Advancing New Approach Methodologies (NAMs) for Tobacco Harm Reduction: Synopsis from the 2021 CORESTA SSPT—NAMs Symposium
Abstract
:1. NAM-00: Introduction
2. NAM-01: U.S. Federal Efforts to Develop and Implement Alternatives to Animal Testing
2.1. Case Example: Alternatives to the Acute Toxicity “6-Pack” In Vivo Testing
2.1.1. Waiver for 6-Pack: Acute Lethality Tests
2.1.2. Opportunities: Addressing the Variability of In Vivo Data When Developing NAMS
2.1.3. Case Example: Defined Approach (DA) for Skin Sensitization
2.2. Tools for NAM-Based Computational Toxicological Assessment
3. NAM-02: Applications of Biokinetic Modeling for In Vivo to In Vitro Extrapolation in Chemical Risk Assessment
- Provide recommendations and procedures for characterizing, reporting, and evaluating PBPK models intended for regulatory decision making;
- Address challenges to developing and evaluating PBPK models for chemicals without in vivo kinetic data;
- Promote use of PBPK models in regulatory risk assessment and facilitate dialogue between model developers and users.
4. NAM-03: Inhalation Exposure Modeling for Assessment of Aerosols and Vapors
4.1. Case Example: Multiscale CFD/PBPK Modeling for Aldehydes
4.2. Case Example: Waiver of Sub Chronic 90-Day In Vivo Inhalation Study for Pesticide Reregistration
5. NAM-04: Assessing Respiratory Toxicity of Chemicals in Two Human Bronchial In Vitro Systems
- What chemical or substance? The chemical or substance to test will dictate an appropriate study design. The physicochemical properties determine how the substance is inhaled and which region of the respiratory tract will be most affected—in silico aerosol models (e.g., CFD models as discussed in NAM 03) can be helpful for identification. Whether the substance is locally metabolized will further influence the choice of cells to use. If these properties are unknown, a structurally similar compound (i.e., a read-across approach) may give some insight.
- What in vitro exposure system? When selecting the in vitro exposure systems, considerations to balance include the ease of conducting the experiment with physiological relevance in inhalation exposures. Pipetting and air–liquid interface (ALI) exposures are the two most common exposure routes to a test chemical for an in vitro system. While aerosol or gas exposure using an ALI exposure system would require specialized equipment and training, it may be more human-relevant than pipetting. No matter what exposure system is used, the robustness of the in vitro test method should be assessed to identify and account for any potential variability [72].
- Which in vitro/ex vivo test system? Various test systems exist ranging from relatively simple monocultures to more complex organotypic micro-physiological systems and precision-cut lung slices. The choice of test system depends on the goals of the study. Table 2 highlights some advantages and disadvantages of representative test systems.
- What kinds of cells? The human respiratory tract is composed of more than 40 cell types. The cells used should be from the region(s) of the respiratory tract that is most affected by the test chemical (in silico model predictions should help with the identification of the area). However, while there are a wide range of cells from the proximal respiratory tract available (cell lines and primary cells), the choice for distal respiratory tract cells is currently more limited.
- What endpoints/readouts? Assay endpoint and readouts selections will depend on the properties of the chemical as well as the goal of the study. Using AOPs can be helpful in linking assay readouts to the steps (key events) along the pathway and identifying adverse outcomes of interest.
Case Example: Silanes in 2D Monoculture and 3D Human Tissue Models
6. NAM-05: In Silico Toxicology as a New Approach Method in Tobacco Regulatory Science
7. NAM-06: Applications of Mechanistic Data in Risk Assessment: Exposure Alignment and Evidence Integration
7.1. Case Example: Assessing New Chemical Substances for TSCA Using an AOP-Inspired IATA
7.2. Additional Considerations in the Use of NAMs
8. Panel Discussion and Closing Remarks
- Expanded use of NAMs in toxicological assessment applications requires a shift in paradigm from screening and hazard identification to hazard characterization and, ultimately, quantitative risk assessments for regulatory applications and with that a shift from the apical in vivo endpoints to mechanistic NAM-based endpoints. This means changing the question, for example, from testing that seeks an “in vivo no effect level” to one generating a “POD for a mechanistic cellular event that leads to adverse outcomes”.
- In vitro testing needs to be designed considering a variety of factors including properties of the test substance, test system, and the desired endpoints under the intended use. There is likely more than one set of NAM assay data to answer toxicological questions typically addressed by in vivo testing. Computational kinetic models allow for extrapolation of dosimetry data across test systems to provide human relevance and simulate different exposure scenarios for qualitative and quantitative exposure and risk assessment.
- IATAs provide a structure to combine mechanistic information and data from different NAMs in a weight of evidence-based toxicological assessment.
- To fully recognize the potential of NAMs for risk assessment, criteria for establishing confidence in fit for purpose, reliable, and relevant NAMs are necessary. For example, in vitro inhalation testing is not yet standardized for longer-term exposures. Addressing these deficiencies will help new methods’ scientific confidence and traction.
- For tobacco products, including novel smoke-free products, there are increasing human data available from volunteers from clinical trials or consumers in addition to historical epidemiological data from cigarettes. This availability of human data is unique and can help substantially in gaining scientific confidence in an application of NAMs for PRR products and for enhancing tobacco regulatory sciences.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ADME | Absorptions, distribution, metabolism, and elimination |
AEP | Aggregate exposure pathway |
AOP | Adverse outcome pathway |
BMD | Benchmark dose |
CFD | Computational fluid dynamics |
CFPD | Computational fluid particle dynamics |
CORESTA | Cooperation Centre for Scientific Research Relative to Tobacco |
DA | Defined approach |
ENDS | Electronic nicotine delivery system |
GRAS | Generally recognized as safe |
HEC | Human equivalent concentration |
IATA | Integrated approaches to testing and assessment |
IVIVE | In vitro to in vivo extrapolation |
KE | Key event |
LADD | Lifetime average daily dose |
LD/LC50 | Lethal dose/concentration at 50% |
NAMs | New approach methodologies |
NGO | Non-governmental organization |
NOAEL | No observable adverse effect level |
PBPK | Physiologically based pharmacokinetic |
PSLT | Poorly soluble low toxicity |
QRA | Quantitative risk assessment |
SME | Subject matter expert |
SSPT | Smoke-Science and Product Technology |
TSE | Target site exposure |
TSCA | Toxic Substances Control Act |
References
- ECHA. New approach methodologies in regulatory science. In Proceedings of the Scientific Workshop, Helsinki, Finland, 19–20 April 2016; Publications Office of the European Union: Luxembourg, 2016. [Google Scholar]
- US EPA. Strategic Plan to Promote the Development and Implementation of Alternative Test Methods Within the TSCA Program. Available online: https://www.epa.gov/sites/default/files/2018-06/documents/epa_alt_strat_plan_6-20-18_clean_final.pdf (accessed on 28 February 2022).
- NRC. Toxicity Testing in the 21st Century: A Vision and a Strategy; National Academies Press: Washington, DC, USA, 2007. [Google Scholar]
- Alternative Methods Accepted by US Agencies. Available online: https://ntp.niehs.nih.gov/whatwestudy/niceatm/accept-methods/index.html?utm_source=direct&utm_medium=prod&utm_campaign=ntpgolinks&utm_term=regaccept (accessed on 28 February 2022).
- Corley, R.A.; Kuprat, A.P.; Suffield, S.R.; Kabilan, S.; Hinderliter, P.M.; Yugulis, K.; Ramanarayanan, T.S. New Approach Methodology for Assessing Inhalation Risks of a Contact Respiratory Cytotoxicant: Computational Fluid Dynamics-Based Aerosol Dosimetry Modeling for Cross-Species and In Vitro Comparisons. Toxicol. Sci. 2021, 182, 243–259. [Google Scholar] [CrossRef]
- Mansouri, K.; Karmaus, A.L.; Fitzpatrick, J.; Patlewicz, G.; Pradeep, P.; Alberga, D.; Alepee, N.; Allen, T.E.H.; Allen, D.; Alves, V.M.; et al. CATMoS: Collaborative Acute Toxicity Modeling Suite. Environ. Health Perspect. 2021, 129, 47013. [Google Scholar] [CrossRef] [PubMed]
- OECD. Test No. 402: Acute Dermal Toxicity. OECD Guidelines for the Testing of Chemicals, Section 4: Health Effects; OECD: Paris, France, 2017. [Google Scholar]
- Abrams, D.B.; Glasser, A.M.; Villanti, A.C.; Pearson, J.L.; Rose, S.; Niaura, R.S. Managing Nicotine without Smoke to Save Lives Now: Evidence for Harm Minimization. Prev. Med. 2018, 117, 88–97. [Google Scholar] [CrossRef] [PubMed]
- Abrams, D.B.; Glasser, A.M.; Pearson, J.L.; Villanti, A.C.; Collins, L.K.; Niaura, R.S. Harm Minimization and Tobacco Control: Reframing Societal Views of Nicotine Use to Rapidly Save Lives. Annu. Rev. Public Health 2018, 39, 193–213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaccard, G.; Tafin Djoko, D.; Moennikes, O.; Jeannet, C.; Kondylis, A.; Belushkin, M. Comparative Assessment of HPHC Yields in the Tobacco Heating System THS2.2 and Commercial Cigarettes. Regul. Toxicol. Pharmacol. 2017, 90, 1–8. [Google Scholar] [CrossRef]
- Kumar, A.; Kogel, U.; Talikka, M.; Merg, C.; Guedj, E.; Xiang, Y.; Kondylis, A.; Titz, B.; Ivanov, N.V.; Hoeng, J.; et al. A 7-Month Inhalation Toxicology Study in C57BL/6 Mice Demonstrates Reduced Pulmonary Inflammation and Emphysematous Changes Following Smoking Cessation or Switching to e-Vapor Products. Toxicol. Res. Appl. 2021, 5, 2397847321995875. [Google Scholar] [CrossRef]
- Schlage, W.K.; Titz, B.; Iskandar, A.; Poussin, C.; Van der Toorn, M.; Wong, E.T.; Pratte, P.; Maeder, S.; Schaller, J.-P.; Pospisil, P.; et al. Comparing the Preclinical Risk Profile of Inhalable Candidate and Potential Candidate Modified Risk Tobacco Products: A Bridging Use Case. Toxicol. Rep. 2020, 7, 1187–1206. [Google Scholar] [CrossRef]
- US FDA. Scientific Review of Modified Risk Tobacco Product Application (MRTPA) Under Section 911 (d) of the FD&C Act—Technical Project Lead. 2014; p. 77. Available online: https://www.fda.gov/media/131923/download (accessed on 1 March 2022).
- NASEM. Public Health Consequences of E-Cigarettes; Stratton, K., Kwan, L.Y., Eaton, D.L., Eds.; The National Academies Press: Washington, DC, USA, 2018; ISBN 978-0-309-46834-3. [Google Scholar]
- Miller-Holt, J.; Behrsing, H.P.; Clippinger, A.J.; Hirn, C.; Stedeford, T.J.; Stucki, A.O. Use of New Approach Methodologies (NAMs) to Meet Regulatory Requirements for the Assessment of Tobacco and Other Nicotine-Containing Products. Front. Toxicol. 2022, 4. [Google Scholar] [CrossRef]
- van der Zalm, A.J.; Barroso, J.; Browne, P.; Casey, W.; Gordon, J.; Henry, T.R.; Kleinstreuer, N.C.; Lowit, A.B.; Perron, M.; Clippinger, A.J. A Framework for Establishing Scientific Confidence in New Approach Methodologies. Arch. Toxicol. 2022, 96, 2865–2879. [Google Scholar] [CrossRef]
- Paul-Friedman, K.; Gagne, M.; Loo, L.-H.; Karamertzanis, P.; Netzeva, T.; Sobanski, T.; Franzosa, J.; Richard, A.; Lougee, R.; Gissi, A.; et al. Utility of In Vitro Bioactivity as a Lower Bound Estimate of In Vivo Adverse Effect Levels and in Risk-Based Prioritization. Toxicol. Sci. 2020, 173, 202–225. [Google Scholar] [CrossRef]
- Villeneuve, D.L.; Crump, D.; Garcia-Reyero, N.; Hecker, M.; Hutchinson, T.H.; LaLone, C.A.; Landesmann, B.; Lettieri, T.; Munn, S.; Nepelska, M.; et al. Adverse Outcome Pathway (AOP) Development I: Strategies and Principles. Toxicol. Sci. 2014, 142, 312–320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villeneuve, D.L.; Crump, D.; Garcia-Reyero, N.; Hecker, M.; Hutchinson, T.H.; LaLone, C.A.; Landesmann, B.; Lettieri, T.; Munn, S.; Nepelska, M.; et al. Adverse Outcome Pathway Development II: Best Practices. Toxicol. Sci. 2014, 142, 321–330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ICCVAM. A Strategic Roadmap for Establishing New Approaches to Evaluate the Safety of Chemicals and Medical Products in the United States; ICCVAM: Research Triangle Park, NC, USA, 2018. [Google Scholar]
- Choksi, N.Y.; Truax, J.; Layton, A.; Matheson, J.; Mattie, D.; Varney, T.; Tao, J.; Yozzo, K.; McDougal, A.J.; Merrill, J.; et al. United States Regulatory Requirements for Skin and Eye Irritation Testing. Cutan. Ocul. Toxicol. 2019, 38, 141–155. [Google Scholar] [CrossRef] [PubMed]
- Strickland, J.; Daniel, A.B.; Allen, D.; Aguila, C.; Ahir, S.; Bancos, S.; Craig, E.; Germolec, D.; Ghosh, C.; Hudson, N.L.; et al. Skin Sensitization Testing Needs and Data Uses by US Regulatory and Research Agencies. Arch. Toxicol. 2019, 93, 273–291. [Google Scholar] [CrossRef]
- Strickland, J.; Clippinger, A.J.; Brown, J.; Allen, D.; Jacobs, A.; Matheson, J.; Lowit, A.; Reinke, E.N.; Johnson, M.S.; Quinn, M.J.; et al. Status of Acute Systemic Toxicity Testing Requirements and Data Uses by U.S. Regulatory Agencies. Regul. Toxicol. Pharmacol. 2018, 94, 183–196. [Google Scholar] [CrossRef]
- Mansouri, K. Standardization Workflow for QSAR-Ready Chemical Structures Pretreatment. Available online: https://hub.knime.com/kmansouri/spaces/Public/latest/QSAR-ready_2.5.6~_iyTwvXi6U3XTFW1 (accessed on 20 April 2021).
- Mansouri, K.; Grulke, C.M.; Richard, A.M.; Judson, R.S.; Williams, A.J. An Automated Curation Procedure for Addressing Chemical Errors and Inconsistencies in Public Datasets Used in QSAR Modelling. SAR QSAR Environ. Res. 2016, 27, 911–937. [Google Scholar] [CrossRef]
- United Nations. Globally Harmonized System of Classification and Labelling of Chemicals (GHS); United Nations publication; Eighth revised edition; United Nations: New York, NY, USA; Geneva, Switzerland, 2019; ISBN 978-92-1-117199-0. [Google Scholar]
- Hamm, J.; Allen, D.; Ceger, P.; Flint, T.; Lowit, A.; O’Dell, L.; Tao, J.; Kleinstreuer, N. Performance of the GHS Mixtures Equation for Predicting Acute Oral Toxicity. Regul. Toxicol. Pharmacol. 2021, 125, 105007. [Google Scholar] [CrossRef]
- Luechtefeld, T.; Maertens, A.; Russo, D.P.; Rovida, C.; Zhu, H.; Hartung, T. Global Analysis of Publicly Available Safety Data for 9,801 Substances Registered under REACH from 2008-2014. ALTEX 2016, 33, 95–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rooney, J.P.; Choksi, N.Y.; Ceger, P.; Daniel, A.B.; Truax, J.; Allen, D.; Kleinstreuer, N. Analysis of Variability in the Rabbit Skin Irritation Assay. Regul. Toxicol. Pharmacol. 2021, 122, 104920. [Google Scholar] [CrossRef]
- Browne, P.; Kleinstreuer, N.C.; Ceger, P.; Deisenroth, C.; Baker, N.; Markey, K.; Thomas, R.S.; Judson, R.J.; Casey, W. Development of a Curated Hershberger Database. Reprod. Toxicol. 2018, 81, 259–271. [Google Scholar] [CrossRef]
- Dumont, C.; Barroso, J.; Matys, I.; Worth, A.; Casati, S. Analysis of the Local Lymph Node Assay (LLNA) Variability for Assessing the Prediction of Skin Sensitisation Potential and Potency of Chemicals with Non-Animal Approaches. Toxicol. In Vitro 2016, 34, 220–228. [Google Scholar] [CrossRef] [PubMed]
- Kleinstreuer, N.C.; Ceger, P.C.; Allen, D.G.; Strickland, J.; Chang, X.; Hamm, J.T.; Casey, W.M. A Curated Database of Rodent Uterotrophic Bioactivity. Environ. Health Perspect. 2016, 124, 556–562. [Google Scholar] [CrossRef] [PubMed]
- Clippinger, A.J.; Raabe, H.A.; Allen, D.G.; Choksi, N.Y.; van der Zalm, A.J.; Kleinstreuer, N.C.; Barroso, J.; Lowit, A.B. Human-Relevant Approaches to Assess Eye Corrosion/Irritation Potential of Agrochemical Formulations. Cutan. Ocul. Toxicol. 2021, 40, 145–167. [Google Scholar] [CrossRef]
- McGee Hargrove, M.; Parr-Dobrzanski, B.; Li, L.; Constant, S.; Wallace, J.; Hinderliter, P.; Wolf, D.C.; Charlton, A. Use of the Mucilair Airway Assay, a New Approach Methodology, for Evaluating the Safety and Inhalation Risk of Agrochemicals. Appl. In Vitro Toxicol. 2021, 7, 50–60. [Google Scholar] [CrossRef]
- OECD. Guideline No. 497: Defined Approaches on Skin Sensitisation. Available online: https://www.oecd.org/chemicalsafety/guideline-no-497-defined-approaches-on-skin-sensitisation-b92879a4-en.htm (accessed on 28 February 2022).
- Kleinstreuer, N.C.; Hoffmann, S.; Alépée, N.; Allen, D.; Ashikaga, T.; Casey, W.; Clouet, E.; Cluzel, M.; Desprez, B.; Gellatly, N.; et al. Non-Animal Methods to Predict Skin Sensitization (II): An Assessment of Defined Approaches *. Crit. Rev. Toxicol. 2018, 48, 359–374. [Google Scholar] [CrossRef] [PubMed]
- Clippinger, A.J.; Allen, D.; Behrsing, H.; BéruBé, K.A.; Bolger, M.B.; Casey, W.; DeLorme, M.; Gaça, M.; Gehen, S.C.; Glover, K.; et al. Pathway-Based Predictive Approaches for Non-Animal Assessment of Acute Inhalation. Toxicol. In Vitro 2018, 52, 131–145. [Google Scholar] [CrossRef]
- Jarabek, A.; Hines, D.E. Mechanistic Integration of Exposure and Effects: Advances to Apply Systems Toxicology in Support of Regulatory Decision-Making. Curr. Opin. Toxicol. 2019. [Google Scholar] [CrossRef]
- Mansouri, K.; Cariello, N.F.; Korotcov, A.; Tkachenko, V.; Grulke, C.M.; Sprankle, C.S.; Allen, D.; Casey, W.M.; Kleinstreuer, N.C.; Williams, A.J. Open-Source QSAR Models for PKa Prediction Using Multiple Machine Learning Approaches. J. Cheminform. 2019, 11, 60. [Google Scholar] [CrossRef]
- Mansouri, K.; Grulke, C.M.; Judson, R.S.; Williams, A.J. OPERA Models for Predicting Physicochemical Properties and Environmental Fate Endpoints. J. Cheminform. 2018, 10, 10. [Google Scholar] [CrossRef] [Green Version]
- Abedini, J.; Cook, B.; Bell, S.; Chang, X.; Choksi, N.; Daniel, A.B.; Hines, D.; Karmaus, A.L.; Mansouri, K.; McAfee, E.; et al. Application of New Approach Methodologies: ICE Tools to Support Chemical Evaluations. Comput. Toxicol. 2021, 20, 100184. [Google Scholar] [CrossRef]
- Bell, S.; Abedini, J.; Ceger, P.; Chang, X.; Cook, B.; Karmaus, A.L.; Lea, I.; Mansouri, K.; Phillips, J.; McAfee, E.; et al. An Integrated Chemical Environment with Tools for Chemical Safety Testing. Toxico. In Vitro 2020, 67, 104916. [Google Scholar] [CrossRef] [PubMed]
- Pearce, R.G.; Setzer, R.W.; Strope, C.L.; Sipes, N.S.; Wambaugh, J.F. Httk: R Package for High-Throughput Toxicokinetics. J. Stat. Softw. 2017, 79, 1–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, X.; Tan, Y.-M.; Allen, D.G.; Bell, S.; Brown, P.C.; Browning, L.; Ceger, P.; Gearhart, J.; Hakkinen, P.J.; Kabadi, S.V.; et al. IVIVE: Facilitating the Use of In Vitro Toxicity Data in Risk Assessment and Decision Making. Toxics 2022, 10, 232. [Google Scholar] [CrossRef] [PubMed]
- Yoon, M.; Kedderis, G.L.; Yang, Y.; Allen, B.C.; Yan, G.Z.; Clewell, H.J. Use of in Vitro Data in PBPK Models: An Example of in Vitro to in Vivo Extrapolation with Carbaryl. In Parameters for Pesticide QSAR and PBPK/PD Models for Human Risk Assessment 2012; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 2012; pp. 323–338. [Google Scholar] [CrossRef]
- Paini, A.; Leonard, J.A.; Kliment, T.; Tan, Y.-M.; Worth, A. Investigating the State of Physiologically Based Kinetic Modelling Practices and Challenges Associated with Gaining Regulatory Acceptance of Model Applications. Regul. Toxicol. Pharmacol. 2017, 90, 104–115. [Google Scholar] [CrossRef]
- Pistollato, F.; Carpi, D.; Mendoza-de Gyves, E.; Paini, A.; Bopp, S.K.; Worth, A.; Bal-Price, A. Combining in Vitro Assays and Mathematical Modelling to Study Developmental Neurotoxicity Induced by Chemical Mixtures. Reprod. Toxicol. 2021, 105, 101–119. [Google Scholar] [CrossRef]
- Abdullah, R.; Alhusainy, W.; Woutersen, J.; Rietjens, I.M.C.M.; Punt, A. Predicting Points of Departure for Risk Assessment Based on in Vitro Cytotoxicity Data and Physiologically Based Kinetic (PBK) Modeling: The Case of Kidney Toxicity Induced by Aristolochic Acid I. Food Chem. Toxicol. 2016, 92, 104–116. [Google Scholar] [CrossRef]
- DeJongh, J.; Forsby, A.; Houston, J.B.; Beckman, M.; Combes, R.; Blaauboer, B.J. An Integrated Approach to the Prediction of Systemic Toxicity Using Computer-Based Biokinetic Models and Biological In Vitro Test Methods: Overview of a Prevalidation Study Based on the ECITTS Project. Toxicol. In Vitro 1999, 13, 549–554. [Google Scholar] [CrossRef]
- DeJongh, J.; Nordin-Andersson, M.; Ploeger, B.A.; Forsby, A. Estimation of Systemic Toxicity of Acrylamide by Integration of in Vitro Toxicity Data with Kinetic Simulations. Toxicol. Appl. Pharmacol. 1999, 158, 261–268. [Google Scholar] [CrossRef]
- Fabian, E.; Gomes, C.; Birk, B.; Williford, T.; Hernandez, T.R.; Haase, C.; Zbranek, R.; van Ravenzwaay, B.; Landsiedel, R. In Vitro-to-in Vivo Extrapolation (IVIVE) by PBTK Modeling for Animal-Free Risk Assessment Approaches of Potential Endocrine-Disrupting Compounds. Arch. Toxicol. 2019, 93, 401–416. [Google Scholar] [CrossRef]
- Forsby, A.; Blaauboer, B. Integration of in Vitro Neurotoxicity Data with Biokinetic Modelling for the Estimation of in Vivo Neurotoxicity. Hum. Exp. Toxicol. 2007, 26, 333–338. [Google Scholar] [CrossRef]
- Gubbels-van Hal, W.M.L.G.; Blaauboer, B.J.; Barentsen, H.M.; Hoitink, M.A.; Meerts, I.A.T.M.; van der Hoeven, J.C.M. An Alternative Approach for the Safety Evaluation of New and Existing Chemicals, an Exercise in Integrated Testing. Regul. Toxicol. Pharmacol. 2005, 42, 284–295. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhang, M.; Vervoort, J.; Rietjens, I.M.; van Ravenzwaay, B.; Louisse, J. Use of Physiologically Based Kinetic Modeling-Facilitated Reverse Dosimetry of in Vitro Toxicity Data for Prediction of in Vivo Developmental Toxicity of Tebuconazole in Rats. Toxicol. Lett. 2017, 266, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Louisse, J.; Bosgra, S.; Blaauboer, B.J.; Rietjens, I.M.C.M.; Verwei, M. Prediction of in Vivo Developmental Toxicity of All-Trans-Retinoic Acid Based on in Vitro Toxicity Data and in Silico Physiologically Based Kinetic Modeling. Arch. Toxicol. 2015, 89, 1135–1148. [Google Scholar] [CrossRef] [Green Version]
- Louisse, J.; de Jong, E.; van de Sandt, J.J.M.; Blaauboer, B.J.; Woutersen, R.A.; Piersma, A.H.; Rietjens, I.M.C.M.; Verwei, M. The Use of In Vitro Toxicity Data and Physiologically Based Kinetic Modeling to Predict Dose-Response Curves for In Vivo Developmental Toxicity of Glycol Ethers in Rat and Man. Toxicol. Sci. 2010, 118, 470–484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paini, A.; Punt, A.; Viton, F.; Scholz, G.; Delatour, T.; Marin-Kuan, M.; Schilter, B.; van Bladeren, P.J.; Rietjens, I.M.C.M. A Physiologically Based Biodynamic (PBBD) Model for Estragole DNA Binding in Rat Liver Based on in Vitro Kinetic Data and Estragole DNA Adduct Formation in Primary Hepatocytes. Toxicol. Appl. Pharmacol. 2010, 245, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Strikwold, M.; Spenkelink, B.; de Haan, L.H.J.; Woutersen, R.A.; Punt, A.; Rietjens, I. Integrating in Vitro Data and Physiologically Based Kinetic (PBK) Modelling to Assess the in Vivo Potential Developmental Toxicity of a Series of Phenols. Arch. Toxicol. 2017, 91, 2119–2133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strikwold, M.; Spenkelink, B.; Woutersen, R.A.; Rietjens, I.M.C.M.; Punt, A. Combining in Vitro Embryotoxicity Data with Physiologically Based Kinetic (PBK) Modelling to Define in Vivo Dose–Response Curves for Developmental Toxicity of Phenol in Rat and Human. Arch. Toxicol. 2013, 87, 1709–1723. [Google Scholar] [CrossRef]
- Verwei, M.; van Burgsteden, J.A.; Krul, C.A.M.; van de Sandt, J.J.M.; Freidig, A.P. Prediction of in Vivo Embryotoxic Effect Levels with a Combination of in Vitro Studies and PBPK Modelling. Toxicol. Lett. 2006, 165, 79–87. [Google Scholar] [CrossRef]
- Zhang, M.; van Ravenzwaay, B.; Fabian, E.; Rietjens, I.M.C.M.; Louisse, J. Towards a Generic Physiologically Based Kinetic Model to Predict in Vivo Uterotrophic Responses in Rats by Reverse Dosimetry of in Vitro Estrogenicity Data. Arch. Toxicol. 2018, 92, 1075–1088. [Google Scholar] [CrossRef]
- OECD. Guidance Document on the Characterisation, Validation and Reporting of Physiologically Based Kinetic (PBK) Models for Regulatory Purposes; Environment, Health and Safety, Environment Directorate, OECD, 2021; Volume 103, Available online: https://www.oecd.org/chemicalsafety/risk-assessment/guidance-document-on-the-characterisation-validation-and-reporting-of-physiologically-based-kinetic-models-for-regulatory-purposes.pdf (accessed on 1 March 2022).
- Colby, S.M.; Kabilan, S.; Jacob, R.E.; Kuprat, A.P.; Einstein, D.R.; Corley, R.A. Comparison of Realistic and Idealized Breathing Patterns in Computational Models of Airflow and Vapor Dosimetry in the Rodent Upper Respiratory Tract. Inhal. Toxicol. 2016, 28, 192–202. [Google Scholar] [CrossRef] [Green Version]
- Corley, R.A.; Kabilan, S.; Kuprat, A.P.; Carson, J.P.; Jacob, R.E.; Minard, K.R.; Teeguarden, J.G.; Timchalk, C.; Pipavath, S.; Glenny, R.; et al. Comparative Risks of Aldehyde Constituents in Cigarette Smoke Using Transient Computational Fluid Dynamics/Physiologically Based Pharmacokinetic Models of the Rat and Human Respiratory Tracts. Toxicol. Sci. 2015, 146, 65–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corley, R.A.; Kabilan, S.; Kuprat, A.P.; Carson, J.P.; Minard, K.R.; Jacob, R.E.; Timchalk, C.; Glenny, R.; Pipavath, S.; Cox, T.; et al. Comparative Computational Modeling of Airflows and Vapor Dosimetry in the Respiratory Tracts of Rat, Monkey, and Human. Toxicol. Sci. 2012, 128, 500–516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuprat, A.P.; Jalali, M.; Jan, T.; Corley, R.A.; Asgharian, B.; Price, O.; Singh, R.K.; Colby, S.; Darquenne, C. Efficient Bi-Directional Coupling of 3D Computational Fluid-Particle Dynamics and 1D Multiple Path Particle Dosimetry Lung Models for Multiscale Modeling of Aerosol Dosimetry. J. Aerosol Sci. 2021, 151, 105647. [Google Scholar] [CrossRef]
- Jacob, R.E.; Lamm, W.J.; Einstein, D.R.; Krueger, M.A.; Glenny, R.W.; Corley, R.A. Comparison of CT-Derived Ventilation Maps with Deposition Patterns of Inhaled Microspheres in Rats. Exp. Lung Res. 2015, 41, 135–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramanarayanan, T.; Szarka, A.; Flack, S.; Hinderliter, P.; Corley, R.; Charlton, A.; Pyles, S.; Wolf, D. Application of a New Approach Method (NAM) for Inhalation Risk Assessment. Regul. Toxicol. Pharmacol. 2022, 133, 105216. [Google Scholar] [CrossRef]
- Dorman, D.C.; Struve, M.F.; Wong, B.A.; Marshall, M.W.; Gross, E.A.; Willson, G.A. Respiratory Tract Responses in Male Rats Following Subchronic Acrolein Inhalation. Inhal. Toxicol. 2008, 20, 205–216. [Google Scholar] [CrossRef]
- US EPA. Transmittal of Meeting Minutes and Final Report for the Federal Insecticide Fungicide and Rodenticide Act, Scientific Advisory Panel (FIFRA SAP); 2019. Available online: https://www.epa.gov/pesticides/fifra-sap-meeting-minutes-and-final-report-november-2019-meeting-approaches-quantitative (accessed on 1 March 2021).
- Clippinger, A.J.; Allen, D.; Jarabek, A.M.; Corvaro, M.; Gaça, M.; Gehen, S.; Hotchkiss, J.A.; Patlewicz, G.; Melbourne, J.; Hinderliter, P.; et al. Alternative Approaches for Acute Inhalation Toxicity Testing to Address Global Regulatory and Non-Regulatory Data Requirements: An International Workshop Report. Toxicol. In Vitro 2018, 48, 53–70. [Google Scholar] [CrossRef]
- Petersen, E. Characteristics to Consider When Selecting a Positive Control Material for an in Vitro Assay. ALTEX 2021. [Google Scholar] [CrossRef]
- Hung, P.-H.; Savidge, M.; De, M.; Kang, J.; Healy, S.M.; Valerio, L.G., Jr. In Vitro and in Silico Genetic Toxicity Screening of Flavor Compounds and Other Ingredients in Tobacco Products with Emphasis on ENDS. J. Appl. Toxicol. 2020, 40, 1566–1587. [Google Scholar] [CrossRef]
- Kang, J.C.; Valerio, L.G. Investigating DNA Adduct Formation by Flavor Chemicals and Tobacco Byproducts in Electronic Nicotine Delivery System (ENDS) Using in Silico Approaches. Toxicol. Appl. Pharmacol. 2020, 398, 115026. [Google Scholar] [CrossRef]
- Goel, R.; Valerio, L.G. Predicting the Mutagenic Potential of Chemicals in Tobacco Products Using in Silico Toxicology Tools. Toxicol. Mech. Methods 2020, 30, 672–678. [Google Scholar] [CrossRef]
- US EPA. Human Health Risk Assessment Strategic Research Action Plan 2016-2019. EPA 601/K-15/002 2015, 51. Available online: https://www.epa.gov/sites/default/files/2015-10/documents/strap_2016_hhra_508.pdf (accessed on 1 March 2021).
- Hines, D.E.; Conolly, R.B.; Jarabek, A.M. A Quantitative Source-to-Outcome Case Study To Demonstrate the Integration of Human Health and Ecological End Points Using the Aggregate Exposure Pathway and Adverse Outcome Pathway Frameworks. Environ. Sci. Technol. 2019, 53, 11002–11012. [Google Scholar] [CrossRef]
- Teeguarden, J.G.; Tan, Y.-M.; Edwards, S.W.; Leonard, J.A.; Anderson, K.A.; Corley, R.A.; Kile, M.L.; Simonich, S.M.; Stone, D.; Tanguay, R.L.; et al. Completing the Link between Exposure Science and Toxicology for Improved Environmental Health Decision Making: The Aggregate Exposure Pathway Framework. Environ. Sci. Technol. 2016, 50, 4579–4586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- U.S. EPA. New Approach Methods Work Plan: Reducing Use of Animals in Chemical Testing 2021. Available online: https://www.epa.gov/system/files/documents/2021-11/nams-work-plan_11_15_21_508-tagged.pdf (accessed on 14 December 2021).
- U.S. EPA. New Approach Methods Work Plan: Reducing Use of Animals in Chemical Testing 2020. Available online: https://www.epa.gov/sites/default/files/2020-06/documents/epa_nam_work_plan.pdf (accessed on 5 August 2020).
- Jarabek, A.M.; Asgharian, B.; Miller, F.J. Dosimetric Adjustments for Interspecies Extrapolation of Inhaled Poorly Soluble Particles (PSP). Inhal. Toxicol. 2005, 17, 317–334. [Google Scholar] [CrossRef] [PubMed]
- Multiple-Path Particle Dosimetry (MPPD) Model Software (MPPD EPA 2021 v.1.01) With Technical Support Documentation and User’s Guide (External Review Draft) 2021. Available online: https://www.federalregister.gov/documents/2021/03/23/2021-05380/multiple-path-particle-dosimetry-mppd-model-software-mppd-epa-2021-v101-with-technical-support (accessed on 1 December 2022).
- U.S. EPA. Methods for Derivation of Inhalation Reference Concentrations and Application of Inhalation Dosimetry. Available online: https://www.epa.gov/risk/methods-derivation-inhalation-reference-concentrations-and-application-inhalation-dosimetry (accessed on 23 March 2022).
- National Academies of Sciences, Engineering, and Medicine. Using 21st Century Science to Improve Risk-Related Evaluations; The National Academies Press: Washington, DC, USA, 2017; ISBN 978-0-309-45348-6. [Google Scholar]
- Perkins, E.J.; Ashauer, R.; Burgoon, L.; Conolly, R.; Landesmann, B.; Mackay, C.; Murphy, C.A.; Pollesch, N.; Wheeler, J.R.; Zupanic, A.; et al. Building and Applying Quantitative Adverse Outcome Pathway Models for Chemical Hazard and Risk Assessment. Environ. Toxicol. Chem. 2019, 38, 1850–1865. [Google Scholar] [CrossRef] [Green Version]
- Spinu, N.; Cronin, M.T.D.; Enoch, S.J.; Madden, J.C.; Worth, A.P. Quantitative Adverse Outcome Pathway (QAOP) Models for Toxicity Prediction. Arch. Toxicol. 2020, 94, 1497–1510. [Google Scholar] [CrossRef]
- Price, P.S.; Jarabek, A.M.; Burgoon, L.D. Organizing Mechanism-Related Information on Chemical Interactions Using a Framework Based on the Aggregate Exposure and Adverse Outcome Pathways. Environ. Int. 2020, 138, 105673. [Google Scholar] [CrossRef]
- Wilkinson, M.D.; Dumontier, M.; Aalbersberg, I.J.; Appleton, G.; Axton, M.; Baak, A.; Blomberg, N.; Boiten, J.-W.; da Silva Santos, L.B.; Bourne, P.E.; et al. The FAIR Guiding Principles for Scientific Data Management and Stewardship. Sci. Data 2016, 3, 160018. [Google Scholar] [CrossRef] [Green Version]
- Brazma, A.; Hingamp, P.; Quackenbush, J.; Sherlock, G.; Spellman, P.; Stoeckert, C.; Aach, J.; Ansorge, W.; Ball, C.A.; Causton, H.C.; et al. Minimum Information about a Microarray Experiment (MIAME)—toward Standards for Microarray Data. Nat. Genet. 2001, 29, 365–371. [Google Scholar] [CrossRef]
- OECD. OECD Series on Testing and Assessment No. 69: Guidance Document on the Validation of (Quantitative) Structure-Activity Relationship [(Q)SAR] Models; OECD Publishing: Paris, France, 2014. [Google Scholar]
Speaker | Title |
---|---|
NAM-00: K Monica Lee, Altria; S Bell, ILS | Advancing New Alternative Methods for Tobacco Harm Reduction: Introduction |
NAM-01: Nicole Kleinstreuer, U.S. NIEHS | U.S. Federal Efforts to Develop and Implement Alternatives to Animal Testing |
NAM-02: Alicia Paini and Andrew Worth, EC JRC 1 | Application of Biokinetic Modeling for IVIVE in Chemical Risk Assessment |
NAM-03: Richard Corley, GCTC LLC | Inhalation Exposure Modeling for Assessing Health Risks of Toxic Aerosols and Vapors |
NAM-04: Andreas O. Stucki, PETA Science Consortium International | Assessing Respiratory Toxicity of Chemicals in Two Human Bronchial In Vitro Systems |
NAM-05: Luis Valerio Jr., U.S. FDA/CTP | In Silico Toxicology as a New Approach Methodology in Tobacco Regulatory Science |
NAM-06: Annie Jarabek, U.S. EPA | Application of Mechanistic Data in Risk Assessment: Exposure Alignment and Evidence Integration |
Cell System | Advantages | Disadvantages |
---|---|---|
Monoculture |
|
|
Reconstructed tissues |
|
|
Micro-physiological systems |
|
|
Precision cut lung slices |
|
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, K.M.; Corley, R.; Jarabek, A.M.; Kleinstreuer, N.; Paini, A.; Stucki, A.O.; Bell, S. Advancing New Approach Methodologies (NAMs) for Tobacco Harm Reduction: Synopsis from the 2021 CORESTA SSPT—NAMs Symposium. Toxics 2022, 10, 760. https://doi.org/10.3390/toxics10120760
Lee KM, Corley R, Jarabek AM, Kleinstreuer N, Paini A, Stucki AO, Bell S. Advancing New Approach Methodologies (NAMs) for Tobacco Harm Reduction: Synopsis from the 2021 CORESTA SSPT—NAMs Symposium. Toxics. 2022; 10(12):760. https://doi.org/10.3390/toxics10120760
Chicago/Turabian StyleLee, Kyeonghee Monica, Richard Corley, Annie M. Jarabek, Nicole Kleinstreuer, Alicia Paini, Andreas O. Stucki, and Shannon Bell. 2022. "Advancing New Approach Methodologies (NAMs) for Tobacco Harm Reduction: Synopsis from the 2021 CORESTA SSPT—NAMs Symposium" Toxics 10, no. 12: 760. https://doi.org/10.3390/toxics10120760
APA StyleLee, K. M., Corley, R., Jarabek, A. M., Kleinstreuer, N., Paini, A., Stucki, A. O., & Bell, S. (2022). Advancing New Approach Methodologies (NAMs) for Tobacco Harm Reduction: Synopsis from the 2021 CORESTA SSPT—NAMs Symposium. Toxics, 10(12), 760. https://doi.org/10.3390/toxics10120760