The Emission of VOCs and CO from Heated Tobacco Products, Electronic Cigarettes, and Conventional Cigarettes, and Their Health Risk
Abstract
:1. Introduction
1.1. Background
1.2. Aim of the Study
2. Material and Methods
2.1. Products Used in the Study
2.2. Smoking Conditions
2.3. Aerosol Analysis
2.3.1. VOCs in Smoke and Aerosols
2.3.2. Nicotine in Smoke and Aerosols
2.3.3. Tar in Smoke and Aerosols
2.3.4. CO in Smoke and Aerosols
2.4. Risk Assessment of Different Types of Tobacco Products
2.5. Statistical Analysis
3. Results
3.1. VOCs Emission
3.1.1. GC-MS and HPLC Chromatographic Analysis of VOCs
3.1.2. Analysis of the Types and Concentrations of VOCs
3.1.3. Variations in the Proportion of Each Type of VOCs between the Heating Method and the Burning Method
3.2. Non-VOC Emissions
3.3. Comparative Analysis of Common Pollutants Released from Different Types of Tobacco Products and 3R4F
3.4. Human Health Risk Characterization for Different Types of Tobacco Products
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pack, E.C.; Kim, H.S.; Jang, D.Y.; Koo, Y.J.; Yu, H.H.; Lee, S.H.; Lim, K.M.; Choi, D.W. Risk assessment of toxicants on WHO TobReg priority list in mainstream cigarette smoke using human-smoked yields of Korean smokers. Environ. Res. 2019, 169, 206–219. [Google Scholar] [CrossRef]
- Xie, J.; Marano, K.M.; Wilson, C.L.; Liu, H.; Gan, H.; Xie, F.; Naufal, Z.S. A probabilistic risk assessment approach used to prioritize chemical constituents in mainstream smoke of cigarettes sold in China. Regul. Toxicol. Pharmacol. 2012, 62, 355–362. [Google Scholar] [CrossRef] [PubMed]
- Charles, S.M.; Batterman, S.A.; Jia, C. Composition and emissions of VOCs in main- and side-stream smoke of research cigarettes. Atmos. Environ. 2007, 41, 5371–5384. [Google Scholar] [CrossRef]
- Behera, S.N.; Xian, H.; Balasubramanian, R. Human health risk associated with exposure to toxic elements in mainstream and sidestream cigarette smoke. Sci. Total Environ. 2014, 472, 947–956. [Google Scholar] [CrossRef] [PubMed]
- Moolgavkar, S.H.; Holford, T.R.; Levy, D.T.; Kong, C.Y.; Foy, M. Impact of reduced tobacco smoking on lung cancer mortality in the United States during 1975–2000. J. Natl. Cancer Inst. 2012, 104, 541–548. [Google Scholar] [CrossRef] [PubMed]
- Levy, R.J. Carbon monoxide pollution and neurodevelopment: A public health concern. Neurotoxicol. Teratol. 2015, 49, 31–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO. The Detail of Tobacco Reported by WHO in 2020; WHO: Geneva, Switzerland, 2020. [Google Scholar]
- Verron, T.; Julien, R.; Cahours, X.; Colard, S. Modeling of cigarette smoke constituents-from intense to less intense smoking regime. Regul. Toxicol. Pharmacol. 2018, 99, 251–259. [Google Scholar] [CrossRef]
- Flora, J.W.; Meruva, N.; Huang, C.B.; Wilkinson, C.T.; Ballentine, R. Characterization of potential impurities and degradation products in electronic cigarette formulations and aerosols. Regul. Toxicol. Pharmacol. 2016, 74, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Geiss, O.; Bianchi, I.; Barahona, F.; Barrero-Moreno, J. Characterisation of mainstream and passive vapurs emitted by selected electronic cigarette. Int. J. Hyg. Environ. Health 2015, 218, 169–180. [Google Scholar] [CrossRef]
- Wagner, K.A.; Flora, J.W.; Melvin, M.S.; Avery, K.C.; Ballentine, R.M.; Brown, A.P.; McKinney, W.J. An evaluation of electronic cigarette formulations and aerosols for harmful and potentially harmful constituents (HPHCs) typically derived from combustion. Regul. Toxicol. Pharmacol. 2018, 95, 153–160. [Google Scholar] [CrossRef]
- Mitova, M.I.; Campelos, P.B.; Goujon-Ginglinger, C.G.; Maeder, S.; Mottier, N. Comparison of the impact of the Tobacco Heating System 2.2 and a cigarette on indoor air quality. Regul. Toxicol. Pharmacol. 2016, 80, 91–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mottier, N.; Tharin, M.; Cluse, C.; Crudo, J.-R.; Lueso, M.G. Validation of selected analytical methods using accuracy profiles to assess the impact of a Tobacco Heating System on indoor air quality. Talanta 2016, 158, 165–178. [Google Scholar] [CrossRef] [Green Version]
- Savareear, B.; Escobar-Arnanz, J.; Brokl, M.; Saxton, M.J.; Wright, C. Comprehensive comparative compositional study of the vapour phase of cigarette mainstream tobacco smoke and tobacco heating product aerosol. J. Chromatogr. A 2018, 1581–1582, 105–115. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-H.; An, Y.-J. Development of a standardized new cigarette smoke generating (SNCSG) system for the assessment of chemicals in the smoke of new cigarette types (heat-not-burn (HNB) tobacco and electronic cigarettes (E-Cigs). Environ. Res. 2020, 185, 109413. [Google Scholar] [CrossRef] [PubMed]
- Bekki, K.; Inaba, Y.; Uchiyama, S.; Kunugita, N. Comparison of Chemicals in Mainstream Smoke in Heat-not-burn Tobacco and Combustion Cigarettes. J. Uoeh 2017, 39, 201–207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eaton, D.; Jakaj, B.; Forster, M.; Nicol, J.; Mavropoulou, E.; Scott, K.; Liu, C.; Mcadam, K.; Murphy, J.; Proctor, C.J. Assessment of tobacco heating product THP1.0. Part 2: Product design, operation and thermophysical characterisation. Regul. Toxicol. Pharmacol. 2018, 93, 4–13. [Google Scholar] [CrossRef]
- Forster, M.; Fiebelkorn, S.; Yurteri, C.; Mariner, D.; Liu, C.; Wright, C.; Mcadam, K.; Murphy, J.; Proctor, C. Assessment of novel tobacco heating product THP1.0. Part 3: Comprehensive chemical characterisation of harmful and potentially harmful aerosol emissions. Regul. Toxicol. Pharmacol. 2018, 93, 14–33. [Google Scholar] [CrossRef]
- Jaccard, G.; Tafin Djoko, D.; Moennikes, O.; Jeannet, C.; Kondylis, A.; Belushkin, M. Comparative assessment of HPHC yields in the Tobacco Heating System THS2.2 and commercial cigarettes. Regul. Toxicol. Pharmacol. 2017, 90, 1–8. [Google Scholar] [CrossRef]
- Pazo, D.Y.; Moliere, F.; Sampson, M.M.; Reese, C.M.; Agnew-Heard, K.A.; Walters, M.J.; Holman, M.R.; Blount, B.C.; Watson, C.H.; Chambers, D.M. Mainstream Smoke Levels of Volatile Organic Compounds in 50 U.S. Domestic Cigarette Brands Smoked With the ISO and Canadian Intense Protocols. Nicotine Tob. Res. 2016, 18, 1886–1894. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirn, C.; Kanemaru, Y.; Stedeford, T.; Paschke, T.; Baskerville-Abraham, I. Comparative and cumulative quantitative risk assessments on a novel heated tobacco product versus the 3R4F reference cigarette. Toxicol. Rep. 2020, 7, 1502–1513. [Google Scholar] [CrossRef]
- Fowles, J.; Dybing, E. Application of toxicological risk assessment principles to the chemical constituents of cigarette smoke. Tob. Control 2003, 12, 424–430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heaven Gifts. Available online: https://www.heavengifts.com/ (accessed on 6 December 2021).
- Centers for Disease Control and Prevention. Notes from the Field: E-Cigarette Use among Middle and High School Students—National Youth Tobacco Survey, United States, 2021. Available online: https://www.cdc.gov/mmwr/volumes/70/wr/mm7039a4.htm?s_cid=mm7039a4 (accessed on 8 December 2021).
- U.S. FDA. Youth E-cigarette Use Remains Serious Public Health Concern Amid COVID-19 Pandemic. Available online: https://www.fda.gov/news-events/press-announcements/youth-e-cigarette-use-remains-serious-public-health-concern-amid-covid-19-pandemic (accessed on 7 December 2021).
- CORESTA. Recommended Method N° 81. Routine Analytical Machine for E-Cigarette Aerosol Generation and Collection–Definitions and Standard Conditions; CORESTA: Paris, France, 2015; pp. 1–6. Available online: https://www.coresta.org/search/site/CRM%20No.81 (accessed on 9 December 2021).
- ISO 3308. Routine Analytical Cigarette Smoking Machine-Definitions and Standard Conditions; ISO: Geneva, Switzerland, 2012; pp. 1–31. Available online: https://www.doc88.com/p-1864937803463.html (accessed on 5 June 2021).
- CORESTA. Recommended Method No 70. Determination of Selected Volatile Organic Compounds in the Mainstream Smoke of Cigarettes-Gas Chromatography-Mass Spectrometry Method; CORESTA: Paris, France, 2014; Available online: https://www.coresta.org/search/site/CRM%2520No.70 (accessed on 3 January 2021).
- GB/T 27523-2011. Cigarettes-Determination of Volatile Organic Compounds (1,3-Butadiene, Isoprene, Acrylonitrile, Benzene, Toluene) in Mainstream Smoke-GC-MS Method; General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China: Beijing, China, 2011; Available online: https://www.doc88.com/p-701862311399.html (accessed on 5 June 2021).
- CORESTA. Recommended Method N°. 74. Determination of Selected Carbonyls in Mainstream Cigarette Smoke by HPLC; CORESTA: Paris, France, 2018; Available online: https://www.coresta.org/search/site/Determination%20of%20selected%20carbonyls%20in%20mainstream%20cigarette%20smoke%20by%20HPLC (accessed on 3 January 2021).
- GB/T19609-2004. Cigarette-Determination of Total and Nicotine-Free Dry Particulate Using a Routine Analytical Smoking Machine; General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China: Beijing, China, 2004; Available online: https://www.doc88.com/p-2562493560107.html (accessed on 5 June 2021).
- GB/T 23203.1-2013. Cigarettes-Determination of Water in Smoke Condensates-Part 1: Gas-Chromatographic; General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China: Beijing, China, 2013; Available online: https://www.doc88.com/p-6943506288379.html (accessed on 5 April 2021).
- CORESTA. Recommended Method No 55. Determination of Carbon Monoxide in the Vapour Phase of Cigarette Sidestream Smoke Using a Fishtail Chimney and a Routine Analytical/Linear Smoking Machine; CORESTA: Paris, France, 2011; Available online: https://www.coresta.org/search/site/CRM%20No.55 (accessed on 8 August 2021).
- St. Charles, F.K.; McAughey, J.; Shepperd, C.J. Methodologies for the quantitative estimation of toxicant dose to cigarette smokers using physical, chemical and bioanalytical data. Inhal. Toxicol. 2013, 25, 383–397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, F.; Li, S.; Shen, B.; Zhang, J.; Liu, L. The emission characteristic of VOCs and the toxicity of BTEX from differentvmosquito-repellent incenses. J. Hazard. Mater. 2020, 384, 671–677. [Google Scholar] [CrossRef] [PubMed]
- US EPA. Guidelines for Exposure Assessment, EPA/600/Z-92/001; US Environmental Protection Agency (US EPA): Washington, DC, USA, 1992. Available online: https://www.epa.gov/risk/guidelines-exposure-assessment (accessed on 5 April 2021).
- Duan, X. Research Methods of Exposure Factors and Its Application in Environmental Health Risk Assessment; Science Press: Beijing, China, 2012. [Google Scholar]
- Chinese Center for Disease Control and Prevention. Adult Tobacco Survey Report of China (2015). 2015. Available online: https://www.chinacdc.cn/jlm/yw/201512/t20151228_123960.html (accessed on 5 November 2021).
- U.S EPA. Guidelines for the Health Risk Assessment of Chemical Mixtures. 1986. Available online: https://www.epa.gov/sites/production/files/2014-11/documents/chem_mix_1986.pdf (accessed on 8 January 2021).
- Wang, X.; Gao, S.; Zhou, J.; Wang, Z. Risk assessment of VOCs from cooking fumes. Res. Environ. Sci. 2012, 25, 1359–1363. [Google Scholar]
- HJ 25.3-2014. Technical Guidelines for Risk Assessment of Contaminated Sites; China Environmental Press: Beijing, China, 2014; pp. 1–56. Available online: https://www.docin.com/p-2215481867.html (accessed on 5 July 2021).
- Wan, Y.; Li, Y.; Wang, L.; Xu, M.; Xiong, X. Research Progress and Pollution Control for Indoor Semi-Volatile Organic. J. Shanghai Univ. Eng. Sci. 2016, 30, 66–71. [Google Scholar]
- Stephens, W.E. Comparing the cancer potencies of emissions from vapourised nicotine products including e-cigarettes with those of tobacco smoke. Tob. Control 2017, 27, 10–17. [Google Scholar] [CrossRef] [Green Version]
- Yin, F.; Zhang, X.; Song, S.; Han, T.; Karangwa, E. Identification of aroma types and their characteristic volatile compounds of Chinese faint-scent cigarettes based on descriptive sensory analysis and GC–MS and partial least squares regression. Eur. Food Res. Technol. 2016, 242, 869–880. [Google Scholar] [CrossRef]
- Li, J.; He, J.; Shi, H. Study on the Aroma Components of Flue-cured Tobacco Leaves in Guangyuan Tobacco-growing Areas. J. Anhui Agric. Sci. 2017, 45, 65–68. [Google Scholar]
- Gallus, S. Smoking high tar cigarettes increases risk of death from lung cancer, but no differences in risk for smokers of very low, low and medium tar cigarettes. Evid.-Based Healthc. 2004, 8, 207–209. [Google Scholar] [CrossRef]
- Marcilla, A.; Beltran, M.I.; Gómez-Siurana, A.; Berenguer, D.; Martínez-Castellanos, I. Comparison between the mainstream smoke of eleven RYO tobacco brands and the reference tobacco 3R4F. Toxicol. Rep. 2014, 1, 122–136. [Google Scholar] [CrossRef] [Green Version]
- U.S EPA. The Integrated Risk Information System. 1985. Available online: https://cfpub.epa.gov/ncea/iris/search/index.cfm (accessed on 5 January 2021).
- Haussmann, H.-J. Use of hazard indices for a theoretical evaluation of cigarette smoke composition. Chem. Res. Toxicol. 2012, 25, 794–810. [Google Scholar] [CrossRef] [PubMed]
- Zirak, M.R.; Mehri, S.; Karimani, A.; Zeinali, M.; Hayes, A.W.; Karimi, G. Mechanisms behind the atherothrombotic effects of acrolein, a review. Food Chem. Toxicol. 2019, 129, 38–53. [Google Scholar] [CrossRef]
- Chinese Association on Tobacco Control. China Adult Tobacco Survey Results in 2018. 2018. Available online: http://www.catcprc.org.cn/index.aspx?menuid=22&type=articleinfo&lanmuid=139&infoid=11553&language=cn (accessed on 5 January 2021).
- Sood, A.K.; Kesic, M.J.; Hernandez, M.L. Electronic cigarettes: One size does not fit all. J. Allergy Clin. Immunol. 2018, 141, 1973–1982. [Google Scholar] [CrossRef] [Green Version]
- Clapp, P.W.; Jaspers, I. Electronic Cigarettes:Their Constituents and Potetial Links to Asthma. Curr. Allergy Asthma Rep. 2017, 17, 1–13. [Google Scholar] [CrossRef]
- Gillman, I.G.; Kistler, K.A.; Stewart, E.W.; Paolantonio, A.R. Effect of variable power levels on the yield of total aerosol mass and formation of aldehydes in e-cigarette aerosols. Regul. Toxicol. Pharmacol. 2016, 75, 58–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, W. Volatile organic compounds, odor, and inhalation health risks during interior construction of a fully furnished residential unit in Nanjing, China. Build. Environ. 2020, 186, 107366. [Google Scholar] [CrossRef]
Pollutants (ug/mL) | HTPs | E-Cigarettes | Cigarettes | 3R4F a | 3R4F b |
---|---|---|---|---|---|
CO | 0.88 | ND | 35.2 | 57.3 | 61.8 |
Styrene | ND | ND | 0.050 | 0.026 | 0.004 |
Isoprene | ND | ND | 1.0 | 1.7 | 0.89 |
Benzene | ND | ND | 0.12 | 0.17 | 0.60 |
Toluene | ND | ND | 0.28 | 0.29 | 0.13 |
Catechol | ND | ND | 0.22 | 0.18 | / |
Formaldehyde | 0.007 | 0.011 | 0.028 | 0.085 | / |
Acetaldehyde | 0.013 | 0.005 | 0.024 | 4.3 | 2.2 |
Acetone | 0.15 | ND | 0.82 | 1.2 | / |
Acrolein | 0.04 | ND | 0.17 | 0.26 | 0.11 |
Nicotine | 1.6 | 4.5 | 4.17 | 3.6 | 4.2 |
Propylene glycol | 0.38 | 30.7 | 0.12 | 0.062 | / |
Glycerol | 0.03 | 98.0 | 0.94 | 4.1 | / |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, F.; Yu, M.; Chen, C.; Liu, L.; Zhao, P.; Shen, B.; Sun, R. The Emission of VOCs and CO from Heated Tobacco Products, Electronic Cigarettes, and Conventional Cigarettes, and Their Health Risk. Toxics 2022, 10, 8. https://doi.org/10.3390/toxics10010008
Lu F, Yu M, Chen C, Liu L, Zhao P, Shen B, Sun R. The Emission of VOCs and CO from Heated Tobacco Products, Electronic Cigarettes, and Conventional Cigarettes, and Their Health Risk. Toxics. 2022; 10(1):8. https://doi.org/10.3390/toxics10010008
Chicago/Turabian StyleLu, Fengju, Miao Yu, Chaoxian Chen, Lijun Liu, Peng Zhao, Boxiong Shen, and Ran Sun. 2022. "The Emission of VOCs and CO from Heated Tobacco Products, Electronic Cigarettes, and Conventional Cigarettes, and Their Health Risk" Toxics 10, no. 1: 8. https://doi.org/10.3390/toxics10010008
APA StyleLu, F., Yu, M., Chen, C., Liu, L., Zhao, P., Shen, B., & Sun, R. (2022). The Emission of VOCs and CO from Heated Tobacco Products, Electronic Cigarettes, and Conventional Cigarettes, and Their Health Risk. Toxics, 10(1), 8. https://doi.org/10.3390/toxics10010008