Editorial for the Special Issue “Potentially Toxic Elements Pollution in Urban and Suburban Environments”
Conflicts of Interest
References
- Guagliardi, I.; Zuzolo, D.; Albanese, S.; Lima, A.; Cerino, P.; Pizzolante, A.; Thiombane, M.; De Vivo, B.; Cicchella, D. Uranium, thorium and potassium insights on Campania region (Italy) soils: Sources patterns based on compositional data analysis and fractal model. J. Geochem. Explor. 2020, 213, 106508. [Google Scholar] [CrossRef]
- Goh, T.A.; Ramchunder, S.J.; Ziegler, A.D. Low presence of potentially toxic elements in Singapore urban garden soils. CABI Agric. Biosci. 2022, 3, 60. [Google Scholar] [CrossRef]
- Said, I.; Salman, S.A.E.-R.; Samy, Y.; Awad, S.A.; Melegy, A.; Hursthouse, A.S. Environmental factors controlling potentially toxic element behaviour in urban soils, El Tebbin, Egypt. Environ. Monit. Assess. 2019, 191, 267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lei, M.; Li, K.; Guo, G.; Ju, T. Source-specific health risks apportionment of soil potential toxicity elements combining multiple receptor models with Monte Carlo simulation. Sci. Total Environ. 2022, 817, 152899. [Google Scholar] [CrossRef]
- Hanfi, M.Y.; Seleznev, A.A.; Yarmoshenko, I.V.; Malinovsky, G.; Konstantinova, E.Y.; Alsafi, K.G.; Sakr, A.K. Potentially harmful elements in urban surface deposited sediment of Ekaterinburg, Russia: Occurrence, source appointment and risk assessment. Chemosphere 2022, 307, 135898. [Google Scholar] [CrossRef]
- Bai, J.; Zhang, W.; Liu, W.; Xiang, G.; Zheng, Y.; Zhang, X.; Yang, Z.; Sushkova, S.; Minkina, T.; Duan, R. Implications of Soil Potentially Toxic Elements Contamination, Distribution and Health Risk at Hunan’s Xikuangshan Mine. Processes 2021, 9, 1532. [Google Scholar] [CrossRef]
- Cicchella, D.; Zuzolo, D.; Albanese, S.; Fedele, L.; Di Tota, I.; Guagliardi, I.; Thiombane, M.; De Vivo, B.; Lima, A. Urban soil contamination in Salerno (Italy): Concentrations and patterns of major, minor, trace and ultra-trace elements in soils. J. Geochem. Explor. 2020, 213, 106519. [Google Scholar] [CrossRef]
- Gaglioti, S.; Infusino, E.; Caloiero, T.; Callegari, G.; Guagliardi, I. Geochemical characterization of spring waters in the Crati River Basin, Calabria (Southern Italy). Geofluids 2019, 2019, 3850148. [Google Scholar] [CrossRef] [Green Version]
- Guagliardi, I.; Rovella, N.; Apollaro, C.; Bloise, A.; De Rosa, R.; Scarciglia, F.; Buttafuoco, G. Modelling seasonal variations of natural radioactivity in soils: A case study in southern Italy. J. Earth Syst. Sci. 2016, 125, 1569–1578. [Google Scholar] [CrossRef] [Green Version]
- Buttafuoco, G.; Guagliardi, I.; Tarvainen, T.; Jarva, J. A multivariate approach to study the geochemistry of urban topsoil in the city of Tampere, Finland. J. Geochem. Explor. 2017, 181, 191–204. [Google Scholar] [CrossRef]
- Tomczyk-Wydrych, I.; Świercz, A.; Przepióra, P. Assessment of the Railroad Transport Impact on Physical and Chemical Soil Properties: The Case Study from Zduńska Wola Karsznice Railway Junction, Central Poland. Toxics 2021, 9, 296. [Google Scholar] [CrossRef] [PubMed]
- Famuyiwa, A.O.; Davidson, C.M.; Ande, S.; Oyeyiola, A.O. Potentially Toxic Elements in Urban Soils from Public-Access Areas in the Rapidly Growing Megacity of Lagos, Nigeria. Toxics 2022, 10, 154. [Google Scholar] [CrossRef] [PubMed]
- Guagliardi, I.; Astel, A.M.; Cicchella, D. Exploring Soil Pollution Patterns Using Self-Organizing Maps. Toxics 2022, 10, 416. [Google Scholar] [CrossRef] [PubMed]
- Kohonen, T. Self-organized formation of topologically correct feature maps. Biol. Cybern. 1982, 43, 56–69. [Google Scholar] [CrossRef]
- Infusino, E.; Guagliardi, I.; Gaglioti, S.; Caloiero, T. Vulnerability to Nitrate Occurrence in the Spring Waters of the Sila Massif (Calabria, Southern Italy). Toxics 2022, 10, 137. [Google Scholar] [CrossRef]
- Parrone, D.; Ghergo, S.; Preziosi, E.; Casentini, B. Water-Rock Interaction Processes: A Local Scale Study on Arsenic Sources and Release Mechanisms from a Volcanic Rock Matrix. Toxics 2022, 10, 288. [Google Scholar] [CrossRef]
- Pei, L.; Sun, L. Impact Factors on Migration of Molybdenum(VI) from the Simulated Trade Effluent Using Membrane Chemical Reactor Combined with Carrier in the Mixed Renewal Solutions. Toxics 2022, 10, 438. [Google Scholar] [CrossRef]
- Mugudamani, I.; Oke, S.A.; Gumede, T.P. Influence of Urban Informal Settlements on Trace Element Accumulation in Road Dust and Their Possible Health Implications in Ekurhuleni Metropolitan Municipality, South Africa. Toxics 2022, 10, 253. [Google Scholar] [CrossRef]
- Xiao, K.; Yao, X.; Zhang, X.; Fu, N.; Shi, Q.; Meng, X.; Ren, X. Pollution Characteristics, Source Apportionment, and Health Risk Assessment of Potentially Toxic Elements (PTEs) in Road Dust Samples in Jiayuguan, Hexi Corridor, China. Toxics 2022, 10, 580. [Google Scholar] [CrossRef]
- Jeong, H.; Ra, K. Pollution and Health Risk Assessments of Potentially Toxic Elements in the Fine-Grained Particles (10–63 µm and <10 µm) in Road Dust from Apia City, Samoa. Toxics 2022, 10, 683. [Google Scholar]
- Gad, A.; Saleh, A.; Farhat, H.I.; Dawood, Y.H.; Abd El Bakey, S.M. Spatial Distribution, Contamination Levels, and Health Risk Assessment of Potentially Toxic Elements in Household Dust in Cairo City, Egypt. Toxics 2022, 10, 466. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Qi, H.; Li, X. Composition, Source Apportionment, and Health Risk of PM2.5-Bound Metals during Winter Haze in Yuci College Town, Shanxi, China. Toxics 2022, 10, 467. [Google Scholar] [CrossRef] [PubMed]
- Wan, X.; Zeng, W.; Gu, G.; Wang, L.; Lei, M. Discharge Patterns of Potentially Harmful Elements (PHEs) from Coking Plants and Its Relationship with Soil PHE Contents in the Beijing–Tianjin–Hebei Region, China. Toxics 2022, 10, 240. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guagliardi, I. Editorial for the Special Issue “Potentially Toxic Elements Pollution in Urban and Suburban Environments”. Toxics 2022, 10, 775. https://doi.org/10.3390/toxics10120775
Guagliardi I. Editorial for the Special Issue “Potentially Toxic Elements Pollution in Urban and Suburban Environments”. Toxics. 2022; 10(12):775. https://doi.org/10.3390/toxics10120775
Chicago/Turabian StyleGuagliardi, Ilaria. 2022. "Editorial for the Special Issue “Potentially Toxic Elements Pollution in Urban and Suburban Environments”" Toxics 10, no. 12: 775. https://doi.org/10.3390/toxics10120775
APA StyleGuagliardi, I. (2022). Editorial for the Special Issue “Potentially Toxic Elements Pollution in Urban and Suburban Environments”. Toxics, 10(12), 775. https://doi.org/10.3390/toxics10120775