Herbicides in Water Sources: Communicating Potential Risks to the Population of Mangaung Metropolitan Municipality, South Africa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection and Analysis
2.3. Environmental Risk Assessment
Compound | Taxon | Specie | Acute Toxicity (EC50) | Chronic Toxicity (NOEC) | References |
---|---|---|---|---|---|
Atrazine | Algae | P. Subcapitata | 0.059 mg/L | 0.1 mg/L | [34] |
Invertebrate | Daphnia magma | 6.9 mg/L | 0.1 mg/L | [34] | |
Fish | Oncorhynchus mykiss | 4.5 mg/L | 2 mg/L | [34] | |
Metolachlor | Algae | P. Subcapitata | 57.1 mg/L | 3.0 mg/L | [34] |
Invertebrate | Daphnia magma | 23.5 mg/L | 3.0 mg/L | [34] | |
Fish | Oncorhynchus mykiss | 3.9 mg/L | 1.0 mg/L | [34] | |
Simazine | Algae | P. Subcapitata | 0.04 mg/L | 0.6 mg/L | [34] |
Invertebrate | Daphnia magma | 1.1 mg/L | 0.6 mg/L | [34] | |
Fish | Oncorhynchus mykiss | 9.0 mg/L | 0.7 mg/L | [34] | |
Terbuthylazine | Algae | P. Subcapitata | 0.02 mg/L | - | [35] |
Invertebrate | Daphnia magma | 39.4 mg/L | 0.21 mg/L | [35] | |
Fish | Oncorhynchus mykiss | 3.6 mg/L | 0.13 mg/L a | [35] |
2.4. Health Risk Assessment
Parameters | Description | Unit | Values | Reference | |
---|---|---|---|---|---|
Adult | Children | ||||
BW | Body weight | kg | 70 | 28 | [37,40] |
EF | Exposure frequency | d/year | 350 | 350 | [36,39] |
ED | Exposure duration | years | 30 | 6 | [36,39] |
IngR | ingestion rate | L/day | 2 | 1.5 | [37,41] |
AT | Average time (cancer) | days | 365 × 70 | 365 × 70 | [36,39] |
Average time(non-cancer) | days | 365 × ED | 365 × ED | [36,39] | |
CF | Conversion factor | L/cm3 | 0.003 | 0.003 | [37,40] |
C | Concentration | mg/L | - | - | - |
3. Results and Discussion
3.1. Pesticides in Water Resources
3.1.1. Pesticides in Rivers
3.1.2. Pesticides in Dams/Reservoirs
3.1.3. Pesticides in Treated Drinking Water
3.2. Environmental Risk Assessment
3.3. Human Health Risk Assessment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Husk, B.; Sanchez, J.S.; Leduc, R.; Takser, L.; Savary, O.; Cabana, H. Pharmaceuticals and pesticides in rural community drinking water of Quebec, Canada—A regional study on the susceptibility to source contamination. Water Qual. Res. J. 2019, 54, 88–103. [Google Scholar] [CrossRef] [Green Version]
- Bai, X.; Lutz, A.; Carroll, R.; Keteles, K.; Dahlin, K.; Murphy, M.; Nguyen, D. Occurrence, distribution, and seasonality of emerging contaminants in urban watersheds. Chemosphere 2018, 200, 133–142. [Google Scholar] [CrossRef] [PubMed]
- Nicolopoulou-Stamati, P.; Maipas, S.; Kotampasi, C.; Stamatis, P.; Hens, L. Chemical pesticides and human health: The urgent need for a new concept in agriculture. Front. Public Health 2016, 4, 148. [Google Scholar] [CrossRef] [Green Version]
- Syafrudin, M.; Kristanti, R.A.; Yuniarto, A.; Hadibarata, T.; Rhee, J.; Al-Onazi, W.A.; Algarni, T.S.; Almarri, A.H.; Al-Mohaimeed, A.M. Pesticides in drinking water—A review. Int. J. Environ. Res. Public Health 2021, 18, 468. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Lv, J.; Deng, H.; Liu, Q.; Liang, S. Occurrence and Removal of Triazine Herbicides during Wastewater Treatment Processes and Their Environmental Impact on Aquatic Life. Int. J. Environ. Res. Public Health 2022, 19, 4557. [Google Scholar] [CrossRef] [PubMed]
- Stevanović, M.; Gasic, S. Herbicides in surface water bodies—Behaviour, effects on aquatic organisms and risk assessment. Pestic. Phytomed. 2019, 34, 157–172. [Google Scholar] [CrossRef]
- Goncalves-Filho, D.; Silva, C.C.G.; De Souza, D. Pesticides determination in food and natural waters using solid amalgambased electrodes: Challenges and trends. Talanta 2020, 212, 120756. [Google Scholar] [CrossRef] [PubMed]
- Kruc-Fijalkowska, R.; Dragon, K.; Drozdzynski, D.; Gorski, J. Seasonal variation of pesticides in surface water and drinking water wells in the annual cycle in western Poland, and potential health risk assessment. Sci. Rep. 2022, 12, 3317. [Google Scholar] [CrossRef]
- Mas, L.I.; Aparicio, V.; De Gerónimo, E.; Costa, J.L. Pesticides in water sources used for human consumption in the semiarid region of Argentina. SN Appl. Sci. 2020, 2, 691. [Google Scholar] [CrossRef] [Green Version]
- Chidya, C.G.R.; Abdel-dayem, S.M.; Takeda, K.; Sakugawa, H. Spatio-temporal variations of selected pesticide residues in the Kurose River in Higashi-Hiroshima city, Japan. J. Environ. Sci. Health Part B 2018, 53, 602–614. [Google Scholar] [CrossRef]
- Panthi, S.; Sapkota, A.R.; Raspanti, G.; Allard, S.M.; Bui, A.; Craddock, H.A.; Murray, R.; Zhu, L.; East, C.; Handy, E.; et al. Pharmaceuticals, herbicides, and disinfectants in agricultural water sources. Environ. Res. 2019, 174, 1–8. [Google Scholar] [CrossRef]
- Ganaie, M.I.; Jan, I.; Mayer, A.N.; Dar, A.A.; Mayer, I.A.; Ahmed, P.; Sofi, J.A. Health Risk Assessment of Pesticide Residues in Drinking Water of Upper Jhelum Region in Kashmir Valley-India by GC-MS/MS. Int. J. Anal. Chem. 2023, 27, 6802782. [Google Scholar] [CrossRef] [PubMed]
- Medkova, D.; Hollerova, A.; Riesova, B.; Blahova, J.; Hodkovicova, N.; Marsalek, P.; Doubkova, V.; Weiserova, Z.; Mares, J.; Faldyna, M.; et al. Pesticides and Parabens Contaminating Aquatic Environment: Acute and Sub-Chronic Toxicity towards Early-Life Stages of Freshwater Fish and Amphibians. Toxics 2023, 11, 333. [Google Scholar] [CrossRef] [PubMed]
- Zheng, S.; Chen, B.; Qiu, X.; Chen, M.; Ma, Z.; Yu, X. Distribution and risk assessment of 82 pesticides in Jiulong River and estuary. Chemosphere 2016, 144, 1177–1192. [Google Scholar] [CrossRef] [PubMed]
- Elfikrie, N.; Ho, Y.B.; Zaidon, S.Z.; Juahir, H.; Tan, E.S.S. Occurrence of pesticides in surface water, pesticides removal efficiency in drinking water treatment plant and potential health risk to consumers in Tengi River Basin, Malaysia. Sci. Total Environ. 2020, 712, 136540. [Google Scholar] [CrossRef]
- European Union (EU). Council directive 98/83/EC of 3 November 1998 on the quality of water intended for human consumption. Off. J. Eur. Union L 1998, 330, 32–54. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:01998L0083-20151027&FROM=EN (accessed on 25 December 2022).
- European Union (EU). European Union Directive 2008/105/EC of the European Parliament and of the Council on environmental quality standards in the field of water policy. Off. J. Eur. Union L 2008, 348, 84–97. [Google Scholar]
- Graefe, J.J. Glyphosate’s Fate: Comparing strategies for the precautionary cancellation of glyphosate registrations in the United States and the European Union. Conn. J. Int. Law 2019, 35, 248. [Google Scholar]
- Abera, B.; Van Echelpoel, W.; De Cock, A.; Tytgat, B.; Kibret, M.; Spanoghe, P.; Mengistu, D.; Adgo, E.; Nyssen, J.; Goethals, P.L.M.; et al. Environmental and Human Health Risks of Pesticides Presence in the Lake Tana Basin (Ethiopia). Sustainability 2022, 14, 14008. [Google Scholar] [CrossRef]
- Food and Agricultural organisation (FAO). OECD-FAO Agricultural Outlook 2018–2027; OECD Publishing: Paris, France; Food and Agriculture Organization of the United Nations: Rome, Italy, 2018; Available online: https://www.fao.org/3/I9166EN/I9166E (accessed on 24 December 2022).
- Fuhrimann, S.; Wan, C.; Blouzard, E.; Veludo, A.; Holtman, Z.; Chetty-Mhlanga, S.; Dalvie, M.A.; Atuhaire, A.; Kromhout, H.; Röösli, M.; et al. Pesticides Research on Environmental and Human Exposure and Risks in Sub-Saharan Africa: A Systematic Literature Review. Int. J. Environ. Res. Public Health 2022, 19, 259. [Google Scholar] [CrossRef]
- Tang, F.H.M.; Lenzen, M.; McBratney, A.; Maggi, F. Risk of pesticidespollution at a global scale. Nat. Geosci. 2021, 14, 206–210. [Google Scholar] [CrossRef]
- Degrendele, C.; Prokes, R.; Senk, P.; Jikova, S.R.; Kohoutek, J.; Melymuk, L.; Pribylova, P.; Dalvie, M.A.; Roosli, M.; Klanova, J.; et al. Human exposure to pesticides in dust from two agricultural sites in South Africa. Toxics 2022, 10, 629. [Google Scholar] [CrossRef] [PubMed]
- Curchod, L.; Oltramare, C.; Junghans, M.; Stamm, C.; Dalvie, M.A.; Roosli, M.; Fuhrimann, S. Temporal variation of pesticides mixtures in rivers of three agricultural watersheds during a major drought in the Western Cape, South Africa. Water Res. 2020, 6, 100039. [Google Scholar] [CrossRef]
- Horn, S.; Pieters, R.; Bohn, T. A first assessment of glyphosate, 2,4-D and Cry proteins in surface water of South Africa. S. Afr. J. Sci. 2019, 115, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Ojemaye, C.Y. Identification and Quantification of Chemicals of Emerging Concern (Persistent Organic and Inorganic Pollutants) in Some Selected Marine Environments of Cape Town, South Africa. Ph.D. Thesis, University of the Western Cape, South Africa, 2020. [Google Scholar]
- Spath, J.; Arumugam, P.; Lindberg, R.H.; Abafe, A.O.; Jansson, S.; Fick, J.; Buckly, C.A. Biochar for the removal of detected micropollutants in South African domestic wastewater: A case study from a demonstration-scale decentralised wastewater treatment system in eThekwini. Water SA 2021, 47, 396–416. [Google Scholar]
- Free State Development Corporation. Agriculture and Agro Processing: Annual Report 2017/208. 2022. Available online: Https://www.fdc.co.za/index.php/addons/fs.economic-sectors/agriculture-agro-processing (accessed on 22 December 2022).
- Mangaung Metropolitan Municipality Integrated Development Plan (MMM). “Final Integrated Plan 2022/2027”. 2022. Available online: http://www.mangaung.co.za/wp-content/uploads/2022/05/2-Final-IDP-2022-2027-24.05.2022-Signed.pdf (accessed on 30 August 2022).
- Archer, E.; Wolfaardt, G.M.; Van Wyk, J.H. Pharmaceutical and personal care products (PPCPs) as endocrine disrupting contaminants (EDCs) in South African surface waters. Water SA 2017, 43, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Vasilachi, I.C.; Asiminicesei, D.M.; Fertu, D.I.; Gavrilescu, M. Occurrence and Fate of Emerging Pollutants in Water Environment and Options for Their Removal. Water 2021, 13, 181. [Google Scholar] [CrossRef]
- Nannou, C.; Kaprara, E.; Psaltou, S.; Salapasidou, M.; Palasantza, P.A.; Diamantopoulos, P.; Lambropoulou, D.A.; Mitrakas, M.; Zouboulis, A. Monitoring of a broad set of pharmaceuticals in wastewaters by high-resolution mass spectrometry and evaluation of heterogenous catalytic ozonation for their removal in a pre-industrial level unit. Analytica 2022, 3, 195–212. [Google Scholar] [CrossRef]
- Pei, S.; Li, B.; Wang, B.; Liu, J.; Song, X. Distribution and Ecological Risk Assessment of Pharmaceuticals and Personal Care Products in Sediments of North Canal, China. Water 2022, 14, 1999. [Google Scholar] [CrossRef]
- Kock-Schulmeyer, M.; Ginebreda, A.; Gonzalez, S.; Cortina, J.L.; De Alda, M.L.; Barcelo, D. Analysis of the occurrence and risk assessment of polar pesticides in the Llobregat River Basin (NE Spain). Chemosphere 2012, 86, 8–16. [Google Scholar] [CrossRef]
- Australian National Registration Authority for Agricultural and Veterinary chemicals (NRA). Evaluation of the Active Terbuthylazine in the Product Swimcareot Swimming Pool Algaecide; National Registration Authority for Agricultural and Veterinary Chemicals: Armidale, NSW, Australia, 2001. Available online: https://apvma.gov.au/sites/default/files/publication/14061-prs-terbuthylazine.pdf (accessed on 24 December 2022).
- USEPA (United State Environmental Protection Agency). Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment); USEPA: Washington, DC, USA, 2004. Available online: https://www.epa.gov/risk/risk-assessment-guidance-superfund-rags-part-e (accessed on 10 November 2022).
- Kamunda, C.; Mathuthu, M.; Madhuku, M. Potential human risk of dissolved heavy metals in gold mine waters of Gauteng Province, South Africa. J. Toxicol. Environ. Health Sci. 2018, 10, 56–63. [Google Scholar]
- Tian, M.; Li, W.; Ruan, M.; Wei, J.; Ma, W. Water Quality Pollutants and Health Risk assessment for Four Different Drinking Water Sources. In E3S Web of Conferences; EDP Sciences: Les Ulis, France, 2019; Volume 78, p. 03004. [Google Scholar]
- Mugudamani, I.; Oke, S.A.; Gumede, T.P. Influence of Urban Informal Settlements on Trace Element Accumulation in Road Dust and Their Possible Health Implications in Ekurhuleni Metropolitan Municipality, South Africa. Toxics 2022, 10, 253. [Google Scholar] [CrossRef] [PubMed]
- USEPA (United States Environmental Protection Agency). Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites; Office of Emergency and Remedial Response: Washington, DC, USA, 2002. Available online: https://epa.gov/superfund/superfund-soil-screening-guidance (accessed on 3 November 2022).
- USEPA (United States Environmental Protection Agency). Chemical Search (IRIS); USEPA: Washington, DC, USA, 2016. Available online: https://cfpub.epa.gov/ncea/iris/search/index.cfm?keyword=atrazine (accessed on 17 November 2022).
- USEPA (United State Environmental Protection Agency). Regional Screening Levels (RSLs); USEPA: Washington, DC, USA, 2021. Available online: https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables (accessed on 10 April 2022).
- Székács, A.; Mörtl, M.; Darvas, B. Monitoring PesticidesResidues in Surface and Ground Water in Hungary: Surveys in 1990–2015. J. Chem. 2015, 2015, 717948. [Google Scholar] [CrossRef] [Green Version]
- Correia, M.; Carbonari, C.A.; Velini, E.D. Detection of herbicides in water bodies of the Samambaia River sub-basin in the Federal District and eastern Goiás. J. Environ. Sci. Health Part B 2020, 55, 574–582. [Google Scholar] [CrossRef] [PubMed]
- Pandey, P.; Caudill, J.; Lesmeister, S.; Zheng, Y.; Wang, Y.; Stillway, M.; Hoffmann, K.; Gilbert, P.; Kwong, M.; Conrad, L.; et al. Assessing Glyphosate and Fluridone Concentrations in Water Column and Sediment Leachate. Front. Environ. Sci. 2019, 7, 22. [Google Scholar] [CrossRef] [Green Version]
- Odendaal, C.; Seaman, M.T.; Kemp, G.; Patterton, H.E.; Patterton, H.G. An LC-MS/MS based survey of contaminants of emerging concern in drinking water in South Africa. S. Afr. J. Sci. 2015, 111, 2014-0401. [Google Scholar] [CrossRef] [Green Version]
- Machete, M.; Shadung, J.M. Detection of selected agricultural pesticides in river and tap water in Letsitele, Lomati and Vals–Renoster catchments, South Africa. Water SA 2019, 45, 716–720. [Google Scholar] [CrossRef] [Green Version]
- Almberg, K.S.; Mary, E.M.E.; Jones, R.M.; Rankin, K.; Freels, S.; Stayner, L.T. Atrazine Contamination of Drinking Water and Adverse Birth Outcomes in Community Water Systems with Elevated Atrazine in Ohio, 2006–2008. Int. J. Environ. Res. Public Health 2018, 15, 1889. [Google Scholar] [CrossRef] [Green Version]
- Department of Water Affairs and Forestry (DWAF). South African Water Quality Guidelines Volume 1: Domestic Water Use, Second Edition. 1996. Available online: https://www.dws.gov.za/Groundwater/documents/Pol_saWQguideFRESHDomesticusevol.pdf (accessed on 24 December 2022).
- Horak, I.; Horn, S.; Pieters, R. Agrochemicals in freshwater systems and their potential as endocrine disrupting chemicals: A South African context. Environ. Pollut. 2021, 268, 115718. [Google Scholar] [CrossRef]
- Hamilton, D.; Dieterle, R.; Felsot, A.; Harris, C.; Holland, P.; Katayama, A.; Kurihara, N.; Linders, J.; Unsworth, J.; Wong, S.S. Regulatory limits for pesticides residues in water (IUPAC Technical Report). Pure Appl. Chem. 2003, 75, 1123–1155. [Google Scholar] [CrossRef]
- Lewis, K.A.; Tzilivakis, J.; Warner, D.J.; Green, A. An international database for pesticides risk assessments and management. Hum. Ecol. Risk Assess. Int. J. 2016, 22, 1050–1064. [Google Scholar] [CrossRef] [Green Version]
- Mendes, K.F.; Régo, A.P.J.; Takeshita, V.; Tornisielo, V.L. Water Resource Pollution by Herbicide Residues. In Biochemical Toxicology—Heavy Metals and Nanomaterials; Ince, M., Ince, O.K., Ondrasek, G., Eds.; IntechOpen: London, UK, 2019; pp. 1–16. [Google Scholar]
- Velisek, J.; Stara, A.; Koutnik, D.; Machova, J. Effects of terbuthylazine-2-hydroxy at environmental concentration on early stages of common carp (Cyprinus carpio L.). Biomed. Res. Int. 2014, 2014, 621304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manahil, M. Endocrine-Disrupting Properties of Pharmaceuticals and Personal Care Products (PPCPS): An Evaluation Using Aquatic Model Organisms. Master’s Thesis, Wayne State University, Detroit, MI, USA, 2017. [Google Scholar]
- Ccanccapa, A.; Masi, A.; Navarro-Ortega, A.; Pico, Y.; Barcelo, D. Pesticides in the Ebro River basin: Occurrence and risk assessment. Environ. Pollut. 2016, 211, 414–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Sample ID | Description | Coordinates | ||
---|---|---|---|---|
Longitude | Latitude | Elevation | ||
River samples | ||||
SWRS03 | Near intense agricultural activities | 29°06′9.6″ | 26°19′7.2″ | 1379 m |
SWBS04 | Close to residential area and WWTW | 29°07′2.4‴ | 26°17′1.5″ | 1390 m |
SWKOR05 | Passes through agricultural farms | 29°12′8.3″ | 25°31′04″ | 1334 m |
SWMOR06 | Near farms, railroad, and national road | 29°09′39.3″ | 26°34′20.3″ | 1327 m |
SWKLM07 | Passes through a township and near WWTW | 29°14′34.3″ | 26°40′26.2″ | 1373 m |
Dam/Reservoirs samples | ||||
SWMS01 | It also serves as a resort | 29°01′4.9″ | 26°24′2.7″ | 1344 m |
SWMD02 | Serve as a resort, conference centre | 29°02′8.4″ | 26°27′5.8″ | 1354 m |
SWKD08 | Fishing activities, and farms nearby | 29°53′03″ | 25°57′21″ | 1226 m |
SWSD09 | Near settlement and industrial activities | 29°12′10‴ | 26°47′38″ | 1460 m |
SWRUSD10 | Near farms and residents | 29°16′20″ | 26°37′00″ | 1370 m |
Treated drinking water sample | ||||
TWWRU01 | Water treatment works 1 | 29°16′31″ | 26°37′51″ | - |
TWWMSP02 | Water treatment works 2 | 29°01′10.3″ | 26°24′9.2″ | - |
Analyte | Positive Ionisation Mode | Negative Ionisation Mode | |||
---|---|---|---|---|---|
Q1 (m/z) | Q3 (m/z) | Q1 (m/z) | Q3 (m/z) | Retention Time (Minutes) | |
Atrazine 1 | 216.049 | 174.2 | 216.049 | 174.2 | 21.80 |
Atrazine 2 | 216.049 | 68.1 | 216.049 | 68.1 | 21.80 |
Metolachlor 1 | 284.347 | 252 | 284.347 | 252 | 25.30 |
Metolachlor 2 | 284.347 | 176.2 | 284.347 | 176.2 | 25.30 |
Simazine 1 | 202.039 | 132.1 | 202.039 | 132.1 | 19.80 |
Simazine 2 | 202.039 | 104.1 | 202.039 | 104.1 | 19.80 |
Terbuthylazine 1 | 230.087 | 174.3 | 230.087 | 174.3 | 24.00 |
Terbuthylazine 2 | 230.087 | 68 | 230.087 | 68 | 24.00 |
Analyte | Linearity (r-Value) | LOQ |
---|---|---|
Simazine | 0.99 | 0.0100 |
Atrazine | 0.99 | 0.0001 |
Terbuthylazine | 0.99 | 0.0001 |
Metolachlor | 0.99 | 0.0001 |
Concentration (mg/L) | |||
---|---|---|---|
Compounds | DF (%) | Min-Max | Mean ± SD |
Rivers (n = 5) | |||
Atrazine | 100 | 0.002–0.06 | 0.03 ± 0.03 |
Metolachlor | 100 | 0.003–0.03 | 0.01 ± 0.01 |
Simazine | 80 | <LOQ-5.67 | 1.82 ± 2.66 |
Terbuthylazine | 100 | 0.01–0.21 | 0.06 ± 0.09 |
Dams/Reservoirs (n = 5) | |||
Atrazine | 100 | 0.01–0.03 | 0.02 ± 0.01 |
Metolachlor | 100 | 0.002–0.03 | 0.01 ± 0.01 |
Simazine | 80 | <LOQ-0.20 | 0.12 ± 0.08 |
Terbuthylazine | 100 | 0.01–0.06 | 0.03 ± 0.02 |
Treated drinking water (n = 2) | |||
Atrazine | 100 | 0.015–0.02 | 0.02 ± 0.003 |
Metolachlor | 100 | 0.009–0.01 | 0.01 ± 0.001 |
Simazine | 50 | <LOQ-0.03 | 0.03 |
Terbuthylazine | 100 | 0.019–0.02 | 0.02 ± 0.001 |
Pesticides | Guideline Value | Concentration (mg/L) | Reference | ||
---|---|---|---|---|---|
RSA (mg/L) | WHO (mg/L) | Maximum | Mean | ||
Atrazine | 0.01 | 0.002 | 0.019 | 0.02 | [49,51] |
Metolachlor | - | 0.01 | 0.01 | 0.01 | [51] |
Simazine | - | 0.002 | 0.03 | 0.03 | [51] |
Terbuthylazine | - | 0.007 | 0.02 | 0.02 | [51] |
Contaminant | Taxonomic Class | Acute Toxicity | Chronic Toxicity | ||
---|---|---|---|---|---|
HQ Mean | Risk | HQ Mean | Risk | ||
River | |||||
Atrazine | Algae a | 508 | High | 30 | High |
Invertebrate b | 4.35 | High | 15 | High | |
Fish c | 6.67 | High | 0.15 | Medium | |
Metolachlor | Algae a | 0.17 | Medium | 0.33 | Medium |
Invertebrate b | 0.5 | Medium | 0.17 | Medium | |
Fish c | 2.5 | High | 0.1 | Medium | |
Simazine | Algae a | 45,500 | High | 303 | High |
Invertebrate b | 1820 | High | 182 | High | |
Fish c | 202 | High | 26 | High | |
Terbuthylazine | Algae a | 3000 | High | - | - |
Invertebrate b | 1.54 | High | 14.28 | High | |
Fish c | 16.67 | High | 46.15 | High | |
Dams/Reservoirs | |||||
Atrazine | Algae a | 339 | High | 20 | High |
Invertebrate b | 2.9 | High | 10 | High | |
Fish c | 4.44 | High | 0.1 | Medium | |
Metolachlor | Algae a | 0.17 | Medium | 0.33 | Medium |
Invertebrate b | 0.5 | Medium | 0.17 | Medium | |
Fish c | 2.5 | High | 0.1 | Medium | |
Simazine | Algae a | 2500 | High | 16.67 | High |
Invertebrate b | 100 | High | 10 | High | |
Fish c | 11 | High | 1.43 | High | |
Terbuthylazine | Algae a | 1500 | High | - | - |
Invertebrate b | 0.77 | Medium | 0.71 | Medium | |
Fish c | 8.33 | High | 2.31 | High | |
Treated drinking water | |||||
Atrazine | Algae a | 339 | High | 20 | High |
Invertebrate b | 2.89 | High | 10 | High | |
Fish c | 4.44 | High | 0.1 | Medium | |
Metolachlor | Algae a | 0.17 | Medium | 0.33 | Medium |
Invertebrate b | 0.5 | Medium | 0.17 | Medium | |
Fish c | 2.5 | High | 0.1 | Medium | |
Simazine | Algae a | 750 | High | 5 | High |
Invertebrate b | 30 | High | 3 | High | |
Fish c | 3.33 | High | 0.43 | Medium | |
Terbuthylazine | Algae a | 1000 | High | - | - |
Invertebrate b | 0.77 | Medium | 4.76 | High | |
Fish c,d | 5.55 | High | 0.15 | Medium |
Compound | Rivers | Dams/Reservoir | Treated Drinking Water | |||
---|---|---|---|---|---|---|
ADD | HQ | ADD | HQ | ADD | HQ | |
Adults | ||||||
Atrazine | 8.2 × 10−7 | 2.3 × 10−7 | 5.5 × 10−7 | 1.6 × 10−4 | 5.5 × 10−7 | 1.6 × 10−4 |
Metolachlor | 2.7 × 10−7 | 1.8 × 10−6 | 2.7 × 10−7 | 1.8 × 10−6 | 2.7 × 10−7 | 1.8 × 10−6 |
Simazine | 5 × 10−5 | 1.6 × 10−2 | 2.7 × 10−6 | 5.4 × 10−4 | 8.2 × 10−7 | 1.6 × 10−4 |
Terbuthylazine | 1.6 × 10−6 | - | 8.2 × 10−7 | - | 5.5 × 10−7 | - |
Total | 5.3 × 10−5 | 1.6 × 10−2 | 4.3 × 10−6 | 7 × 10−4 | 2.2 × 10−6 | 3.2 × 10−4 |
Children | ||||||
Atrazine | 1.5 × 10−6 | 4.3 × 10−4 | 4.1 × 10−7 | 1.2 × 10−4 | 4.1 × 10−7 | 1.2 × 10−4 |
Metolachlor | 5 × 10−7 | 3.3 × 10−6 | 2 × 10−7 | 1.3 × 10−6 | 2 × 10−7 | 1.3 × 10−6 |
Simazine | 9.3 × 10−5 | 1.9 × 10−2 | 2.1 × 10−6 | 4.2 × 10−4 | 6.1 × 10−7 | 1.2 × 10−4 |
Terbuthylazine | 3.1 × 10−6 | - | 6.1 × 10−7 | - | 4.1 × 10−7 | - |
Total | 9.8 × 10−5 | 1.9 × 10−2 | 3.3 × 10−6 | 5.4 × 10−4 | 1.6 × 10−7 | 2.4 × 10−4 |
Compound | Rivers | Dams/Reservoir | Treated Drinking Water | |||
---|---|---|---|---|---|---|
ADD | CR | ADD | CR | ADD | CR | |
Adults | ||||||
Atrazine | 3.5 × 10−7 | 8 × 10−8 | 2.3 × 10−7 | 5.3 × 10−8 | 2.3 × 10−7 | 5.3 × 10−8 |
Metolachlor | 1.2 × 10−7 | 1.1 × 10−9 | 1.2 × 10−5 | 1.1 × 10−7 | 1.2 × 10−7 | 1.1 × 10−9 |
Simazine | 2.1 × 10−5 | 2.5 × 10−6 | 1.2 × 10−6 | 1.4 × 10−7 | 3.5 × 10−8 | 4.2 × 10−9 |
Terbuthylazine | 7 × 10−7 | - | 3.5 × 10−7 | - | 2.3 × 10−7 | - |
Total | 2.2 × 10−5 | 2.5 × 10−6 | 1.4 × 10−5 | 3 × 10−7 | 6.5 × 10−7 | 5.8 × 10−8 |
Children | ||||||
Atrazine | 1.3 × 10−7 | 2.9 × 10−8 | 8.8 × 10−8 | 2 × 10−8 | 8.8 × 10−8 | 2 × 10−8 |
Metolachlor | 4.3 × 10−8 | 3.9 × 10−10 | 4.3 × 10−8 | 3.9 × 10−10 | 4.3 × 10−8 | 3.9 × 10−10 |
Simazine | 8 × 10−6 | 9.6 × 10−7 | 4.3 × 10−7 | 5.2 × 10−8 | 1.3 × 10−8 | 1.5 × 10−9 |
Terbuthylazine | 2.6 × 10−7 | - | 1.2 × 10−7 | - | 4.3 × 10−7 | - |
Total | 8.4 × 10−6 | 9.9 × 10−7 | 6.8 × 10−7 | 7.2 × 10−8 | 5.7 × 10−7 | 2.2 × 10−8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mugudamani, I.; Oke, S.A.; Gumede, T.P.; Senbore, S. Herbicides in Water Sources: Communicating Potential Risks to the Population of Mangaung Metropolitan Municipality, South Africa. Toxics 2023, 11, 538. https://doi.org/10.3390/toxics11060538
Mugudamani I, Oke SA, Gumede TP, Senbore S. Herbicides in Water Sources: Communicating Potential Risks to the Population of Mangaung Metropolitan Municipality, South Africa. Toxics. 2023; 11(6):538. https://doi.org/10.3390/toxics11060538
Chicago/Turabian StyleMugudamani, Innocent, Saheed A. Oke, Thandi Patricia Gumede, and Samson Senbore. 2023. "Herbicides in Water Sources: Communicating Potential Risks to the Population of Mangaung Metropolitan Municipality, South Africa" Toxics 11, no. 6: 538. https://doi.org/10.3390/toxics11060538
APA StyleMugudamani, I., Oke, S. A., Gumede, T. P., & Senbore, S. (2023). Herbicides in Water Sources: Communicating Potential Risks to the Population of Mangaung Metropolitan Municipality, South Africa. Toxics, 11(6), 538. https://doi.org/10.3390/toxics11060538