Sensitivity of Hydra vulgaris to Nanosilver for Environmental Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Nanosilver Characterization
2.2. Acute Short-Term Toxicity
3. Results and Discussion
3.1. AgNPcitLys Behavior in Hydra Medium
3.2. Ecotoxicity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tortella, G.; Rubilar, O.; Durán, N.; Diez, M.; Martínez, M.; Parada, J.; Seabra, A. Silver nanoparticles: Toxicity in model organisms as an overview of its hazard for human health and the environment. J. Hazard. Mater. 2020, 390, 121974. [Google Scholar] [CrossRef] [PubMed]
- Prosposito, P.; Mochi, F.; Ciotta, E.; Casalboni, M.; De Matteis, F.; Venditti, I.; Fontana, L.; Testa, G.; Fratoddi, I. Hydrophilic silver nanoparticles with tunable optical properties: Application for the detection of heavy metals in water. Beilstein J. Nanotechnol. 2016, 7, 1654–1661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Syafiuddin, A.; Salim, M.R.; Beng Hong Kueh, A.; Hadibarata, T.; Nur, H. A review of silver nanoparticles: Research trends, global consumption, synthesis, properties, and future challenges. J. Chin. Chem. Soc. 2017, 64, 732–756. [Google Scholar] [CrossRef]
- Castro, V.L.; Jonsson, C.M.; Silva, M.S.G.M.; Castanha, R.; Vallim, J.H.; da Silva, L.A.G.; de Oliveira, R.M.D.; Correa, D.S.; Ferreira, M.D. Estimates of AgNP toxicity thresholds in support of environmental safety policies. J. Nanopartic. Res. 2021, 24, 1–20. [Google Scholar] [CrossRef]
- Marchioni, M.; Veronesi, G.; Worms, I.; Ling, W.L.; Gallon, T.; Leonard, D.; Gateau, C.; Chevallet, M.; Jouneau, P.-H.; Carlini, L. Safer-by-design biocides made of tri-thiol bridged silver nanoparticle assemblies. Nanoscale Horiz. 2020, 5, 507–513. [Google Scholar] [CrossRef] [Green Version]
- Levard, C.; Hotze, E.M.; Colman, B.P.; Dale, A.L.; Truong, L.; Yang, X.; Bone, A.J.; Brown Jr, G.E.; Tanguay, R.L.; Di Giulio, R.T. Sulfidation of silver nanoparticles: Natural antidote to their toxicity. Environ. Sci. Technol. 2013, 47, 13440–13448. [Google Scholar] [CrossRef] [Green Version]
- Pem, B.; Pongrac, I.M.; Ulm, L.; Pavičić, I.; Vrček, V.; Jurašin, D.D.; Ljubojević, M.; Krivohlavek, A.; Vrček, I.V. Toxicity and safety study of silver and gold nanoparticles functionalized with cysteine and glutathione. Beilstein J. Nanotechnol. 2019, 10, 1802–1817. [Google Scholar] [CrossRef] [Green Version]
- Prosposito, P.; Burratti, L.; Bellingeri, A.; Protano, G.; Faleri, C.; Corsi, I.; Battocchio, C.; Iucci, G.; Tortora, L.; Secchi, V. Bifunctionalized Silver Nanoparticles as Hg2+ Plasmonic Sensor in Water: Synthesis, Characterizations, and Ecosafety. Nanomaterials 2019, 9, 1353. [Google Scholar] [CrossRef] [Green Version]
- Bellingeri, A.; Scattoni, M.; Venditti, I.; Battocchio, C.; Protano, G.; Corsi, I. Ecologically based methods for promoting safer nanosilver for environmental applications. J. Hazard. Mater. 2022, 438, 129523. [Google Scholar] [CrossRef]
- Rosner, A.; Armengaud, J.; Ballarin, L.; Barnay-Verdier, S.; Cima, F.; Coelho, A.V.; Domart-Coulon, I.; Drobne, D.; Genevière, A.-M.; Kokalj, A.J. Stem cells of aquatic invertebrates as an advanced tool for assessing ecotoxicological impacts. Sci. Total Environ. 2021, 771, 144565. [Google Scholar] [CrossRef]
- Blaise, C.; Gagné, F.; Harwood, M.; Quinn, B.; Hanana, H. Ecotoxicity responses of the freshwater cnidarian Hydra attenuata to 11 rare earth elements. Ecotoxicol. Environ. Saf. 2018, 163, 486–491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vimalkumar, K.; Sangeetha, S.; Oscar, F.L.; Kay, P.; Pugazhendhi, A. A systematic review on toxicity assessment of persistent emerging pollutants (EPs) and associated microplastics (MPs) in the environment using the Hydra animal model. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2022, 256, 109320. [Google Scholar] [CrossRef] [PubMed]
- Quinn, B.; Gagné, F.; Blaise, C. Hydra, a model system for environmental studies. Int. J. Dev. Biol. 2012, 56, 613–625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cera, A.; Cesarini, G.; Spani, F.; Scalici, M. Hydra vulgaris assay as environmental assessment tool for ecotoxicology in freshwaters: A review. Mar. Freshw. Res. 2020, 72, 745–753. [Google Scholar] [CrossRef]
- Yum, S.; Woo, S.; Lee, A.; Won, H.; Kim, J. Hydra, a candidate for an alternative model in environmental genomics. Mol. Cell. Toxicol. 2014, 10, 339–346. [Google Scholar] [CrossRef]
- Blaise, C.; Gagné, F.; Ferard, J.; Eullaffroy, P. Ecotoxicity of selected nano-materials to aquatic organisms. Environ. Toxicol. Int. J. 2008, 23, 591–598. [Google Scholar] [CrossRef]
- Malvindi, M.A.; Carbone, L.; Quarta, A.; Tino, A.; Manna, L.; Pellegrino, T.; Tortiglione, C. Rod-shaped nanocrystals elicit neuronal activity in vivo. Small 2008, 4, 1747–1755. [Google Scholar] [CrossRef]
- Tortiglione, C. An ancient model organism to test in vivo novel functional nanocrystals. Biomed. Eng. Theory Appl. 2011, 225–252. [Google Scholar] [CrossRef] [Green Version]
- Ambrosone, A.; Roopin, M.; Pelaz, B.; Abdelmonem, A.M.; Ackermann, L.-M.; Mattera, L.; Allocca, M.; Tino, A.; Klapper, M.; Parak, W.J. Dissecting common and divergent molecular pathways elicited by CdSe/ZnS quantum dots in freshwater and marine sentinel invertebrates. Nanotoxicology 2017, 11, 289–303. [Google Scholar] [CrossRef]
- Côa, F.; Strauss, M.; Clemente, Z.; Neto, L.L.R.; Lopes, J.R.; Alencar, R.S.; Souza Filho, A.G.; Alves, O.L.; Castro, V.L.S.; Barbieri, E. Coating carbon nanotubes with humic acid using an eco-friendly mechanochemical method: Application for Cu (II) ions removal from water and aquatic ecotoxicity. Sci. Total Environ. 2017, 607, 1479–1486. [Google Scholar] [CrossRef]
- Venancio, C.; Savuca, A.; Oliveira, M.; Martins, M.; Lopes, I. Polymethylmethacrylate nanoplastics effects on the freshwater cnidarian Hydra viridissima. J. Hazard. Mater. 2021, 402, 123773. [Google Scholar] [CrossRef] [PubMed]
- Marchesano, V.; Ambrosone, A.; Bartelmess, J.; Strisciante, F.; Tino, A.; Echegoyen, L.; Tortiglione, C.; Giordani, S. Impact of carbon nano-onions on Hydra vulgaris as a model organism for nanoecotoxicology. Nanomaterials 2015, 5, 1331–1350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonçalves, S.P.C.; Strauss, M.; Delite, F.S.; Clemente, Z.; Castro, V.L.; Martinez, D.S.T. Activated carbon from pyrolysed sugarcane bagasse: Silver nanoparticle modification and ecotoxicity assessment. Sci. Total Environ. 2016, 565, 833–840. [Google Scholar] [CrossRef]
- Castro, V.L.; Clemente, Z.; Jonsson, C.; Silva, M.; Vallim, J.H.; de Medeiros, A.M.Z.; Martinez, D.S.T. Nanoecotoxicity assessment of graphene oxide and its relationship with humic acid. Environ. Toxicol. Chem. 2018, 37, 1998–2012. [Google Scholar] [CrossRef]
- Park, H.-G.; Yeo, M.-K. Comparison of gene expression patterns from zebrafish embryos between pure silver nanomaterial and mixed silver nanomaterial containing cells of Hydra magnipapillata. Mol. Cell. Toxicol. 2015, 11, 307–314. [Google Scholar] [CrossRef]
- Kim, S.S.; Lee, J.A.; Yeo, M.-K. Reduction in toxicity of nano-Ag-polyvinyl-pyrrolidone using hydra proteins and peptides during zebrafish embryogenesis. Nanomaterials 2019, 9, 1210. [Google Scholar] [CrossRef] [Green Version]
- Corsi, I.; Bellingeri, A.; Eliso, M.C.; Grassi, G.; Liberatori, G.; Murano, C.; Sturba, L.; Vannuccini, M.L.; Bergami, E. Eco-interactions of engineered nanomaterials in the marine environment: Towards an eco-design framework. Nanomaterials 2021, 11, 1903. [Google Scholar] [CrossRef] [PubMed]
- Schiesaro, I.; Burratti, L.; Meneghini, C.; Fratoddi, I.; Prosposito, P.; Lim, J.; Scheu, C.; Venditti, I.; Iucci, G.; Battocchio, C. Hydrophilic silver nanoparticles for Hg (II) detection in water: Direct evidence for mercury–silver interaction. J. Phys. Chem. C 2020, 124, 25975–25983. [Google Scholar] [CrossRef]
- Wilby, O. The Hydra regeneration assay. In Proceedings of the Workshop Organised by Association Francaise de Teratologie, Royaumont, France, 3 June 1988; pp. 108–124. [Google Scholar]
- Kang, J.S.; Park, J.W. Silver Ion Release Accelerated in the Gastrovascular Cavity of Hydra vulgaris Increases the Toxicity of Silver Sulfide Nanoparticles. Environ. Toxicol. Chem. 2021, 40, 1662–1672. [Google Scholar] [CrossRef]
- Ambrosone, A.; Scotto di Vettimo, M.R.; Malvindi, M.A.; Roopin, M.; Levy, O.; Marchesano, V.; Pompa, P.P.; Tortiglione, C.; Tino, A. Impact of amorphous SiO2 nanoparticles on a living organism: Morphological, behavioral, and molecular biology implications. Front. Bioeng. Biotechnol. 2014, 2, 37. [Google Scholar] [CrossRef]
- Murugadas, A.; Zeeshan, M.; Thamaraiselvi, K.; Ghaskadbi, S.; Akbarsha, M.A. Hydra as a model organism to decipher the toxic effects of copper oxide nanorod: Eco-toxicogenomics approach. Sci. Rep. 2016, 6, 29663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeeshan, M.; Murugadas, A.; Ghaskadbi, S.; Ramaswamy, B.R.; Akbarsha, M.A. Ecotoxicological assessment of cobalt using Hydra model: ROS, oxidative stress, DNA damage, cell cycle arrest, and apoptosis as mechanisms of toxicity. Environ. Pollut. 2017, 224, 54–69. [Google Scholar] [CrossRef] [PubMed]
- Ruch, R.; Cook, C. Nematocyst inactivation during feeding in Hydra littoralis. J. Exp. Biol. 1984, 111, 31–42. [Google Scholar] [CrossRef]
- Lee, J.A.; Yeo, M.-K.; Kim, S.S. Hydra protein reduces the toxicity of Ag–PVP nanoparticles in a 3D A549 cell line. Mol. Cell. Toxicol. 2020, 16, 73–81. [Google Scholar] [CrossRef]
- Park, H.-G.; Yeo, M.-K. Toxic effects against bacteria of silver nanocolloids and silver nanotubes in the presence of hydra cells. Mol. Cell. Toxicol. 2017, 13, 37–47. [Google Scholar] [CrossRef]
HDd (nm) Intensity | HDd (nm) Volume | PDI | ζ-Potential (mV) | |
---|---|---|---|---|
MilliQ | 136 ± 11 | 14 ± 9 | 0.5 | –47.9 |
Hydra medium | 676 ± 10 | 1283 ± 182 | 0.28 | –18.7 |
Hydra Medium | Hydra Medium + AgNPcitLCys 1 h | Hydra Medium + AgNPcitLCys 96 h | Hydra Medium + AgNPcitLCys 7 days | |
---|---|---|---|---|
Ag (µg/L) | 0.23 ± 0.07 | 0.41 ± 0.03 (0.041%) | 1.42 ± 0.05 (0.142%) | 1.69 ± 0.04 (0.169%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bellingeri, A.; Battocchio, C.; Faleri, C.; Protano, G.; Venditti, I.; Corsi, I. Sensitivity of Hydra vulgaris to Nanosilver for Environmental Applications. Toxics 2022, 10, 695. https://doi.org/10.3390/toxics10110695
Bellingeri A, Battocchio C, Faleri C, Protano G, Venditti I, Corsi I. Sensitivity of Hydra vulgaris to Nanosilver for Environmental Applications. Toxics. 2022; 10(11):695. https://doi.org/10.3390/toxics10110695
Chicago/Turabian StyleBellingeri, Arianna, Chiara Battocchio, Claudia Faleri, Giuseppe Protano, Iole Venditti, and Ilaria Corsi. 2022. "Sensitivity of Hydra vulgaris to Nanosilver for Environmental Applications" Toxics 10, no. 11: 695. https://doi.org/10.3390/toxics10110695
APA StyleBellingeri, A., Battocchio, C., Faleri, C., Protano, G., Venditti, I., & Corsi, I. (2022). Sensitivity of Hydra vulgaris to Nanosilver for Environmental Applications. Toxics, 10(11), 695. https://doi.org/10.3390/toxics10110695