Deployment of a Novel Organic Acid Compound Disinfectant against Common Foodborne Pathogens
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of IDSK
2.3. Bacterial Strain and Growing Conditions
2.4. Minimum Inhibitory Concentration
2.5. Time-Killing Kinetics
2.6. Biofilm Degradation Assay
2.7. Statistical Analysis
3. Results
3.1. Synthesis and Characterization of IDSK
3.2. Antibacterial Properties of IDSK
3.3. Biofilm Degradation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Foodborne Diseases. Available online: https://www.who.int/health-topics/foodborne-diseases (accessed on 26 July 2022).
- EU Summary Report on Zoonoses, Zoonotic Agents and Food-Borne Outbreaks 2015|EFSA. Available online: https://www.efsa.europa.eu/en/efsajournal/pub/4634 (accessed on 26 July 2022).
- Bintsis, T. Foodborne Pathogens. AIMS Microbiol. 2017, 3, 529–563. [Google Scholar] [CrossRef]
- Han, Q.; Song, X.; Zhang, Z.; Fu, J.; Wang, X.; Malakar, P.K.; Liu, H.; Pan, Y.; Zhao, Y. Removal of Foodborne Pathogen Biofilms by Acidic Electrolyzed Water. Front. Microbiol. 2017, 8, 988. [Google Scholar] [CrossRef] [Green Version]
- Carrascosa, C.; Raheem, D.; Ramos, F.; Saraiva, A.; Raposo, A. Microbial Biofilms in the Food Industry—A Comprehensive Review. Int. J. Environ. Res. Public Health 2021, 18, 2014. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Jaiswal, S.; Duffy, B.; Jaiswal, A.K. Advances in Emerging Technologies for the Decontamination of the Food Contact Surfaces. Food Res. Int. 2022, 151, 110865. [Google Scholar] [CrossRef]
- Gómez-García, M.; Sol, C.; de Nova, P.J.G.; Puyalto, M.; Mesas, L.; Puente, H.; Mencía-Ares, Ó.; Miranda, R.; Argüello, H.; Rubio, P.; et al. Antimicrobial Activity of a Selection of Organic Acids, Their Salts and Essential Oils against Swine Enteropathogenic Bacteria. Porcine Health Manag. 2019, 5, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quitmann, H.; Fan, R.; Czermak, P. Acidic Organic Compounds in Beverage, Food, and Feed Production. In Biotechnology of Food and Feed Additives; Zorn, H., Czermak, P., Eds.; Advances in Biochemical Engineering/Biotechnology; Springer: Berlin/Heidelberg, Germany, 2014; pp. 91–141. ISBN 978-3-662-43761-2. [Google Scholar]
- Pelyuntha, W.; Vongkamjan, K. Combined Effects of Salmonella Phage Cocktail and Organic Acid for Controlling Salmonella Enteritidis in Chicken Meat. Food Control 2022, 133, 108653. [Google Scholar] [CrossRef]
- Ben Braïek, O.; Smaoui, S. Chemistry, Safety, and Challenges of the Use of Organic Acids and Their Derivative Salts in Meat Preservation. J. Food Qual. 2021, 2021, e6653190. [Google Scholar] [CrossRef]
- Ricke, S.C.; Dittoe, D.K.; Richardson, K.E. Formic Acid as an Antimicrobial for Poultry Production: A Review. Front. Vet. Sci. 2020, 7, 563. [Google Scholar] [CrossRef]
- Matejczyk, M.; Ofman, P.; Świsłocka, R.; Parcheta, M.; Lewandowski, W. The Study of Biological Activity of Mandelic Acid and Its Alkali Metal Salts in Wastewaters. Environ. Res. 2022, 205, 112429. [Google Scholar] [CrossRef]
- Pironti, C.; Dell’Annunziata, F.; Giugliano, R.; Folliero, V.; Galdiero, M.; Ricciardi, M.; Motta, O.; Proto, A.; Franci, G. Comparative Analysis of Peracetic Acid (PAA) and Permaleic Acid (PMA) in Disinfection Processes. Sci. Total Environ. 2021, 797, 149206. [Google Scholar] [CrossRef]
- Zarrella, I.; Falivene, L.; Galiakberov, V.; Fiorentino, A.; Cucciniello, R.; Motta, O.; Rizzo, L.; Krasnogorskaya, N.; Proto, A. Effect of the Aqueous Matrix on the Inactivation of E. Coli by Permaleic Acid. Sci. Total Environ. 2021, 767, 144395. [Google Scholar] [CrossRef] [PubMed]
- Ambrosino, A.; Pironti, C.; Dell’Annunziata, F.; Giugliano, R.; Chianese, A.; Moccia, G.; DeCaro, F.; Galdiero, M.; Franci, G.; Motta, O. Investigation of Biocidal Efficacy of Commercial Disinfectants Used in Public, Private and Workplaces during the Pandemic Event of SARS-CoV-2. Sci. Rep. 2022, 12, 5468. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Cesario, T.; Owens, J.; Shanbrom, E.; Thrupp, L.D. Antibacterial Activity of Citrate and Acetate. Nutrition 2002, 18, 665–666. [Google Scholar] [CrossRef] [PubMed]
- McWilliam Leitch, E.C.; Stewart, C.S. Susceptibility of Escherichia Coli O157 and Non-O157 Isolates to Lactate. Lett. Appl. Microbiol. 2002, 35, 176–180. [Google Scholar] [CrossRef]
- Cabezas-Pizarro, J.; Redondo-Solano, M.; Umaña-Gamboa, C.; Arias-Echandi, M.L. Antimicrobial Activity of Different Sodium and Potassium Salts of Carboxylic Acid against Some Common Foodborne Pathogens and Spoilage-Associated Bacteria. Rev. Argent. Microbiol. 2018, 50, 56–61. [Google Scholar] [CrossRef]
- World Health Organization. WHO Issues New Guidance on Dietary Salt and Potassium. Cent. Eur. J. Public Health 2013, 21, 16. [Google Scholar]
- Pinto, I.S.S.; Neto, I.F.F.; Soares, H.M.V.M. Biodegradable Chelating Agents for Industrial, Domestic, and Agricultural Applications—A Review. Environ. Sci. Pollut. Res. 2014, 21, 11893–11906. [Google Scholar] [CrossRef]
- Hyvönen, H.; Svärd, L.; Aksela, R. Complexation of Iminodisuccinic Acid (IDS) and 3-Hydroxy-2,2′-Iminodisuccinic Acid (HIDS) with Cd2+, Hg2+, and Pb2+ in Aqueous Solution. J. Coord. Chem. 2011, 64, 1091–1103. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, G.; Shi, Q.; Yang, S.; Liu, D. Utilization of Tetrasodium Iminodisuccinate to Eliminate the Adverse Effect of Serpentine on the Flotation of Pyrite. Miner. Eng. 2020, 150, 106235. [Google Scholar] [CrossRef]
- Cokesa, Ž.; Lakner, S.; Knackmuss, H.-J.; Rieger, P.-G. A Stereoselective Carbon-Nitrogen Lyase from Ralstonia Sp. SLRS7 Cleaves Two of Three Isomers of Iminodisuccinate. Biodegradation 2004, 15, 229–239. [Google Scholar] [CrossRef]
- Environmental Protection Agency. Aspartic Acid, N-(1,2-Dicarboxyethyl)-, Tetrasodium Salt; Exemption from the Requirement of a Tolerance; Environmental Protection Agency: Washington, DC, USA, 2018. [Google Scholar]
- Dell’Annunziata, F.; Ilisso, C.P.; Dell’Aversana, C.; Greco, G.; Coppola, A.; Martora, F.; Dal Piaz, F.; Donadio, G.; Falanga, A.; Galdiero, M.; et al. Outer Membrane Vesicles Derived from Klebsiella Pneumoniae Influence the MiRNA Expression Profile in Human Bronchial Epithelial BEAS-2B Cells. Microorganisms 2020, 8, 1985. [Google Scholar] [CrossRef] [PubMed]
- Patel, J.B.; Cockerill, F.R.; Bradford, P.A.; Eliopoulus, G.M.; Hindler, J.A.; Jenkins, S.G.; Lewis, S.J.; Limbago, B.; Miller, A.L.; Nicolau, P.D. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically—Tenth Edition: Approved Standard M7–A10; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2015. [Google Scholar]
- Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in Vitro Evaluating Antimicrobial Activity: A Review. J. Pharm. Anal. 2016, 6, 71–79. [Google Scholar] [CrossRef] [Green Version]
- Folliero, V.; Franci, G.; Dell’Annunziata, F.; Giugliano, R.; Foglia, F.; Sperlongano, R.; De Filippis, A.; Finamore, E.; Galdiero, M. Evaluation of Antibiotic Resistance and Biofilm Production among Clinical Strain Isolated from Medical Devices. Int. J. Microbiol. 2021, 2021, 9033278. [Google Scholar] [CrossRef] [PubMed]
- Morone, M.V.; Dell’Annunziata, F.; Giugliano, R.; Chianese, A.; De Filippis, A.; Rinaldi, L.; Gambardella, U.; Franci, G.; Galdiero, M.; Morone, A. Pulsed Laser Ablation of Magnetic Nanoparticles as a Novel Antibacterial Strategy against Gram Positive Bacteria. Appl. Surf. Sci. Adv. 2022, 7, 100213. [Google Scholar] [CrossRef]
- Moccia, G.; Motta, O.; Pironti, C.; Proto, A.; Capunzo, M.; De Caro, F. An Alternative Approach for the Decontamination of Hospital Settings. J. Infect. Public Health 2020, 13, 2038–2044. [Google Scholar] [CrossRef] [PubMed]
- Gratzl, G.; Paulik, C.; Hild, S.; Guggenbichler, J.P.; Lackner, M. Antimicrobial Activity of Poly(Acrylic Acid) Block Copolymers. Mater. Sci. Eng. C 2014, 38, 94–100. [Google Scholar] [CrossRef]
- Stein, A. Induced Interference by Synthetic Polyanions with the Infection of Tobacco Mosaic Virus. Phytopathology 1972, 62, 1461. [Google Scholar] [CrossRef]
- Pirrone, V.; Passic, S.; Wigdahl, B.; Rando, R.F.; Labib, M.; Krebs, F.C. A Styrene-Alt-Maleic Acid Copolymer Is an Effective Inhibitor of R5 and X4 Human Immunodeficiency Virus Type 1 Infection. J. Biomed. Biotechnol. 2010, 2010, e548749. [Google Scholar] [CrossRef] [Green Version]
- Feltz, E.T.; Regelson, W. Ethylene Maleic Anhydride Copolymers as Viral Inhibitors. Nature 1962, 196, 642–645. [Google Scholar] [CrossRef]
- He, X.; Yang, Y.; Song, H.; Wang, S.; Zhao, H.; Wei, D. Polyanionic Composite Membranes Based on Bacterial Cellulose and Amino Acid for Antimicrobial Application. ACS Appl. Mater. Interfaces 2020, 12, 14784–14796. [Google Scholar] [CrossRef]
- Xu, Q.; Zheng, Z.; Wang, B.; Mao, H.; Yan, F. Zinc Ion Coordinated Poly(Ionic Liquid) Antimicrobial Membranes for Wound Healing. ACS Appl. Mater. Interfaces 2017, 9, 14656–14664. [Google Scholar] [CrossRef] [PubMed]
- Motta, O.; Pironti, C.; Ricciardi, M.; Rostagno, C.; Bolzacchini, E.; Ferrero, L.; Cucciniello, R.; Proto, A. Leonardo Da Vinci’s “Last Supper”: A Case Study to Evaluate the Influence of Visitors on the Museum Preservation Systems. Environ. Sci. Pollut. Res. 2022, 29, 29391–29398. [Google Scholar] [CrossRef] [PubMed]
- Bayer, A.G.; Na-Salz, I.D.S. Eine Neue Umweltfreundliche Alternative Zu Klassischen Komplexierungsmitteln; Brochure of Bayer: Leverkusen, Germany, 1998. [Google Scholar]
- Kołodyńska, D.; Kołodyńska, D. Chelating Agents of a New Generation as an Alternative to Conventional Chelators for Heavy Metal Ions Removal from Different Waste Waters; IntechOpen: Rijeka, Croatia, 2011; ISBN 978-953-307-624-9. [Google Scholar]
- Fiorentino, A.; Prete, P.; Rizzo, L.; Cucciniello, R.; Proto, A. Fe3+- IDS as a New Green Catalyst for Water Treatment by Photo-Fenton Process at Neutral PH. J. Environ. Chem. Eng. 2021, 9, 106802. [Google Scholar] [CrossRef]
- Faggiano, A.; Ricciardi, M.; Fiorentino, A.; Cucciniello, R.; Motta, O.; Rizzo, L.; Proto, A. Combination of Foam Fractionation and Photo-Fenton like Processes for Greywater Treatment. Sep. Purif. Technol. 2022, 293, 121114. [Google Scholar] [CrossRef]
- Faggiano, A.; De Carluccio, M.; Fiorentino, A.; Ricciardi, M.; Cucciniello, R.; Proto, A.; Rizzo, L. Photo-Fenton like Process as Polishing Step of Biologically Co-Treated Olive Mill Wastewater for Phenols Removal. Sep. Purif. Technol. 2023, 305, 122525. [Google Scholar] [CrossRef]
- Peh, E.; Kittler, S.; Reich, F.; Kehrenberg, C. Antimicrobial Activity of Organic Acids against Campylobacter Spp. and Development of Combinations-A Synergistic Effect? PLoS ONE 2020, 15, e0239312. [Google Scholar] [CrossRef]
- Jessop, P.G.; Ahmadpour, F.; Buczynski, M.A.; Burns, T.J.; Ii, N.B.G.; Korwin, R.; Long, D.; Massad, S.K.; Manley, J.B.; Omidbakhsh, N.; et al. Opportunities for Greener Alternatives in Chemical Formulations. Green Chem. 2015, 17, 2664–2678. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Folliero, V.; Ricciardi, M.; Dell’Annunziata, F.; Pironti, C.; Galdiero, M.; Franci, G.; Motta, O.; Proto, A. Deployment of a Novel Organic Acid Compound Disinfectant against Common Foodborne Pathogens. Toxics 2022, 10, 768. https://doi.org/10.3390/toxics10120768
Folliero V, Ricciardi M, Dell’Annunziata F, Pironti C, Galdiero M, Franci G, Motta O, Proto A. Deployment of a Novel Organic Acid Compound Disinfectant against Common Foodborne Pathogens. Toxics. 2022; 10(12):768. https://doi.org/10.3390/toxics10120768
Chicago/Turabian StyleFolliero, Veronica, Maria Ricciardi, Federica Dell’Annunziata, Concetta Pironti, Massimiliano Galdiero, Gianluigi Franci, Oriana Motta, and Antonio Proto. 2022. "Deployment of a Novel Organic Acid Compound Disinfectant against Common Foodborne Pathogens" Toxics 10, no. 12: 768. https://doi.org/10.3390/toxics10120768
APA StyleFolliero, V., Ricciardi, M., Dell’Annunziata, F., Pironti, C., Galdiero, M., Franci, G., Motta, O., & Proto, A. (2022). Deployment of a Novel Organic Acid Compound Disinfectant against Common Foodborne Pathogens. Toxics, 10(12), 768. https://doi.org/10.3390/toxics10120768