Utilizing a Population-Genetic Framework to Test for Gene-Environment Interactions between Zebrafish Behavior and Chemical Exposure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Spawning Strategy for the Family-Based Approach
2.2. Morbidity and Behavioral Assessment
2.3. mRNA-Sequencing
2.4. Statistical Analysis
2.4.1. Fitting One-Way Random Effect Model to Estimate ICC
2.4.2. Fitting Linear Mixed Model (LMM) to Assess the Significance of GxE Term
3. Results
3.1. One-Way Random Effect Model to Estimate ICC in Different Environments
3.2. LMM to Assess Significance of GxE in LPR and Gene-Expression
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Grandjean, P. Individual susceptibility to toxicity. Toxicol. Lett. 1992, 64–65, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Lange, M.; Neuzeret, F.; Fabreges, B.; Froc, C.; Bedu, S.; Bally-Cuif, L.; Norton, W.H.J. Inter-Individual and Inter-Strain Variations in Zebrafish Locomotor Ontogeny. PLoS ONE 2013, 8, e70172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dornbos, P.; LaPres, J.J. Incorporating Population-Level Genetic Variability within Laboratory Models in Toxicology: From the Individual to the Population. Toxicology. 2018, 395, 1–8. [Google Scholar] [CrossRef]
- McAllister, K.; Mechanic, L.E.; Amos, C.; Aschard, H.; Blair, I.A.; Chatterjee, N.; Conti, D.; Gauderman, W.J.; Hsu, L.; Hutter, C.M.; et al. Current Challenges and New Opportunities for Gene-Environment Interaction Studies of Complex Diseases. Am. J. Epidemiol. 2017, 186, 753–761. [Google Scholar] [CrossRef] [Green Version]
- Ritz, B.R.; Chatterjee, N.; Garcia-Closas, M.; Gauderman, W.J.; Pierce, B.L.; Kraft, P.; Tanner, C.M.; Mechanic, L.E.; McAllister, K. Lessons Learned From Past Gene-Environment Interaction Successes. Am. J. Epidemiol. 2017, 186, 778–786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdo, N.; Xia, M.; Brown, C.C.; Kosyk, O.; Huang, R.; Sakamuru, S.; Zhou, Y.-H.; Jack, J.R.; Gallins, P.; Xia, K.; et al. Population-Based in Vitro Hazard and Concentration–Response Assessment of Chemicals: The 1000 Genomes High-Throughput Screening Study. Environ. Health Perspect. 2015, 123, 458–466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- United States Environmental Protection Agency. Exposure Factors Handbook—Chapter 2: Variability and Uncertainty; USEPA: Washington, DC, USA, 2011; p. 13.
- Balik-Meisner, M.; Truong, L.; Scholl, E.H.; La Du, J.K.; Tanguay, R.L.; Reif, D.M. Elucidating Gene-by-Environment Interactions Associated with Differential Susceptibility to Chemical Exposure. Environ. Health Perspect. 2018, 126, 067010. [Google Scholar] [CrossRef] [PubMed]
- Volgin, A.D.; Yakovlev, O.A.; Demin, K.A.; de Abreu, M.S.; Alekseeva, P.A.; Friend, A.J.; Lakstygal, A.M.; Amstislavskaya, T.G.; Bao, W.; Song, C.; et al. Zebrafish models for personalized psychiatry: Insights from individual, strain and sex differences, and modeling gene x environment interactions. J. Neurosci. Res. 2019, 97, 402–413. [Google Scholar] [CrossRef] [PubMed]
- Reif, D.M.; Truong, L.; Mandrell, D.; Marvel, S.; Zhang, G.; Tanguay, R.L. High-throughput characterization of chemical-associated embryonic behavioral changes predicts teratogenic outcomes. Arch. Toxicol. 2016, 90, 1459–1470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thunga, P.; Truong, L.; Tanguay, R.L.; Reif, D.M. Concurrent Evaluation of Mortality and Behavioral Responses: A Fast and Efficient Testing Approach for High-Throughput Chemical Hazard Identification. Front. Toxicol. 2021, 3, 29. [Google Scholar] [CrossRef]
- Laine, M.B.; Vesamäki, J.S.; Puupponen, V.-M.; Tiirola, M.; Taipale, S.J. Comparing the Ecotoxicological Effects of Perfluorooctanoic Acid (PFOA) and Perfluorohexanoic Acid (PFHxA) on Freshwater Microbial Community. Front. Environ. Sci. 2022, 10, 888171. [Google Scholar] [CrossRef]
- Visscher, P.M. On the sampling variance of intraclass correlations and genetic correlations. Genetics 1998, 149, 1605–1614. [Google Scholar] [CrossRef] [PubMed]
- Barton, C.L.; Johnson, E.W.; Tanguay, R.L. Facility Design and Health Management Program at the Sinnhuber Aquatic Research Laboratory. Zebrafish 2016, 13, S-39–S-43. [Google Scholar] [CrossRef] [Green Version]
- Rericha, Y.; Cao, D.; Truong, L.; Simonich, M.; Field, J.A.; Tanguay, R.L. Behavior Effects of Structurally Diverse Per- and Polyfluoroalkyl Substances in Zebrafish. Chem. Res. Toxicol. 2021, 34, 1409–1416. [Google Scholar] [CrossRef] [PubMed]
- Menger, F.; Pohl, J.; Ahrens, L.; Carlsson, G.; Örn, S. Behavioural effects and bioconcentration of per- and polyfluoroalkyl substances (PFASs) in zebrafish (Danio rerio) embryos. Chemosphere 2020, 245, 125573. [Google Scholar] [CrossRef] [PubMed]
- Gaballah, S.; Swank, A.; Sobus, J.R.; Howey, X.M.; Schmid, J.; Catron, T.; McCord, J.; Hines, E.; Strynar, M.; Tal, T. Evaluation of Developmental Toxicity, Developmental Neurotoxicity, and Tissue Dose in Zebrafish Exposed to GenX and Other PFAS. Environ. Health Perspect. 2020, 128, 047005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Truong, L.; Rericha, Y.; Thunga, P.; Marvel, S.; Wallis, D.; Simonich, M.T.; Field, J.A.; Cao, D.; Reif, D.M.; Tanguay, R.L. Systematic developmental toxicity assessment of a structurally diverse library of PFAS in zebrafish. J. Hazard. Mater. 2022, 431, 128615. [Google Scholar] [CrossRef] [PubMed]
- Pani, A.M.; Goldstein, B. Direct visualization of a native Wnt in vivo reveals that a long-range Wnt gradient forms by extracellular dispersal. eLife 2018, 7, e38325. [Google Scholar] [CrossRef] [PubMed]
- Hunter, D.J. Gene-environment interactions in human diseases. Nat. Rev. Genet. 2005, 6, 287–298. [Google Scholar] [CrossRef] [PubMed]
- ECHA. Annex XV Report: Proposal for Identification of a Substance of Very High Concern on the Basis of the Criteria Set Out in REACH Article 57. Identification of Undecafluorohexanoic Acid and its Ammonium Salt as SVHC. 2018. Available online: https://www.echa.europa.eu/documents/ (accessed on 1 September 2022).
- Pleil, J.D.; Wallace, M.A.G.; Stiegel, M.A.; Funk, W.E. Human biomarker interpretation: The importance of intra-class correlation coefficients (ICC) and their calculations based on mixed models, ANOVA, and variance estimates. J. Toxicol. Environ. Health B Crit. Rev. 2018, 21, 161–180. [Google Scholar] [CrossRef] [PubMed]
Parameter | Details |
---|---|
y | Total distance moved (LPR) or normalized gene expression value for a single gene |
α | Fixed effect of exposure |
ß | Random effect due to family~N(0, σ2G) |
αß | Random interaction term~N(0, σ2GxE); |
ϵ | Residual error~N(0, σ2E) |
Family ID | Exposure | Number of Larvae |
---|---|---|
P1 | 0.33% DMSO (Control) | 45 |
P2 | 0.33% DMSO (Control) | 42 |
P3 | 0.33% DMSO (Control) | 45 |
P4 | 0.33% DMSO (Control) | 48 |
P5 | 16.4 μM PFHxA (Medium) | 44 |
P6 | 16.4 μM PFHxA (Medium) | 35 |
P7 | 16.4 μM PFHxA (Medium) | 48 |
P8 | 16.4 μM PFHxA (Medium) | 47 |
P9 | 74.8 μM PFHxA (High) | 42 |
P10 | 74.8 μM PFHxA (High) | 48 |
P11 | 74.8 μM PFHxA (High) | 46 |
P12 | 74.8 μM PFHxA (High) | 48 |
Random Effect Variances | ||
Group | Variance | Standard Deviation |
Family ID | 4221 (σ2G) | 64.97 |
Family ID: Exposure | 19,547 (σ2GxE) | 139.81 |
Residual | 77,515 (σ2E) | 278.41 |
Random effect parameter estimates | ||
Group | Estimate | |
Family ID (ß) | 0.23 | |
Family ID: Exposure (αß) | 0.50 | |
Error (ϵ) | 278.41 | |
Fixed effect parameter estimates | ||
Group | Estimate | Standard Error |
Intercept | 376.54 | 63.50 |
Exposure | −0.74 | 1.43 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thunga, P.; Truong, L.; Rericha, Y.; Du, J.L.; Morshead, M.; Tanguay, R.L.; Reif, D.M. Utilizing a Population-Genetic Framework to Test for Gene-Environment Interactions between Zebrafish Behavior and Chemical Exposure. Toxics 2022, 10, 769. https://doi.org/10.3390/toxics10120769
Thunga P, Truong L, Rericha Y, Du JL, Morshead M, Tanguay RL, Reif DM. Utilizing a Population-Genetic Framework to Test for Gene-Environment Interactions between Zebrafish Behavior and Chemical Exposure. Toxics. 2022; 10(12):769. https://doi.org/10.3390/toxics10120769
Chicago/Turabian StyleThunga, Preethi, Lisa Truong, Yvonne Rericha, Jane La Du, Mackenzie Morshead, Robyn L. Tanguay, and David M. Reif. 2022. "Utilizing a Population-Genetic Framework to Test for Gene-Environment Interactions between Zebrafish Behavior and Chemical Exposure" Toxics 10, no. 12: 769. https://doi.org/10.3390/toxics10120769
APA StyleThunga, P., Truong, L., Rericha, Y., Du, J. L., Morshead, M., Tanguay, R. L., & Reif, D. M. (2022). Utilizing a Population-Genetic Framework to Test for Gene-Environment Interactions between Zebrafish Behavior and Chemical Exposure. Toxics, 10(12), 769. https://doi.org/10.3390/toxics10120769