Investigation of the DNA Damage and Oxidative Effect Induced by Venlafaxine in Mouse Brain and Liver Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Animals
2.2. SCGEA Standard Method
2.3. SCGEA with the FPG Enzyme
2.4. Total Protein Evaluation
2.5. Evaluation of Lipoperoxidation
2.6. Evaluation of Oxidized Proteins
2.7. Nitrite Determination
2.8. Statistical Analysis
3. Results
3.1. Standard and FPG-Modified Single Cell Gel Electrophoresis Assays
3.2. Biomolecule Oxidation and Nitrite Content
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- National Center for Biotechnology Information. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Venlafaxine (accessed on 23 November 2021).
- National Library of Medicine. National Center for Biotechnology Information. Available online: https://www.ncbi.nlm.nih.gov/books/NBK535363/ (accessed on 23 November 2021).
- Aiyer, R.; Barkin, R.L.; Bhatia, A. Treatment of neuropathic pain with venlafaxine: A systematic review. Pain Med. 2017, 18, 1999–2012. [Google Scholar] [CrossRef] [PubMed]
- Paulis, M.G.; Hafez, E.M.; El-Tahawy, N.F.; Aly, M.K.M. Toxicological assessment of venlafaxine: Acute and subchronic toxicity study in rats. Int. J. Toxicol. 2018, 37, 327–334. [Google Scholar] [CrossRef]
- Brambilla, G.; Mattioli, F.; Martelli, A. Genotoxic and carcinogenic effects of antipsychotics and antidepressants. Toxicology 2009, 261, 77–88. [Google Scholar] [CrossRef] [PubMed]
- Lacaze, E.; Pédelucq, J.; Fortier, M.; Brousseau, P.; Auffret, M.; Budzinski, H.; Fournier, M. Genotoxic and immunotoxic potential effects of selected psychotropic drugs and antibiotics on blue mussel (Mytilus edulis) hemocytes. Environ. Pollut. 2015, 202, 177–186. [Google Scholar] [CrossRef] [PubMed]
- Ayabaktı, S.; Yavuz Kocaman, A. Cytogenotoxic effects of venlafaxine hydrochloride on cultured human peripheral blood lymphocytes. Drug Chem. Toxicol. 2020, 43, 192–199. [Google Scholar] [CrossRef]
- Madrigal-Bujaidar, E.; Gómez-González, P.; Camacho-Cantera, S.; Morales-González, A.; Madrigal-Santillán, E.; Alvarez-González, I. Genotoxic and cytotoxic evaluation of venlafaxine in an acute and a subchronic assay in mouse. Braz. J. Biol. 2021, 84, e251289. [Google Scholar] [CrossRef]
- Ahmadian, E.; Babaei, H.; Mohajjel Nayebi, A.; Eftekhari, A.; Eghbal, M.A. Venlafaxine-induced cytotoxicity towards isolated rat hepatocytes involves oxidative stress and mitochondrial/lysosomal dysfunction. Adv. Pharm. Bull. 2016, 6, 521–530. [Google Scholar] [CrossRef] [Green Version]
- Peluso, M.; Russo, V.; Mello, T.; Galli, A. Oxidative stress and DNA damage in chronic disease and environmental studies. Int. J. Mol. Sci. 2020, 21, 6936. [Google Scholar] [CrossRef]
- Luo, Y.; Chaimani, A.; Kataoka, Y.; Ostinelli, E.G.; Ogawa, Y.; Cipriani, A.; Salanti, G.; Furukawa, T.A. Evidence synthesis, practice guidelines and real-world prescriptions of new generation antidepressants in the treatment of depression: A protocol for cumulative network meta-analyses and meta-epidemiological study. BMJ Open 2018, 8, e023222. [Google Scholar] [CrossRef] [PubMed]
- du Sert, N.P.; Ahluwalia, A.; Alam, S.; Avey, M.T.; Baker, M.; Browne, W.J.; Clark, A.; Cuthill, I.C.; Dirnagi, U.; Emerson, M.; et al. Reporting animal research: Explanation and elaboration for the ARRIVE guidelines 2.0. PLoS Biol. 2020, 18, e3000411. [Google Scholar]
- Lorke, D. A new approach to practical acute toxicity testing. Arch. Toxicol. 1983, 54, 275–287. [Google Scholar] [CrossRef]
- OECD. 2016. Available online: https://www.oecd.org/env/test-no-489-in-vivo-mammalian-alkaline-comet-assay-9789264264885-en.htm (accessed on 21 October 2021).
- Miyamae, Y.; Zaizen, K.; Ohara, K.; Mine, Y.; Sasaki, Y.F. Detection of DNA lesions induced by chemical mutagens by the single cell electrophoresis (comet) assay. 1. Relationship between the onset of DNA damage and the characteristics of mutagens. Mutat. Res. 1998, 415, 229–235. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-González, I.; Camacho-Cantera, S.; Gómez-González, P.; Barrón, M.J.R.; Morales-González, J.A.; Madrigal-Santillán, E.O.; Paniagua-Pérez, R.; Madrigal-Bujaidar, E. Genotoxic and oxidative effect of duloxetine on mouse brain and liver tissues. Sci. Rep. 2015, 11, 6897. [Google Scholar] [CrossRef] [PubMed]
- Collins, A.R.; Dusinská, M. Oxidation of cellular DNA measured with the comet assay. Methods Mol. Biol. 2002, 186, 147–159. [Google Scholar] [PubMed]
- Bradford, M.B. A rapid and sensitive method for the quantitation of micrograms quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Buege, J.; Aust, S. Microsomal lipid peroxidation. Methods Enzymol. 1987, 52, 302–310. [Google Scholar]
- Levine, R.; Garland, D.; Oliver, C. Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol. 1990, 186, 464–478. [Google Scholar] [PubMed]
- Miranda, K.; Espey, W.; Wink, D. A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide 2001, 5, 62–71. [Google Scholar] [CrossRef]
- Andrade, L.; Caraveo-Anduaga, J.J.; Berglund, P.; Bijl, R.V.; De Graaf, R.; Vollebergh, W.; Dragomirecka, E.; Kohn, R.; Keller, M.; Kessler, R.C.; et al. The epidemiology of major depressive episodes: Results from the international consortium of psychiatric epidemiology (ICPE) surveys. Int. J. Method Psychiatr. Res. 2003, 12, 3–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kessler, R.C.; Bromer, E.J. The epidemiology of depression across cultures. Annu. Rev. Public Health 2013, 34, 119–138. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Available online: https://www.who.int/news-room/fact-sheets/detail/depression (accessed on 8 November 2021).
- Li, Z.; Ruan, M.; Chen, J.; Fang, Y. Major depressive disorder: Advances in neuroscience research and translational applications. Neurosci. Bull. 2021, 37, 863–880. [Google Scholar] [CrossRef] [PubMed]
- Ahmadimanesh, M.; Balarastaghi, S.; Rashedinia, M.; Yazdian-Robati, R. A systematic review on the genotoxic effect of serotonin and norepinephrine reuptake inhibitors (SNRIs) antidepressants. Psychopharmacology 2020, 237, 1909–1915. [Google Scholar] [CrossRef]
- Jajoo, A.; Donlon, C.; Shnayder, S.; Levin, M.; McVey, M. Sertraline induces DNA damage and cellular toxicity in Drosophila that can be ameliorated by antioxidants. Sci. Rep. 2020, 10, 4512. [Google Scholar] [CrossRef] [Green Version]
- Kanherkar, R.R.; Getachew, B.; Ben-Sheetrit, J.; Varma, S.; Heinbockel, T.; Tizabi, Y.; Csoka, A.B. The effect of citalopram on genome-wide DNA methylation of human cells. Int. J. Genom. 2018, 2018, 8929057. [Google Scholar] [CrossRef]
- Madrigal-Bujaidar, E.; Álvarez-González, I.; Madrigal-Santillán, E.O.; Morales-González, J.A. Evaluation of duloxetine as micronuclei inducer in an acute and a subchronic assay in mouse. Biol. Pharm. Bull. 2015, 38, 1245–1249. [Google Scholar] [CrossRef] [Green Version]
- Madrigal-Bujaidar, E.; Madrigal-Santillán, E.O.; Alvarez-Gonzalez, I.; Baez, R.; Marquez, P. Micronuclei induced by imipramine and desipramine in mice: A subchronic study. Basic Clin. Pharmacol. Toxicol. 2008, 103, 569–573. [Google Scholar] [CrossRef]
- Sołek, P.; Mytych, J.; Tabęcka-Łonczyńska, A.; Koziorowski, M. Molecular consequences of depression treatment: A potential in vitro mechanism for antidepressants-induced reprotoxic side effects. Int. J. Mol. Sci. 2021, 22, 11855. [Google Scholar] [CrossRef]
- Saleem, U.; Zubair, S.; Riaz, A.; Anwar, F.; Ahmad, B. Effect of venlafaxine, pramipexole, and valsartan on spermatogenesis in male rats. ACS Omega 2020, 5, 20481–20490. [Google Scholar] [CrossRef]
- Azqueta, A.; Slyskova, J.; Langie, S.A.; O’Neill Gaivão, I.; Collins, A. Comet assay to measure DNA repair: Approach and applications. Front. Genet. 2014, 5, 288. [Google Scholar] [CrossRef] [Green Version]
- Møller, P.; Stopper, H.; Collins, A.R. Measurement of DNA damage with the comet assay in high-prevalence diseases: Current status and future directions. Mutagenesis 2020, 35, 5–18. [Google Scholar] [CrossRef]
- Nelson, B.C.; Dizdaroglu, M. Implications of DNA damage and DNA repair on human diseases. Mutagenesis 2020, 35, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Katsuki, A.; Kakeda, S.; Watanabe, K.; Igata, R.; Otsuka, Y.; Kishi, T.; Nguyen, L.; Ueda, I.; Iwata, N.; Korogi, Y.; et al. Single-nucleotide polymorphism influences brain morphology in drug-naïve patients with major depressive disorder. Neuropsychiatr. Dis. Treat. 2019, 15, 2425–2432. [Google Scholar] [CrossRef] [PubMed]
- Jové, M.; Mota-Martorell, N.; Pradas, I.; Martín-Gari, M.; Ayala, V.; Pamplona, R. The advanced lipoxidation end-product malondialdehyde-lysine in aging and longevity. Antioxidants 2020, 9, 1132. [Google Scholar] [CrossRef] [PubMed]
- Ramana, K.V.; Srivastava, S.; Singhal, S.S. Lipid peroxidation products in human health and disease. Oxid. Med. Cell. Longev. 2013, 2013, 583438. [Google Scholar] [CrossRef] [PubMed]
- Kehm, R.; Baldensperger, T.; Raupbach, J.; Höhn, A. Protein oxidation-formation mechanisms, detection and relevance as biomarkers in human diseases. Redox Biol. 2021, 42, 101901. [Google Scholar] [CrossRef]
- Abdel-Wahab, B.A.; Salama, R.H. Venlafaxine protects against stress-induced oxidative DNA damage in hippocampus during antidepressant testing in mice. Pharmacol. Biochem. Behav. 2011, 100, 59–65. [Google Scholar] [CrossRef]
- Kamel, K.M.; Gad, A.M.; Mansour, S.M.; Safar, M.M.; Fawzy, H.M. Venlafaxine alleviates complete Freund’s adjuvant-induced arthritis in rats: Modulation of STAT-3/IL-17/RANKL axis. Life Sci. 2019, 226, 68–76. [Google Scholar] [CrossRef]
- El-Kashef, D.H.; Sharawy, M.H. Venlafaxine mitigates cisplatin-induced nephrotoxicity via down-regulating apoptotic pathway in rats. Chem. Biol. Interact. 2018, 290, 110–118. [Google Scholar] [CrossRef]
- Wigner, P.; Synowiec, E.; Czarny, P.; Bijak, M.; Jóźwiak, P.; Szemraj, J.; Gruca, P.; Papp, M.; Śliwiński, T. Effects of venlafaxine on the expression level and methylation status of genes involved in oxidative stress in rats exposed to a chronic mild stress. J. Cell. Mol. Med. 2020, 24, 5675–5694. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Madrigal-Bujaidar, E.; Paniagua-Pérez, R.; Rendón-Barrón, M.J.; Morales-González, J.A.; Madrigal-Santillán, E.O.; Álvarez-González, I. Investigation of the DNA Damage and Oxidative Effect Induced by Venlafaxine in Mouse Brain and Liver Cells. Toxics 2022, 10, 737. https://doi.org/10.3390/toxics10120737
Madrigal-Bujaidar E, Paniagua-Pérez R, Rendón-Barrón MJ, Morales-González JA, Madrigal-Santillán EO, Álvarez-González I. Investigation of the DNA Damage and Oxidative Effect Induced by Venlafaxine in Mouse Brain and Liver Cells. Toxics. 2022; 10(12):737. https://doi.org/10.3390/toxics10120737
Chicago/Turabian StyleMadrigal-Bujaidar, Eduardo, Rogelio Paniagua-Pérez, Michael Joshue Rendón-Barrón, José Antonio Morales-González, Eduardo O. Madrigal-Santillán, and Isela Álvarez-González. 2022. "Investigation of the DNA Damage and Oxidative Effect Induced by Venlafaxine in Mouse Brain and Liver Cells" Toxics 10, no. 12: 737. https://doi.org/10.3390/toxics10120737
APA StyleMadrigal-Bujaidar, E., Paniagua-Pérez, R., Rendón-Barrón, M. J., Morales-González, J. A., Madrigal-Santillán, E. O., & Álvarez-González, I. (2022). Investigation of the DNA Damage and Oxidative Effect Induced by Venlafaxine in Mouse Brain and Liver Cells. Toxics, 10(12), 737. https://doi.org/10.3390/toxics10120737