemicals: Implications for human health. Lancet Diabetes Endocrinol. 2020, 8, 703–718. [Google Scholar] [CrossRef]
- Monneret, C. What is an endocrine disruptor? C. R. Biol. 2017, 340, 403–405. [Google Scholar] [CrossRef]
- Yilmaz, B.; Terekeci, H.; Sandal, S.; Kelestimur, F. Endocrine disrupting chemicals: Exposure, effects on human health, mechanism of action, models for testing and strategies for prevention. Rev. Endocr. Metab. Disord. 2020, 21, 127–147. [Google Scholar] [CrossRef]
- Berg, H.V.D.; Manuweera, G.; Konradsen, F. Global trends in the production and use of DDT for control of malaria and other vector-borne diseases. Malar. J. 2017, 16, 401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- James, A.; Emmanuel, D. An overview of endosulfan and the aftermath of its biohazardous administration in southern India. Eur. J. Mol. Clin. Med. 2021, 8, 212–218. [Google Scholar]
- Téllez-Bañuelos, M.C.; González-Ochoa, S.; Ortiz-Lazareno, P.; Rosas, V.C.; Gómez-Villela, J.; Haramati, J. Low-dose endosulfan inhibits proliferation and induces senescence and pro-inflammatory cytokine production in human lymphocytes, preferentially impacting cytotoxic cells. J. Immunotoxicol. 2019, 16, 173–181. [Google Scholar] [CrossRef] [PubMed]
- Witczak, A.; Pohoryło, A.; Abdel-Gawad, H. Endocrine-Disrupting Organochlorine Pesticides in Human Breast Milk: Changes during Lactation. Nutrients 2021, 13, 229. [Google Scholar] [CrossRef] [PubMed]
- Attaullah, M.; Yousuf, M.J.; Shaukat, S.; Anjum, S.I.; Ansari, M.J.; Buneri, I.D.; Tahir, M.; Amin, M.; Ahmad, N.; Khan, S.U. Serum organochlorine pesticides residues and risk of cancer: A case-control study. Saudi J. Biol. Sci. 2017, 25, 1284–1290. [Google Scholar] [CrossRef]
- Freire, C.; Koifman, R.J.; Sarcinelli, P.N.; Rosa, A.C.S.; Clapauch, R.; Koifman, S. Association between serum levels of organochlorine pesticides and sex hormones in adults living in a heavily contaminated area in Brazil. Int. J. Hyg. Environ. Health 2014, 217, 370–378. [Google Scholar] [CrossRef]
- Scippo, M.-L.; Argiris, C.; Muller, M.; Willemsen, P.; Martial, J.; Maghuin-Rogister, G. Recombinant human estrogen, androgen and progesterone receptors for detection of potential endocrine disruptors. Anal. Bioanal. Chem. 2003, 378, 664–669. [Google Scholar] [CrossRef] [PubMed]
- Maness, S.C.; McDonnell, D.P.; Gaido, K.W. Inhibition of Androgen Receptor-Dependent Transcriptional Activity by DDT Isomers and Methoxychlor in HepG2 Human Hepatoma Cells. Toxicol. Appl. Pharmacol. 1998, 151, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Jin, L.; Tran, D.Q.; Ide, C.F.; McLachlan, J.A.; Arnold, S.F. Several Synthetic Chemicals Inhibit Progesterone Receptor-Mediated Transactivation in Yeast. Biochem. Biophys. Res. Commun. 1997, 233, 139–146. [Google Scholar] [CrossRef]
- Soto, A.M.; Chung, K.L.; Sonnenschein, C. The pesticides endosulfan, toxaphene, and dieldrin have estrogenic effects on human estrogen-sensitive cells. Environ. Health Perspect. 1994, 102, 380–383. [Google Scholar] [CrossRef]
- Li, J.; Li, N.; Ma, M.; Giesy, J.P.; Wang, Z. In vitro profiling of the endocrine disrupting potency of organochlorine pesticides. Toxicol. Lett. 2008, 183, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Klotz, D.M.; Ladlie, B.L.; Vonier, P.M.; A McLachlan, J.; Arnold, S.F. o,p′-DDT and its metabolites inhibit progesterone-dependent responses in yeast and human cells. Mol. Cell. Endocrinol. 1997, 129, 63–71. [Google Scholar] [CrossRef]
- Mnif, W.; Hassine, A.I.H.; Bouaziz, A.; Bartegi, A.; Thomas, O.; Roig, B. Effect of Endocrine Disruptor Pesticides: A Review. Int. J. Environ. Res. Public Health 2011, 8, 2265–2303. [Google Scholar] [CrossRef] [Green Version]
- Cohn, B.A.; Wolff, M.S.; Cirillo, P.M.; Sholtz, R.I. DDT and Breast Cancer in Young Women: New Data on the Significance of Age at Exposure. Environ. Health Perspect. 2007, 115, 1406–1414. [Google Scholar] [CrossRef]
- Band, P.R.; Abanto, Z.; Bert, J.; Lang, B.; Fang, R.; Gallagher, R.P.; Le, N.D. Prostate cancer risk and exposure to pesticides in British Columbia Farmers. Prostate 2010, 71, 168–183. [Google Scholar] [CrossRef]
- Saha, S.; Dey, S.; Nath, S. Steroid Hormone Receptors: Links with Cell Cycle Machinery and Breast Cancer Progression. Front. Oncol. 2021, 11, 620214. [Google Scholar] [CrossRef]
- Russo, J.; Russo, I.H. The role of estrogen in the initiation of breast cancer. J. Steroid Biochem. Mol. Biol. 2006, 102, 89–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daniel, A.R.; Hagan, C.R.; A Lange, C. Progesterone receptor action: Defining a role in breast cancer. Expert Rev. Endocrinol. Metab. 2011, 6, 359–369. [Google Scholar] [CrossRef] [Green Version]
- Anestis, A.; Zoi, I.; Papavassiliou, A.G.; Karamouzis, M.V. Androgen Receptor in Breast Cancer—Clinical and Preclinical Research Insights. Molecules 2020, 25, 358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krauskopf, J.; De Kok, T.M.; Hebels, D.; Bergdahl, I.A.; Johansson, A.; Spaeth, F.; Kiviranta, H.; Rantakokko, P.; Kyrtopoulos, S.; Kleinjans, J.C. MicroRNA profile for health risk assessment: Environmental exposure to persistent organic pollutants strongly affects the human blood microRNA machinery. Sci. Rep. 2017, 7, 9262. [Google Scholar] [CrossRef] [PubMed]
- Tilghman, S.L.; Bratton, M.; Segar, H.C.; Martin, E.C.; Rhodes, L.; Li, M.; McLachlan, J.A.; Wiese, T.E.; Nephew, K.P.; Burow, M.E. Endocrine Disruptor Regulation of MicroRNA Expression in Breast Carcinoma Cells. PLoS ONE 2012, 7, e32754. [Google Scholar] [CrossRef]
- Xu, D.; Guo, Y.; Liu, T.; Li, S.; Sun, Y. miR-22 contributes to endosulfan-induced endothelial dysfunction by targeting SRF in HUVECs. Toxicol. Lett. 2017, 269, 33–40. [Google Scholar] [CrossRef]
- Kalinina, T.; Kononchuk, V.; Alekseenok, E.; Abdullin, G.; Sidorov, S.; Ovchinnikov, V.; Gulyaeva, L. Associations between the Levels of Estradiol-, Progesterone-, and Testosterone-Sensitive MiRNAs and Main Clinicopathologic Features of Breast Cancer. J. Pers. Med. 2021, 12, 4. [Google Scholar] [CrossRef]
- Kalinina, T.S.; Kononchuk, V.V.; Gulyaeva, L.F. Expression of estrogen-, progesterone-, and androgen-responsive genes in MCF-7 and MDA-MB-231 cells treated with o,p′-DDT, p,p′-DDT, or endosulfan. J. Biochem. Mol. Toxicol. 2021, 35, 1–8. [Google Scholar] [CrossRef]
- Lee, Y.-J.; Shacter, E. Oxidative Stress Inhibits Apoptosis in Human Lymphoma Cells. J. Biol. Chem. 1999, 274, 19792–19798. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Ridzon, D.A.; Broomer, A.J.; Zhou, Z.; Lee, D.H.; Nguyen, J.T.; Barbisin, M.; Xu, N.L.; Mahuvakar, V.R.; Andersen, M.R.; et al. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res. 2005, 33, e179. [Google Scholar] [CrossRef] [PubMed]
- Kalinina, T.S.; Kononchuk, V.V.; Ovchinnikov, V.Y.; Chanyshev, M.D.; Gulyaeva, L.F. Expression of the miR-190 family is increased under DDT exposure in vivo and in vitro. Mol. Biol. Rep. 2018, 45, 1937–1945. [Google Scholar] [CrossRef]
- Image Quantitation and Protein, RNA & DNA Gel Quantitation. Available online: http://biochemlabsolutions.com/GelQuantNET.html (accessed on 16 February 2021).
- Fromm, B.; Billipp, T.; Peck, L.E.; Johansen, M.; Tarver, J.E.; King, B.L.; Newcomb, J.M.; Sempere, L.F.; Flatmark, K.; Hovig, E.; et al. A Uniform System for the Annotation of Vertebrate microRNA Genes and the Evolution of the Human microRNAome. Annu. Rev. Genet. 2015, 49, 213–242. [Google Scholar] [CrossRef] [Green Version]
- Mathelier, A.; Fornes, O.; Arenillas, D.J.; Chen, C.-Y.; Denay, G.; Lee, J.; Shi, W.; Shyr, C.; Tan, G.; Worsley-Hunt, R.; et al. JASPAR 2016: A major expansion and update of the open-access database of transcription factor binding profiles. Nucleic Acids Res. 2015, 44, D110–D115. [Google Scholar] [CrossRef] [Green Version]
- Pagès, H.; Aboyoun, P.; Gentleman, R.; DebRoy, S. Biostrings: String objects representing biological sequences, and matching algorithms. R Package Version 2016, 2, 10-8129. Available online: https://www.scienceopen.com/document?vid=ff572e35-9051-47ff-bfc0-29e48730771c (accessed on 20 February 2021).
- Soto, A.M.; Sonnenschein, C.; Chung, K.L.; Fernandez, M.F.; Olea, N.; Serrano, F.O. The E-SCREEN assay as a tool to identify estrogens: An update on estrogenic environmental pollutants. Environ. Health Perspect. 1995, 103, 113–122. [Google Scholar] [PubMed] [Green Version]
- McKiernan, P.J.; Smith, S.G.; Durham, A.L.; Adcock, I.M.; McElvaney, N.G.; Greene, C.M. The Estrogen-Induced miR-19 Downregulates Secretory Leucoprotease Inhibitor Expression in Monocytes. J. Innate Immun. 2019, 12, 90–102. [Google Scholar] [CrossRef]
- McGeary, S.E.; Lin, K.S.; Shi, C.Y.; Pham, T.M.; Bisaria, N.; Kelley, G.M.; Bartel, D.P. The biochemical basis of microRNA targeting efficacy. Science 2019, 366, 6472. [Google Scholar] [CrossRef] [PubMed]
- Sjöstedt, E.; Zhong, W.; Fagerberg, L.; Karlsson, M.; Mitsios, N.; Adori, C.; Oksvold, P.; Edfors, F.; Limiszewska, A.; Hikmet, F.; et al. An atlas of the protein-coding genes in the human, pig, and mouse brain. Science 2020, 367, 6482. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.Y.; Lin, Y.C.; Li, J.; Huang, K.Y.; Shrestha, S.; Hong, H.C.; Tang, Y.; Chen, Y.G.; Jin, C.N.; Yu, Y.; et al. miRTarBase 2020: Updates to the experimentally validated microRNA-target interaction database. Nucleic Acids Res. 2020, 48, D148–D154. [Google Scholar] [CrossRef] [Green Version]
- Cramer, E.M.; Shao, Y.; Wang, Y.; Yuan, Y. miR-190 is upregulated in Epstein–Barr Virus type I latency and modulates cellular mRNAs involved in cell survival and viral reactivation. Virology 2014, 464–465, 184–195. [Google Scholar] [CrossRef] [Green Version]
- Mekonen, S.; Ibrahim, M.; Astatkie, H.; Abreha, A. Exposure to organochlorine pesticides as a predictor to breast cancer: A case-control study among Ethiopian women. PLoS ONE 2021, 16, e0257704. [Google Scholar]
- Castellano, L.; Giamas, G.; Jacob, J.; Coombes, R.C.; Lucchesi, W.; Thiruchelvam, P.; Barton, G.; Jiao, L.R.; Wait, R.; Waxman, J.; et al. The estrogen receptor-α-induced microRNA signature regulates itself and its transcriptional response. Proc. Natl. Acad. Sci. USA 2009, 106, 15732–15737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diel, P.; Olff, S.; Schmidt, S.; Michna, H. Effects of the environmental estrogens bisphenol A, o,p′-DDT, p-tert-octylphenol and coumestrol on apoptosis induction, cell proliferation and the expression of estrogen sensitive molecular parameters in the human breast cancer cell line MCF-7. J. Steroid Biochem. Mol. Biol. 2001, 80, 61–70. [Google Scholar] [CrossRef]
- Burow, M.E.; Tang, Y.; Collins-Burow, B.M.; Krajewski, S.; Reed, J.C.; A McLachlan, J.; Beckman, B.S. Effects of environmental estrogens on tumor necrosis factor α-mediated apoptosis in MCF-7 cells. Carcinogenesis 1999, 20, 2057–2061. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, H.; Gruber, C.; Alewood, P.F.; Möller, A.; Muttenthaler, M. The oxytocin receptor signalling system and breast cancer: A critical review. Oncogene 2020, 39, 5917–5932. [Google Scholar] [CrossRef]
- Kalinina, T.S.; Kononchuk, V.V.; Sidorov, S.V.; Obukhova, D.A.; Abdullin, G.R.; Gulyaeva, L.F. Oxytocin Receptor Expression is Associated with Estrogen Receptor Status in Breast Tumors. Biochem. Suppl. Ser. B Biomed. Chem. 2021, 15, 320–325. [Google Scholar] [CrossRef]
RNA | Primer Sequences |
---|---|
hsa-miR-23a-3p | 5′-GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACGGAAATC-3′ |
hsa-miR-190a-5p | 5′-GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACACCTAATA-3′ |
hsa-miR-190b-5p | 5′-GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACAACCCAA-3′ |
hsa-miR-27a-3p | 5′-GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACTGCTCACA-3′ |
hsa-miR-193b-3p | 5′-GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACAGCGGGAC-3′ |
hsa-miR-324-5p | 5′-GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACACACCAAT-3′ |
hsa-miR-423-3p | 5′-GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACACTGAGGG-3′ |
hsa-miR-200b-3p | 5′-GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACGTCATCAT-3′ |
hsa-miR-21-5p | 5′-GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACTCAACATC-3′ |
hsa-miR-126-3p | 5′-GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACCGCATTAT-3′ |
hsa-miR-378a-3p | 5′-GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACGCCTTCT-3′ |
hsa-miR-149-5p | 5′-GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACGGGAGTGA-3′ |
hsa-miR-342-3p | 5′-GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACACGGGTG-3′ |
hsa-miR-19b-3p | 5′-GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACTCAGTTT-3′ |
U44 | 5′-GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACAGTCAGTT-3′ |
U48 | 5′-GTTGGCTCTGGTGCAGGGTCCGAGGTATTCGCACCAGAGCCAACGGTCAG-3′ |
RNA | Primer Sequences | |
---|---|---|
hsa-miR-23a-3p | Forward | 5′-GCCGCATCACATTGCCAGG-3′ |
Probe | 5′-(R6G)-TTCGCACTGGATACGACGGAAATC-(BHQ1)-3′ | |
hsa-miR-190a-5p | Forward | 5′-GCCGCTGATATGTTTGATA-3′ |
Probe | 5′-(R6G)-TTCGCACTGGATACGACACCTAATA-(BHQ1)-3′ | |
hsa-miR-190b-5p | Forward | 5′-GCCGCTGATATGTTTGATA-3′ |
Probe | 5′-(R6G)-TTCGCACTGGATACGACAACCCAA-(BHQ1)-3′ | |
hsa-miR-27a-3p | Forward | 5′-GCCGCTTCACAGTGGCTAA-3′ |
Probe | 5′-(R6G)-TTCGCACTGGATACGACGCGGAAC-(BHQ1)-3′ | |
hsa-miR-193b-3p | Forward | 5′-GCCGCAACTGGCCCTCAAA-3′ |
Probe | 5′-(R6G)-TTCGCACTGGATACGACAGCGGGAC-(BHQ1)-3′ | |
hsa-miR-324-5p | Forward | 5′-CCCGCATCCCCTAGGGC-3′ |
Probe | 5′-(R6G)-TTCGCACTGGATACGACACACCAAT-(BHQ1)-3′ | |
hsa-miR-423-3p | Forward | 5′-GCCGAGCTCGGTCTGAGGC-3′ |
Probe | 5′-(R6G)-TTCGCACTGGATACGACACTGAGG-(BHQ1)-3′ | |
hsa-miR-200b-3p | Forward | 5′-GCCGCTAATACTGCCTGGTA-3′, |
Probe | 5′-(R6G)-TTCGCACTGGATACGACGTCATCAT-(BHQ1)-3′ | |
hsa-miR-21-5p | Forward | 5′-GCCGCTAGCTTATCAGACT-3′ |
Probe | 5′-(R6G)-TTCGCACTGGATACGACTCAACATC-(BHQ1)-3′ | |
hsa-miR-126-3p | Forward | 5′-GCCGCTCGTACCGTGAGTA-3′ |
Probe | 5′-(R6G)-TTCGCACTGGATACGACCGCATTAT-(BHQ1)-3′ | |
hsa-miR-378a-3p | Forward | 5′-GCCGCACTGGACTTGGAGTC-3′ |
Probe | 5′-(R6G)-TTCGCACTGGATACGACGCCTTCT-(BHQ1)-3′ | |
hsa-miR-149-5p | Forward | 5′-GCCGTCTGGCTCCGTGTCT-3′ |
Probe | 5′-(R6G)-TTCGCACTGGATACGACGGGAGTGA-(BHQ1)-3′ | |
hsa-miR-342-3p | Forward | 5′-GCCGCTCTCACACAGAAATCG-3′ |
Probe | 5′-(R6G)-TTCGCACTGGATACGACACGGGTGC-(BHQ1)-3′ | |
hsa-miR-19b-3p | Forward | 5′-GCCGTGTGCAAATCCATGCA-3′ |
Probe | 5′-(R6G)-TTCGCACTGGATACGACTCAGTTT-(BHQ1)-3′ | |
U44 | Forward | 5′-GCCGCTCTTAATTAGCTCT-3′ |
Probe | 5′-(R6G)-TTCGCACTGGATACGACAGTCAGTT-(BHQ1)-3′ | |
U48 | Forward | 5′-GAGTGATGATGACCCCAGGTAA-3′ |
Probe | 5′-(R6G)-TTCGCACCAGAGCCAACGGTCAG-(BHQ1)-3′ | |
Reverse | 5′-GTGCAGGGTCCGAGGT-3′ |
Gene | Primer Sequences | |
---|---|---|
GAPDH | Forward | 5′-ACAACTTTGGTATCGTGGAAGGAC-3′ |
Reverse | 5′-CAGGGATGATGTTCTGGAGAGC-3′ | |
ANKRD17 | Forward | 5′-AATGTTGCCACCACTCTTCC-3′ |
Reverse | 5′-TGCAGCTGTGCATTCTTTTC-3′ | |
SYMPK | Forward | 5′-GCTGGAGAAGAAAGAGGTG-3′ |
Reverse | 5′-ACAGGTTGGTGGCTTTGATG-3′ | |
AKR1C2 | Forward | 5′-CCTAAAAGTAAAGCTCTAGAGGCCGT-3′ |
Reverse | 5′-GAAAATGAATAAGATAGAGGTCAACATAG-3′ | |
TRPS1 | Forward | 5′-GTATCCTGCATCGGGAGAAA-3′ |
Reverse | 5′-AGCTTCTGGTAGAGGCCACA-3′ | |
TP53INP1 | Forward | 5′-GCACCCTTCAGTCTTTTCCTGTT-3′ |
Reverse | 5′-GGAGAAAGCAGGAATCACTTGTATC-3′ | |
APAF1 | Forward | 5′-AACCAGGATGGGTCACCATA-3′ |
Reverse | 5′-ACTGAAACCCAATGCACTCC-3′ | |
XIAP | Forward | 5′-TGGCAGATTATGAAGCACGGATC-3′ |
Reverse | 5′-AGTTAGCCCTCCTCCACAGTGA-3′ | |
OXTR | Forward | 5′-GCACGGTCAAGATGACTTTC-3′ |
Reverse | 5′-GCATGTAGATCCAGGGGTTG-3′ |
Time, h | LC50, μM | ||
---|---|---|---|
p,p′-DDT | o,p′-DDT | Endosulfan | |
6 | >50 | >50 | >50 |
24 | >50 | >50 | 33.6 ± 0.8 |
48 | 48.7 ± 0.5 | >50 | 32.8 ± 0.9 |
Time, h | IC50, μM | ||
---|---|---|---|
p,p′-DDT | o,p′-DDT | Endosulfan | |
6 | >50 | >50 | >50 |
24 | 68.7 ± 0.8 | >50 | 60.1 ± 0.6 |
48 | 65.7 ± 0.7 | 46.9 ± 0.5 | 20.7 ± 0.4 |
miRNA | Estradiol | Testosterone | Progesterone | Potentially Regulated by |
---|---|---|---|---|
miR-23a | - | - | - | ER, AR |
miR-27a | - | ↓ | - | ER, AR |
miR-190b | ↓ (6 h) | - | ↑ | ER, AR, PR |
↑ (24 h) | ||||
miR-190a | ↑ | ↓ | ER, PR, AR | |
miR-200b | ↓ | ↑ | - | ER, AR |
miR-21 | - | ↓ (6 h) | ↑ | ER, PR, AR |
↑ (48 h) | ||||
miR-126 | - | - | - | ER, PR, AR |
miR-378 | - | - | - | ER, PR, AR |
miR-423 | ↑ | ER, PR, AR | ||
miR-149 | - | - | - | ER, PR, AR |
miR-193b | ↑ | ↑ | - | ER, PR, AR |
miR-324 | ↑ | ↑ | ↑ | ER, PR, AR |
miR-342 | - | - | - | ER, PR, AR |
miRNA | Time, h | Relative level of miRNA | |||||||
---|---|---|---|---|---|---|---|---|---|
p,p′-DDT | o,p′-DDT | Endosulfan | |||||||
0.1 μM | 10 μM | 0.1 μM | 10 μM | 0.1 μM | 1 μM | ||||
miR-23a | 6 | 0.85 | 0.92 | 0.87 | 1.01 | 0.83 | 0.90 | ||
24 | 0.99 | 0.98 | 1.10 | 1.03 | 0.91 | 0.93 | |||
48 | 1.08 | 1.20 | 0.86 | 0.99 | 0.96 | 1.03 | |||
miR-27a | 6 | 0.85 | 0.92 | 1.14 | 1.20 | 0.90 | 0.95 | ||
24 | 1.08 | 1.00 | 0.97 | 1.01 | 1.05 | 1.15 | |||
48 | 1.19 | 1.44 ** | 0.94 | 1.09 | 1.08 | 1.07 | |||
miR-190b | 6 | 0.93 | 0.91 | 0.96 | 1.07 | 0.96 | 1.06 | ||
24 | 0.98 | 1.02 | 1.05 | 1.26 * | 0.98 | 1.16 | |||
48 | 0.87 | 0.91 | 1.00 | 1.33 * | 1.08 | 1.06 | |||
miR-190a | 6 | 0.90 | 0.98 | 0.91 | 0.93 | 1.08 | 1.09 | ||
24 | 1.01 | 0.91 | 0.95 | 0.94 | 0.94 | 1.01 | |||
48 | 1.19 | 1.23 * | 0.73 * | 0.63 ** | 0.97 | 1.07 | |||
miR-200b | 6 | 1.06 | 1.17 | 1.02 | 1.02 | 1.06 | 0.97 | ||
24 | 1.08 | 1.11 | 1.07 | 1.01 | 0.99 | 0.99 | |||
48 | 1.02 | 1.08 | 1.04 | 1.15 | 1.08 | 1.28 * | |||
miR-21 | 6 | 0.97 | 1.11 | 1.03 | 1.07 | 1.06 | 1.04 | ||
24 | 1.10 | 1.11 | 1.03 | 1.03 | 1.11 | 1.16 | |||
48 | 0.91 | 0.97 | 1.05 | 1.10 | 1.01 | 1.19 | |||
miR-126 | 6 | 1.14 | 1.27 * | 1.04 | 1.38 ** | 1.03 | 1.01 | ||
24 | 1.13 | 0.92 | 1.00 | 0.95 | 1.01 | 1.17 | |||
48 | 0.87 | 0.90 | 1.07 | 1.09 | 1.13 | 1.05 | |||
miR-378 | 6 | 1.11 | 1.31 * | 1.09 | 1.25 * | 1.03 | 1.10 | ||
24 | 1.00 | 1.14 | 0.95 | 1.00 | 0.97 | 1.11 | |||
48 | 1.07 | 1.11 | 1.05 | 1.21 | 1.11 | 1.04 | |||
miR-423 | 6 | 1.09 | 1.17 | 0.85 | 1.05 | 0.94 | 0.88 | ||
24 | 1.08 | 1.08 | 1.17 | 1.26 * | 0.89 | 0.92 | |||
48 | 0.95 | 1.03 | 0.94 | 1.17 | 0.97 | 1.00 | |||
miR-149 | 6 | 0.97 | 1.16 | 1.09 | 1.01 | 1.08 | 1.13 | ||
24 | 1.08 | 1.14 | 0.89 | 1.00 | 0.94 | 0.95 | |||
48 | 1.03 | 1.05 | 0.83 | 0.82 | 1.13 | 1.06 | |||
miR-193b | 6 | 1.04 | 1.28 * | 1.08 | 1.24 * | 0.99 | 1.09 | ||
24 | 1.02 | 0.97 | 0.88 | 0.97 | 0.95 | 1.08 | |||
48 | 1.00 | 1.03 | 1.02 | 1.40 ** | 1.00 | 0.91 | |||
miR-324 | 6 | 0.98 | 1.03 | 1.25 * | 1.42 ** | 0.94 | 0.91 | ||
24 | 1.09 | 0.96 | 1.10 | 1.04 | 0.92 | 1.05 | |||
48 | 1.00 | 0.95 | 0.98 | 0.95 | 1.08 | 1.14 | |||
miR-342 | 6 | 1.00 | 0.91 | 0.89 | 1.01 | 1.09 | 0.94 | ||
24 | 0.96 | 1.16 | 1.15 | 1.32 * | 0.84 | 0.98 | |||
48 | 0.90 | 0.96 | 1.18 | 1.33 * | 1.16 | 1.03 | |||
miR-19b | 6 | 0.84 | 1.01 | 0.96 | 0.99 | 1.18 | 1.23 * | ||
24 | 1.40 ** | 1.64 ** | 1.03 | 0.96 | 1.12 | 1.11 | |||
48 | 0.98 | 1.15 | 0.99 | 1.08 | 0.91 | 0.82 |
Target mRNA | miRNAs |
---|---|
OXTR | miR-23a-3p, miR-21-5p, miR-378a-3p, miR-149-5p, miR-324-5p, miR-342-3p |
AKR1C2 | miR-23a-3p, miR-27a-3p, miR-190-5p, miR-21-5p, miR-342-3p, miR-193b-3p * |
TRPS1 | miR-23a-3p, miR-27a-3p, miR-190-5p, miR-200b-3p, miR-193-3p, miR-149-5p, miR-324-5p, miR-19-3p |
TP53INP1 | miR-23a-3p, miR-27a-3p, miR-190-5p **, miR-200b-3p, miR-193-3p, miR-342-3p, miR-19-3p |
APAF1 | miR-23a-3p *, miR-27a-3p, miR-190-5p, miR-200b-3p, miR-21-5p *, miR-378a-3p, miR-149-5p, miR-324-5p, miR-19-3p |
XIAP | miR-23a-3p, miR-27a-3p, miR-190-5p, miR-200b-3p *, miR-149-5p, miR-19-3p |
PTPRS | miR-190-5p |
Gene | Time, h | Relative Level of mRNA | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Estradiol | Testosterone | Progesterone | p,p′-DDT | o,p′-DDT | Endosulfan | ||||||||
10 nM | 100 nM | 10 nM | 100 nM | 10 nM | 100 nM | 0.1 μM | 10 μM | 0.1 μM | 10 μM | 0.1 μM | 1 μM | ||
OXTR | 6 | 0.81 | 1.01 | 0.97 | 1.02 | 0.70 * | 0.71 * | 1.02 | 0.64 ** | 0.92 | 0.57 ** | 0.96 | 0.90 |
24 | 1.25 * | 1.31 * | 1.24 | 1.73 ** | 1.00 | 1.00 | 0.88 | 1.06 | 1.10 | 1.00 | 1.05 | 0.88 | |
48 | 1.57 * | 2.45 ** | 1.25 * | 1.26 * | 1.16 | 1.33 * | 0.77 * | 0.72 ** | 1.03 | 0.98 | 0.86 | 0.67 ** | |
AKR1C2 | 6 | 1.03 | 1.09 | 1.05 | 1.12 | 0.80 | 0.83 | 0.98 | 0.93 | 0.93 | 0.81 | 0.97 | 0.99 |
24 | 1.00 | 0.90 | 0.67 * | 0.71 * | 0.93 | 0.94 | 1.00 | 1.27 * | 0.96 | 1.18 | 0.88 | 1.22 | |
48 | 0.93 | 1.23 | 0.74 * | 0.65 ** | 0.91 | 0.90 | 0.99 | 1.42 ** | 0.83 | 1.10 | 0.94 | 1.01 | |
TRPS1 | 6 | 1.04 | 1.11 | 1.16 | 1.11 | 0.85 | 0.97 | 0.98 | 0.90 | 0.98 | 0.63 ** | 0.97 | 1.01 |
24 | 1.19 | 0.99 | 1.06 | 1.09 | 1.07 | 1.02 | 0.90 | 1.00 | 1.02 | 1.17 | 1.06 | 0.98 | |
48 | 1.12 | 1.62 ** | 1.35 * | 1.42 ** | 1.12 | 1.12 | 0.88 | 0.81 | 1.05 | 1.03 | 0.88 | 1.07 | |
TP53INP1 | 6 | 0.64 ** | 0.71 * | 1.17 | 1.12 | 0.93 | 0.94 | 1.08 | 0.87 | 1.06 | 0.64 * | 1.00 | 0.98 |
24 | 0.83 | 0.85 | 0.82 | 0.88 | 1.31 * | 1.29 * | 0.85 | 0.94 | 1.10 | 1.02 | 1.11 | 1.03 | |
48 | 0.80 | 0.78 * | 0.87 | 1.00 | 1.05 | 1.11 | 0.67 ** | 0.62 ** | 1.08 | 0.96 | 0.96 | 0.98 | |
APAF1 | 6 | 0.95 | 1.15 | 1.26 * | 1.39 * | 0.84 | 0.73 ** | 1.14 | 1.22 * | 0.91 | 0.72 * | 0.92 | 1.00 |
24 | 1.15 | 1.07 | 0.95 | 0.96 | 1.20 | 1.18 | 0.85 | 0.94 | 1.07 | 1.16 | 1.17 | 1.06 | |
48 | 0.88 | 0.95 | 0.78 | 0.99 | 1.06 | 1.07 | 0.80 | 0.73 * | 1.02 | 0.87 | 1.01 | 1.07 | |
XIAP | 6 | 0.81 | 0.95 | 0.98 | 1.04 | 0.86 | 1.10 | 1.10 | 0.93 | 1.04 | 0.83 | 0.88 | 0.82 |
24 | 1.01 | 0.97 | 0.95 | 0.91 | 1.07 | 1.12 | 1.03 | 1.09 | 1.10 | 0.96 | 1.00 | 0.97 | |
48 | 1.17 | 1.13 | 1.02 | 1.11 | 1.08 | 1.05 | 0.93 | 0.82 | 0.98 | 0.77 * | 1.06 | 0.93 | |
PTPRS | 6 | 1.14 | 1.20 | 1.14 | 1.01 | 0.90 | 0.90 | 1.11 | 1.34 * | 1.35 * | 1.72 ** | 1.01 | 1.28 * |
24 | 1.27 * | 1.33 * | 0.75 * | 0.79 * | 1.11 | 1.12 | 1.12 | 1.03 | 0.99 | 1.01 | 1.17 | 1.06 | |
48 | 0.76 * | 0.66 ** | 0.80 | 0.79 * | 1.19 | 1.21 | 1.07 | 1.13 | 1.15 | 1.26 | 0.84 | 0.92 |
Dose | o,p′-DDT | Endosulfan | ||||
---|---|---|---|---|---|---|
Dead Cells (%) | Live Cells (%) | Apoptosis (%) | Dead Cells (%) | Live Cells (%) | Apoptosis (%) | |
0 μM | 0.19 ± 0.19 | 96.99 ± 0.08 | 2.82 ± 0.20 | 0.19 ± 0.19 | 96.99 ± 0.08 | 2.82 ± 0.20 |
0.1 μM | 1.12 ± 0.97 | 96.61 ± 2.35 | 2.27 ± 1.38 | 0.55 ± 0.40 | 97.87 ± 1.13 | 1.59 ± 0.83 |
1 μM | 0.22 ± 0.20 | 97.75 ± 0.07 | 2.03 ± 0.38 | 0.54 ± 0.22 | 96.90 ± 0.56 | 2.56 ± 0.34 |
10 μM | 0.50 ± 0.24 | 97.83 ± 1.19 | 1.67 ± 0.95 | 0.52 ± 0.31 | 95.59 ± 1.12 | 3.89 ± 0.80 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalinina, T.; Kononchuk, V.; Klyushova, L.; Gulyaeva, L. Effects of Endocrine Disruptors o,p′-Dichlorodiphenyltrichloroethane, p,p′-Dichlorodiphenyltrichloroethane, and Endosulfan on the Expression of Estradiol-, Progesterone-, and Testosterone-Responsive MicroRNAs and Their Target Genes in MCF-7 Cells. Toxics 2022, 10, 25. https://doi.org/10.3390/toxics10010025
Kalinina T, Kononchuk V, Klyushova L, Gulyaeva L. Effects of Endocrine Disruptors o,p′-Dichlorodiphenyltrichloroethane, p,p′-Dichlorodiphenyltrichloroethane, and Endosulfan on the Expression of Estradiol-, Progesterone-, and Testosterone-Responsive MicroRNAs and Their Target Genes in MCF-7 Cells. Toxics. 2022; 10(1):25. https://doi.org/10.3390/toxics10010025
Chicago/Turabian StyleKalinina, Tatiana, Vladislav Kononchuk, Lyubov Klyushova, and Lyudmila Gulyaeva. 2022. "Effects of Endocrine Disruptors o,p′-Dichlorodiphenyltrichloroethane, p,p′-Dichlorodiphenyltrichloroethane, and Endosulfan on the Expression of Estradiol-, Progesterone-, and Testosterone-Responsive MicroRNAs and Their Target Genes in MCF-7 Cells" Toxics 10, no. 1: 25. https://doi.org/10.3390/toxics10010025
APA StyleKalinina, T., Kononchuk, V., Klyushova, L., & Gulyaeva, L. (2022). Effects of Endocrine Disruptors o,p′-Dichlorodiphenyltrichloroethane, p,p′-Dichlorodiphenyltrichloroethane, and Endosulfan on the Expression of Estradiol-, Progesterone-, and Testosterone-Responsive MicroRNAs and Their Target Genes in MCF-7 Cells. Toxics, 10(1), 25. https://doi.org/10.3390/toxics10010025