Radiation Attenuation Assessment of Serpentinite Rocks from a Geological Perspective
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Material Characterization
2.2.1. Megascopic Characterization (in the Field)
2.2.2. Mineralogical Composition
2.2.3. Morphological Characterization
2.2.4. Physical Characterization
2.2.5. Geochemical Characterization
2.2.6. Thermal Analysis (TG/DTG)
2.3. Radiation Measurements
3. Results and Discussion
3.1. Megascopic Characterization
3.2. Mineralogical Characterization
3.3. Morphological Characterization
3.4. Physical Characterization
3.5. Geochemical Characterization
3.6. Thermal Analyses (TG/DTG)
3.7. Radiation Measurements
3.7.1. Fast Neutron Attenuation
3.7.2. γ-Ray Attenuation
4. Conclusions
- Inspected serpentinite rocks (AS, LS, and CS) revealed variations in the mineralogical, geochemical, and morphological properties. More specifically, the AS sample is mainly composed of antigorite mineral with high SiO2 and Fe2O3%, while lizardite and chrysotile are the principal minerals of the LS and CS samples, respectively, with lower SiO2 and Fe2O3%. Magnetite and dolomite are the dominant associating minerals in these samples but in different magnitudes. As for the morphological features, AS sample had a sub-rectangular shape with a rough surface, while LS sample had a platy shape with rough morphology, and the CS sample possessed splintery and fibrous bundles with a smooth surface.
- It was found that the physical, mineralogical, geochemical, and morphological properties of investigated rocks had significant implications for their radiation-shielding behaviour. This was evident in the deleterious impacts prompted by these properties on radiation shielding as follows: (a) in the CS sample, the higher water absorption and lower density, which are indicative of high porosity and lower specific gravity of this sample compared to the AS and LS samples (physical properties), (b) in the AS and CS samples, the higher proportion of lower density dolomite and chrysotile minerals, which are presented as veins in both CS and AS samples (mineralogy), (c) the higher LOI% of the Cs sample works as a false indication for crystalline H2O (geochemistry), (d) moreover, in the CS sample, the lower compactness of splintery and fibrous bundles with a smooth surface compared to the higher compactness of sub-rectangular and platy habits with rough surfaces in the AS and CS samples, respectively (morphology).
- It was found that the radiation shielding behaviour followed the following order: LS > AS > CS, against both fast neutrons and γ-rays. This was correlated with the measured radiation attenuation parameters of fast neutrons and γ-rays, involving µ (cm−1), Σ (cm−1), MFP (cm), and HVL (cm).
- Specifically, the radiation attenuation investigation of serpentinite rocks should be taken with caution. This can be assigned to the commonly associated dolomite mineral, which renders the LOI% misleading and illusive ratio for the crystalline H2O responsible for fast neutron attenuation. Therefore, LOI% cannot be directly indicative of the amount of crystalline H2O compared to other samples such as limonite and goethite.
- The AS and LS samples are more convenient and competent for radiation shielding compared to the CS sample.
- The serpentinite rocks are promising rocks as shields against fast neutrons and γ-rays in nuclear facilities considering their mineralogy and geochemistry.
- With the same radiation measurement conditions (i.e., source type and geometry), the serpentinite rocks are more efficient as a radiation shield than some concrete mixes.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, S.; Kim, M.; Lee, J. Analyzing the Impact of Nuclear Power on CO2 Emissions. Sustainability 2017, 9, 1428. [Google Scholar] [CrossRef] [Green Version]
- El-Samrah, M.G.; Tawfic, A.F.; Chidiac, S.E. Spent nuclear fuel interim dry storage; Design requirements, most common methods, and evolution: A review. Ann. Nucl. Energy 2021, 160, 108408. [Google Scholar] [CrossRef]
- Otto, T. Beam Hazards and Ionising Radiation. In Safety for Particle Accelerators; Springer International Publishing: Cham, Switzerland, 2021; pp. 55–82. [Google Scholar] [CrossRef]
- Ryan, J.L. Ionizing Radiation: The Good, the Bad, and the Ugly. J. Investig. Dermatol. 2012, 132, 985–993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akkurt, I.; Kilincarslan, S.; Basyigit, C. The photon attenuation coefficients of barite, marble and limra. Ann. Nucl. Energy 2004, 31, 577–582. [Google Scholar] [CrossRef]
- Bantan, R.A.R.; Sayyed, M.I.; Mahmoud, K.A.; Al-Hadeethi, Y. Application of experimental measurements, Monte Carlo simulation and theoretical calculation to estimate the gamma ray shielding capacity of various natural rocks. Prog. Nucl. Energy 2020, 126, 103405. [Google Scholar] [CrossRef]
- Khalaf, M.A.; Ban, C.C.; Ramli, M. The constituents, properties and application of heavyweight concrete: A review. Constr. Build. Mater. 2019, 215, 73–89. [Google Scholar] [CrossRef]
- Abdullah, M.A.H.; Rashid, R.S.M.; Amran, M.; Hejazii, F.; Masenwat, N.A.B.; Fediuk, R.; Voo, Y.L.; Vatin, N.I.; Idris, M.I. Recent Trends in Advanced Radiation Shielding Concrete for Construction of Facilities: Materials and Properties. Polymers 2022, 14, 2830. [Google Scholar] [CrossRef]
- Oto, B.; Yıldız, N.; Akdemir, F.; Kavaz, E. Investigation of gamma radiation shielding properties of various ores. Prog. Nucl. Energy 2015, 85, 391–403. [Google Scholar] [CrossRef]
- Masoud, M.A.; El-Khayatt, A.M.; Kansouh, W.A.; Sakr, K.; Shahien, M.G.; Zayed, A.M. Insights into the effect of the mineralogical composition of serpentine aggregates on the radiation attenuation properties of their concretes. Constr. Build. Mater. 2020, 263, 120141. [Google Scholar] [CrossRef]
- Comboni, D.; Pagliaro, F.; Gatta, G.D.; Lotti, P.; Battiston, T.; Merlini, M.; Hanfland, M. Phase transition and high-pressure behavior of ulexite, a potential aggregate in radiation-shielding concretes. Constr. Build. Mater. 2021, 291, 123188. [Google Scholar] [CrossRef]
- Chidiac, S.E.; El-Samrah, M.G.; Reda, M.A.; Abdel-Rahman, M.A.E. Mechanical and radiation shielding properties of concrete containing commercial boron carbide powder. Constr. Build. Mater. 2021, 313, 125466. [Google Scholar] [CrossRef]
- Zayed, A.M.; Masoud, M.A.; Shahien, M.G.; Gökçe, H.S.; Sakr, K.; Kansouh, W.A.; El-Khayatt, A.M. Physical, mechanical, and radiation attenuation properties of serpentine concrete containing boric acid. Constr. Build. Mater. 2021, 272, 121641. [Google Scholar] [CrossRef]
- Park, J.; Her, S.; Cho, S.; Woo, S.M.; Bae, S. Synthesis and characterization of Polyethylene/B4C composite, and its neutron shielding performance in cementitious materials: Experimental and simulation studies. Cem. Concr. Compos. 2022, 129, 104458. [Google Scholar] [CrossRef]
- Masoud, M.A. Effect of Geochemical Composition of Some Egyptian Serpentinites on Its Properties As a Radiation Shielding Concrete. Master’s Thesis, Beni-Suef University, Beni Suef, Egypt, 2020. [Google Scholar]
- Mukherjee, S. Applied Mineralogy: Applications in Industry and Environment; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar] [CrossRef]
- Hemid, E.M.; Kántor, T.; Tamma, A.A.; Masoud, M.A. Effect of groundwater fluctuation, construction, and retaining system on slope stability of Avas Hill in Hungary. Open Geosci. 2021, 13, 1139–1157. [Google Scholar] [CrossRef]
- Çelen, Y.Y.; Akkurt, I.; Ceylan, Y.; Atçeken, H. Application of experiment and simulation to estimate radiation shielding capacity of various rocks. Arab. J. Geosci. 2021, 14, 1471. [Google Scholar] [CrossRef]
- Wani, A.L.; Ara, A.; Usmani, J.A. Lead toxicity: A review. Interdiscip. Toxicol. 2016, 8, 55–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Navarro, R.; Pereira, D.; Gimeno, A.; Del Barrio, S. Verde Macael: A Serpentinite Wrongly Referred to as a Marble. Geosciences 2013, 3, 102–113. [Google Scholar] [CrossRef] [Green Version]
- Alorfi, H.S.; Hussein, M.A.; Tijani, S.A. The use of rocks in lieu of bricks and concrete as radiation shielding barriers at low gamma and nuclear medicine energies. Constr. Build. Mater. 2020, 251, 118908. [Google Scholar] [CrossRef]
- Obaid, S.S.; Gaikwad, D.K.; Pawar, P.P. Determination of gamma ray shielding parameters of rocks and concrete. Radiat. Phys. Chem. 2018, 144, 356–360. [Google Scholar] [CrossRef]
- Al-Buriahi, M.S.; Sayyed, M.; Bantan, R.A.; Al-Hadeethi, Y. Nuclear Radiation Shielding Characteristics of Some Natural Rocks by Using EPICS2017 Library. Materials 2021, 14, 4669. [Google Scholar] [CrossRef]
- Libeesh, N.K.; Naseer, K.A.; Arivazhagan, S.; El-Rehim, A.F.A.; Almisned, G.; Tekin, H.O. Characterization of Ultramafic–Alkaline—Carbonatite complex for radiation shielding competencies: An experimental and Monte Carlo study with lithological mapping. Ore Geol. Rev. 2022, 142, 104735. [Google Scholar] [CrossRef]
- Libeesh, N.K.; Naseer, K.A.; Arivazhagan, S.; Abd El-Rehim, A.F.; Mahmoud, K.A.; Sayyed, M.I.; Khandaker, M.U. Advanced nuclear radiation shielding studies of some mafic and ultramafic complexes with lithological mapping. Radiat. Phys. Chem. 2021, 189, 109777. [Google Scholar] [CrossRef]
- Libeesh, N.K.; Naseer, K.A.; Mahmoud, K.A.; Sayyed, M.I.; Arivazhagan, S.; Alqahtani, M.S.; Yousef, E.S.; Khandaker, M.U. Applicability of the multispectral remote sensing on determining the natural rock complexes distribution and their evaluability on the radiation protection applications. Radiat. Phys. Chem. 2022, 193, 110004. [Google Scholar] [CrossRef]
- Akkurt, I.; Altindag, R.; Onargan, T.; Basyigit, C.; Kılıncarslan, S.; Kun, M.; Mavi, B.; Güney, A. The properties of various igneous rocks for γ-ray shielding. Constr. Build. Mater. 2007, 21, 2078–2082. [Google Scholar] [CrossRef]
- Mavi, B. Experimental investigation of γ-ray attenuation coefficients for granites. Ann. Nucl. Energy 2012, 44, 22–25. [Google Scholar] [CrossRef]
- Eke, C.; Agar, O.; Segebade, C.; Boztosun, I. Attenuation properties of radiation shielding materials such as granite and marble against γ-ray energies between 80 and 1350 keV. Radiochim. Acta 2017, 105, 851–863. [Google Scholar] [CrossRef]
- Obaid, S.S.; Sayyed, M.I.; Gaikwad, D.K.; Pawar, P.P. Attenuation coefficients and exposure buildup factor of some rocks for gamma ray shielding applications. Radiat. Phys. Chem. 2018, 148, 86–94. [Google Scholar] [CrossRef]
- Ozyurt, O.; Altinsoy, N.; Karaaslan, Ş.İ.; Bora, A.; Buyuk, B.; Erk, İ. Calculation of gamma ray attenuation coefficients of some granite samples using a Monte Carlo simulation code. Radiat. Phys. Chem. 2018, 144, 271–275. [Google Scholar] [CrossRef]
- Abdalla, A.M.; Al-Naggar, T.I.; Bashiri, A.M.; Alsareii, S.A. Radiation shielding performance for local granites. Prog. Nucl. Energy 2022, 150, 104294. [Google Scholar] [CrossRef]
- Mahmoud, K.A.; Sayyed, M.I.; Tashlykov, O.L. Gamma ray shielding characteristics and exposure buildup factor for some natural rocks using MCNP-5 code. Nucl. Eng. Technol. 2019, 51, 1835–1841. [Google Scholar] [CrossRef]
- Vega-Carrillo, H.R.; Guzman-Garcia, K.A.; Rodriguez-Rodriguez, J.A.; Juarez-Alvarado, C.A.; Singh, V.P.; de León-Martinez, H.A. Photon and neutron shielding features of quarry tuff. Ann. Nucl. Energy 2018, 112, 411–417. [Google Scholar] [CrossRef]
- De León-Martínez, H.A.; Molina-Contreras, J.R.; Escalera-Velasco, L.A.; Hernández-Murillo, C.G.; Vega-Carrillo, H.R.; Rodríguez-Rodríguez, J.A. Shielding capabilities study of light-gray, pale-pink and orange-pink Zacatecan quarries against ionizing photons using EDXRF and XCOM code. Prog. Nucl. Energy 2020, 123, 103287. [Google Scholar] [CrossRef]
- James, F.; Ziegler, F.; Biersack, J.P.; Ziegler, M. SRIM, the stopping and range of ions in matter. Nucl. Instrum. Methods Phys. Res. B 2008, 268, 1818–1823. [Google Scholar] [CrossRef] [Green Version]
- Saeed, A.; Alomairy, S.; Sriwunkum, C.; Al-Buriahi, M.S. Neutron and charged particle attenuation properties of volcanic rocks. Radiat. Phys. Chem. 2021, 184, 109454. [Google Scholar] [CrossRef]
- Arivazhagan, S.; Naseer, K.A.; Mahmoud, K.A.; Arun Kumar, K.V.; Libeesh, N.K.; Sayyed, M.I.; Alqahtani, M.S.; Yousef, E.S.; Khandaker, M.U. Gamma-ray protection capacity evaluation and satellite data based mapping for the limestone, charnockite, and gneiss rocks in the Sirugudi taluk of the Dindigul district, India. Radiat. Phys. Chem. 2022, 196, 110108. [Google Scholar] [CrossRef]
- Basyigit, C.; Akkurt, I.; Kilincarslan, S.; Akkurt, A. Investigation of photon attenuation coefficients for marble. J. Radiol. Prot. 2005, 25, 189–192. [Google Scholar] [CrossRef]
- Elsafi, M.; El-Nahal, M.A.; Alrashedi, M.F.; Olarinoye, O.I.; Sayyed, M.I.; Khandaker, M.U.; Osman, H.; Alamri, S.; Abbas, M.I. Shielding Properties of Some Marble Types: A Comprehensive Study of Experimental and XCOM Results. Materials 2021, 14, 4194. [Google Scholar] [CrossRef]
- Toft, P.B.; Arkani-Hamed, J.; Haggerty, S.E. The effects of serpentinization on density and magnetic susceptibility: A petrophysical model. PEPI 1990, 65, 137–157. [Google Scholar] [CrossRef]
- Khedr, M.Z.; Arai, S. Composite origin of magnetite deposits hosted in Oman peridotites: Evidence for iron mobility during serpentinization. Ore Geol. Rev. 2018, 101, 180–198. [Google Scholar] [CrossRef]
- Shohda, A.M.A.; Ali, M.A.M.; Ren, G.; Kim, J.-G.; Abdo, A.M.; Abdellah, W.R.; Hassan, A.M. Sustainable Assignment of Egyptian Ornamental Stones for Interior and Exterior Building Finishes Using the AHP-TOPSIS Technique. Sustainability 2022, 14, 2453. [Google Scholar] [CrossRef]
- Shahien, M.G.; Azer, M.K.; Asimow, P.D. Neoproterozoic Ophiolites of the Arabian-Nubian Shield. In The Geology of the Arabian-Nubian Shield; Hamimi, Z., Fowler, A.-R., Liégeois, J.-P., Collins, A., Abdelsalam, M.G., Abd Ei-Wahed, M., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 297–330. [Google Scholar] [CrossRef]
- Ismael, I.S.; Hassan, M.S. Characterization of some Egyptian serpentinites used as ornamental stones. Chin. J. Geochem. 2008, 27, 140–149. [Google Scholar] [CrossRef]
- Masoud, M.A.; Rashad, A.M.; Sakr, K.; Shahien, M.G.; Zayed, A.M. Possibility of using different types of Egyptian serpentine as fine and coarse aggregates for concrete production. Mater. Struct. 2020, 53, 87. [Google Scholar] [CrossRef]
- Masoud, M.A.; Kansouh, W.A.; Shahien, M.G.; Sakr, K.; Rashad, A.M.; Zayed, A.M. An experimental investigation on the effects of barite/hematite on the radiation shielding properties of serpentine concretes. Prog. Nucl. Energy 2020, 120, 103220. [Google Scholar] [CrossRef]
- Zayed, A.M.; Masoud, M.A.; Rashad, A.M.; El-Khayatt, A.M.; Sakr, K.; Kansouh, W.A.; Shahien, M.G. Influence of heavyweight aggregates on the physico-mechanical and radiation attenuation properties of serpentine-based concrete. Constr. Build. Mater. 2020, 260, 120473. [Google Scholar] [CrossRef]
- Li, C.-Y.; Xia, X.-B.; Cai, J.; Zhang, Z.-H.; Zhang, G.-Q.; Wang, J.-H.; Qian, Z.-C. Radiation dose distribution of liquid fueled thorium molten salt reactor. Nucl. Sci. Tech. 2021, 32, 22. [Google Scholar] [CrossRef]
- BS EN 12407:2007; Natural Stone Test Methods-Petrographic Examination. British Standards Institution: London, UK, 2007.
- ASTM C119; Standard Terminology Relating to Dimension Stone. ASTM International: West Conshohocken, PA, USA, 2014.
- ASTM C97; Standard Test Methods for Absorption and Bulk Specific Gravity of Dimension Stone. ASTM International: West Conshohocken, PA, USA, 2015.
- ASTM E1621; Standard Guide for Elemental Analysis by Wavelength Dispersive X-ray Fluorescence Spectrometry. ASTM International: West Conshohocken, PA, USA, 2013.
- ASTM D7348; Standard Test Methods for Loss on Ignition (LOI) of Solid Combustion Residues. ASTM International: West Conshohocken, PA, USA, 2013.
- Viti, C. Serpentine minerals discrimination by thermal analysis. Am. Miner. 2010, 95, 631–638. [Google Scholar] [CrossRef]
- Sosa, C.S.; Flaska, M.; Pozzi, S.A. Comparison of analog and digital pulse-shape-discrimination systems. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2016, 826, 72–79. [Google Scholar] [CrossRef]
- Ruch, M.L.; Flaska, M.; Pozzi, S.A. Pulse shape discrimination performance of stilbene coupled to low-noise silicon photomultipliers. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2015, 793, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Vega-Carrillo, H.R.; Manzanares-Acuña, E.; Becerra-Ferreiro, A.; Carrillo-Nuñez, A. Neutron and gamma-ray spectra of 239PuBe and 241AmBe. Appl. Radiat. Isot. 2002, 57, 167–170. [Google Scholar] [CrossRef]
- Saglime, F.J.; Danon, Y.; Block, R.C.; Rapp, M.J.; Bahran, R.M.; Leinweber, G.; Barry, D.P.; Drindak, N.J. A system for differential neutron scattering experiments in the energy range from 0.5 to 20MeV. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2010, 620, 401–409. [Google Scholar] [CrossRef]
- Hamdy, M.M.; Lasheen, E.S.R.; Abdelwahab, W. Gold-bearing listwaenites in ophiolitic ultramafics from the Eastern Desert of Egypt: Subduction zone-related alteration of Neoproterozoic mantle? J. Afr. Earth Sci. 2022, 193, 104574. [Google Scholar] [CrossRef]
- Pereira, D.; Yenes, M.; Blanco, J.; Peinado, M. Characterization of serpentinites to define their appropriate use as dimension stone. Geol. Soc. Spec. Publ. London 2007, 271, 55–62. [Google Scholar] [CrossRef] [Green Version]
- Wicks, F.; Whittaker, E. Serpentine textures and serpentinization. Can. Miner. 1977, 15, 459–488. [Google Scholar]
- Caillaud, J.; Proust, D.; Righi, D. Weathering sequences of rock-forming minerals in a serpentinite: Influence of microsystems on clay mineralogy. Clays Clay Miner. 2006, 54, 87–100. [Google Scholar] [CrossRef]
- Gahlan, H.A.; Azer, M.K.; Asimow, P.D.; Mubarak, H.S.; Al-Kahtany, K.M. Petrological characteristics of the Neoproterozoic Ess ophiolite mantle section, Arabian Shield, Saudi Arabia: A mineral chemistry perspective. Int. J. Earth Sci. 2020, 109, 239–251. [Google Scholar] [CrossRef]
- ASTM C1526; Standard Specification for Serpentine Dimension Stone. ASTM International: West Conshohocken, PA, USA, 2003.
- Khedr, M.Z.; Takazawa, E.; Hauzenberger, C.; Tamura, A.; Arai, S.; Stern, R.J.; Morishita, T.; El-Awady, A. Petrogenesis of arc-related serpentinized peridotites (Egypt): Insights into Neoproterozoic mantle evolution beneath the Arabian-Nubian Shield. J. Asian Earth Sci. 2022, 226, 105078. [Google Scholar] [CrossRef]
- Page, N.J. Chemical differences among the serpentine “polymorphs”1. Am. Miner. 1968, 53, 201–215. [Google Scholar]
- Karipi, S.; Tsikouras, B.; Hatzipanagiotou, K. The petrogenesis and tectonic setting of ultramafic rocks from Iti and Kallidromon Mountains, continental Central Greece: Vestiges of the Pindos ocean. Can. Miner. 2006, 44, 267–287. [Google Scholar] [CrossRef]
- Bhat, I.M.; Ahmad, T.; Subba Rao, D. Geochemical characterization of serpentinized peridotites from the Shergol ophiolitic slice along the Indus Suture Zone (ISZ), Ladakh Himalaya, India. J. Geol. 2017, 125, 501–513. [Google Scholar] [CrossRef]
- Surour, A.A. Chemistry of serpentine “polymorphs” in the Pan-African serpentinites from the Eastern Desert of Egypt, with an emphasis on the effect of superimposed thermal metamorphism. Miner. Petrol. 2017, 111, 99–119. [Google Scholar] [CrossRef]
- Cheng, T.W.; Ding, Y.C.; Chiu, J.P. A study of synthetic forsterite refractory materials using waste serpentine cutting. Miner. Eng. 2002, 15, 271–275. [Google Scholar] [CrossRef]
- Olszak-Humienik, M.; Jablonski, M. Thermal behavior of natural dolomite. J. Therm. Anal. Calorim. 2015, 119, 2239–2248. [Google Scholar] [CrossRef] [Green Version]
- El-Samrah, M.G.; Abdel-Rahman, M.A.E.; El Shazly, R.M. Effect of heating on physical, mechanical, and nuclear radiation shielding properties of modified concrete mixes. Radiat. Phys. Chem. 2018, 153, 104–110. [Google Scholar] [CrossRef]
No. | Parameter | Symbol | Unit | Description | Equation | Abbreviations |
---|---|---|---|---|---|---|
(1) | Effective Macroscopic removal cross-section of fast neutrons | ΣR | cm–1 | probability of fast neutron to undergo a first collision removing it from the group of penetrating, uncollided neutrons | N0 and N are incident and transmitted intensities for fast neutrons, respectively, within the energy range of 0.8–11 MeV. x: sample thickness in cm. | |
(2) | Linear attenuation coefficient of γ-rays | μ | cm–1 | fraction of attenuated incident photons per unit thickness of a material | I0 and I are incident and transmitted intensities for total γ-ray, respectively, within the energy range of 0.4–8.3 MeV. | |
(3) | Mean free path | MFP | cm | Average distance between the two successive interactions. | MFP = 1/Σ, 1/ΣR, 1/μ | |
(4) | Half value layer | HVL | cm | Thickness reducing the radiation intensity to half | HVL= ln 2/Σ, ln 2/ΣR, ln 2/μ | |
(5) | Uncertainty propagation equations | ρ: sample density | ||||
(6) |
Property | AS | LS | CS | International Standard |
---|---|---|---|---|
Density (g/cm3) | 2.60 | 2.46 | 2.24 | ASTM C97 and C1526 [52,65] |
Water absorption (%) | 1.58 | 4.21 | 8.30 |
Oxide (%) | AS | LS | CS |
---|---|---|---|
MgO | 37.05 | 38.08 | 37.39 |
SiO2 | 40.97 | 40.21 | 35.18 |
Fe2O3 | 8.03 | 5.88 | 5.69 |
CaO | 0.23 | 0.60 | 3.62 |
Al2O3 | 0.80 | 1.49 | 0.06 |
SO3 | 0.02 | 0.05 | 0.10 |
K2O | 0.04 | 0.07 | 0.04 |
TiO2 | 0.03 | 0.03 | 0.01 |
MnO2 | 0.06 | 0.08 | 0.13 |
P2O5 | 0.03 | 0.00 | 0.00 |
Cr2O3 | 0.34 | 0.36 | 0.11 |
SrO | 0.05 | 0.00 | 0.06 |
NiO | 0.36 | 0.42 | 0.31 |
Co3O4 | 0.04 | 0.01 | 0.12 |
ZnO | 0.00 | 0.00 | 0.00 |
LOI | 11.94 | 12.71 | 17.16 |
Sample Type | ƩR (cm–1) | MFP (cm) | HVL (cm) |
---|---|---|---|
AS | 0.139 ± 0.011 | 7.19 ± 0.57 | 4.99 ± 0.40 |
LS | 0.168 ± 0.013 | 5.95 ± 0.48 | 4.13 ± 0.45 |
CS | 0.130 ± 0.010 | 7.69 ± 0.62 | 5.33 ± 0.43 |
Sample Type | µ (cm−1) | MFP (cm) | HVL (cm) |
---|---|---|---|
AS | 0.106 ± 0.007 | 9.43 ± 0.66 | 6.54 ± 0.46 |
LS | 0.136 ± 0.01 | 7.35 ± 0.51 | 5.10 ± 0.36 |
CS | 0.096 ± 0.007 | 10.42 ± 0.73 | 7.22 ± 0.51 |
Sample Code | Description | ΣR (cm−1) | µ (cm−1) | Ref. |
---|---|---|---|---|
A | Concrete totally composed of antigorite serpentinite aggregate | 0.102 | 0.0832 | [13] |
AB1 | Concrete composed of antigorite serpentinite aggregate incorporated with 1% of boric acid by cement weight | 0.105 | 0.0782 | |
AB2 | Concrete composed of antigorite serpentinite aggregate incorporated with 3% of boric acid by cement weight | 0.108 | 0.0751 | |
AH25 | Concrete composed of 75% antigorite serpentinite aggregate + 25% hematite aggregate | 0.1164 | 0.0880 | [47] |
AH50 | Concrete composed of 50% antigorite serpentinite aggregate + 50% hematite aggregate | 0.1402 | 0.0980 | |
AB25 | Concrete composed of 75% antigorite serpentinite aggregate + 25% barite aggregate | 0.1264 | 0.0910 | |
AB50 | Concrete composed of 50% antigorite serpentinite aggregate + 50% barite aggregate | 0.1580 | 0.1052 | |
LBC | Concrete totally composed of lizardite serpentinite aggregate | 0.0981 | 0.0785 | [10] |
CBC | Concrete totally composed of chrysotile serpentinite aggregate | 0.0930 | 0.0761 | |
AS | Antigorite serpentinite rock | 0.139 | 0.106 | Current study |
LS | Lizardite serpentinite rock | 0.168 | 0.136 | |
CS | Chrysotile serpentinite rock | 0.130 | 0.096 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Masoud, M.A.; El-Khayatt, A.M.; Shahien, M.G.; Bakhit, B.R.; Suliman, I.I.; Zayed, A.M. Radiation Attenuation Assessment of Serpentinite Rocks from a Geological Perspective. Toxics 2022, 10, 697. https://doi.org/10.3390/toxics10110697
Masoud MA, El-Khayatt AM, Shahien MG, Bakhit BR, Suliman II, Zayed AM. Radiation Attenuation Assessment of Serpentinite Rocks from a Geological Perspective. Toxics. 2022; 10(11):697. https://doi.org/10.3390/toxics10110697
Chicago/Turabian StyleMasoud, Mostafa A., Ahmed M. El-Khayatt, Mohamed G. Shahien, Bottros R. Bakhit, Ibrahim I. Suliman, and Ahmed M. Zayed. 2022. "Radiation Attenuation Assessment of Serpentinite Rocks from a Geological Perspective" Toxics 10, no. 11: 697. https://doi.org/10.3390/toxics10110697
APA StyleMasoud, M. A., El-Khayatt, A. M., Shahien, M. G., Bakhit, B. R., Suliman, I. I., & Zayed, A. M. (2022). Radiation Attenuation Assessment of Serpentinite Rocks from a Geological Perspective. Toxics, 10(11), 697. https://doi.org/10.3390/toxics10110697