Simultaneous Analysis of 53 Pesticides in Safflower (Carthamus tinctorius L.) by Using LC–MS/MS Coupled with a Modified QuEChERS Technique
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Preparation and Characterization of g-C3N4
2.3. Safflower Sample Pretreatment
2.4. UHPLC–MS/MS Analysis
2.5. Statistical Analysis
3. Results
3.1. Characterization of g-C3N4
3.2. UHPLC–MS/MS Method Development
3.2.1. Optimization of UHPLC–MS/MS Parameters
3.2.2. Optimization of the QuEChERS Methodology
3.3. Analytical Performance and Verification
3.4. Matrix Effect Analysis
3.5. Monitoring 53 Pesticides in Real Samples
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kalyabina, V.P.; Esimbekova, E.N.; Kopylova, K.V.; Kratasyuk, V.A. Pesticides: Formulants, distribution pathways and effects on human health—A review. Toxicol. Rep. 2021, 8, 1179–1192. [Google Scholar] [CrossRef]
- Reeves, W.; McGuire, M.K.; Stokes, M.; Vicini, J.L. Assessing the Safety of Pesticides in Food: How Current Regulations Protect Human Health. Adv. Nutr. 2019, 10, 80–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Attia, H.; Harrathi, J.; Alamer, K.H.; Alsalmi, F.A.; Magne, C.; Khalil, M. Effects of NaCl on antioxidant, antifungal, and antibacterial activities in safflower essential oils. Plants 2021, 10, 2809. [Google Scholar] [CrossRef]
- Alaiye, A.; Kaya, E.; Pınarbaşlı, M.Ö.; Harmancı, N.; Yıldırım, C.; Dönmez, D.B.; Cingi, C. An experimental comparison of the analgesic and anti-inflammatory effects of safflower oil, benzydamine HCl, and naproxen sodium. J. Med. Food 2020, 23, 862–869. [Google Scholar] [CrossRef]
- Park, Y.G.; Cho, J.H.; Choi, J.; Ju, E.M.; Adam, G.O.; Hwang, D. Immunomodulatory effects of Curcuma longa L. and Carthamus tinctorius L. on RAW 264.7 macrophages and cyclophosphamide-induced immunosuppression C57BL/6 mouse models. J. Funct. Foods 2022, 91, 105000. [Google Scholar] [CrossRef]
- Lin, D.; Xu, C.J.; Liu, Y.; Zhou, Y.; Xiong, S.L.; Wu, H.C. Chemical structures and antioxidant activities of polysaccharides from Carthamus tinctorius L. Polymers 2022, 14, 3510. [Google Scholar] [CrossRef]
- Buyukkurt, K.O.; Guclu, G.; Barutçular, C.; Selli, S.; Kelebek, H. LC-MS/MS fingerprint and simultaneous quantification of bioactive compounds in safflower petals (Carthamus tinctorius L.). Microchem. J. 2021, 171, 106850. [Google Scholar] [CrossRef]
- Wang, S.; Cao, J.; Deng, J.; Hou, X.; Hao, E.; Zhang, L. Chemical characterization of flavonoids and alkaloids in safflower (Carthamus tinctorius L.) by comprehensive two-dimensional hydrophilic interaction chromatography coupled with hybrid linear ion trap Orbitrap mass spectrometry. Food Chem. 2021, 12, 100143. [Google Scholar] [CrossRef]
- Wang, Q.; Huang, Y.; Jia, M.; Lu, D.; Zhang, H.W.; Huang, D. Safflower polysaccharide inhibits AOM/DSS-induced mice colorectal cancer through the regulation of macrophage polarization. Front. Pharmacol. 2021, 12, 761641. [Google Scholar] [CrossRef]
- Meng, X.D.; Song, W.; Xiao, Y.; Zheng, P.; Cui, C.J.; Gao, W.J. Rapid determination of 134 pesticides in tea through multi-functional filter cleanup followed by UPLC-QTOF-MS. Food Chem. 2022, 370, 130846. [Google Scholar] [CrossRef]
- Qian, Y.; Zhao, D.; Wang, H.; Sun, H.; Xiong, Y.; Xu, X. An ion mobility-enabled and high-efficiency hybrid scan approach in combination with ultra-high performance liquid chromatography enabling the comprehensive characterization of the multicomponents from Carthamus tinctorius. J. Chromatogr. A 2022, 1667, 462904. [Google Scholar] [CrossRef]
- Guo, J.G.; Tong, M.M.; Tang, J.; Bian, H.Z.; Wan, X.C.; He, L.L.; Hou, R.Y. Analysis of multiple pesticide residues in polyphenol-rich agricultural products by UPLC-MS/MS using a modified QuEChERS extraction and dilution method. Food Chem. 2019, 274, 452–459. [Google Scholar] [CrossRef]
- Shin, J.M.; Choi, S.J.; Park, Y.H.; Kwak, B.; Moon, S.H.; Yoon, Y.T. Comparison of QuEChERS and Liquid–Liquid extraction methods for the simultaneous analysis of pesticide residues using LC-MS/MS. Food Control 2022, 14, 109202. [Google Scholar] [CrossRef]
- Zhang, S.; He, Z.; Zeng, M.; Chen, J. Impact of matrix species and mass spectrometry on matrix effects in multi-residue pesticide analysis based on QuEChERS-LC-MS. Foods 2023, 12, 1226. [Google Scholar] [CrossRef]
- Zhao, W.H.; Shi, Y.P. A porous boron nitride nanorods-based QuEChERS analysis method for detection of five neonicotinoid pesticide residues in goji berries. J. Chromatogr. A 2022, 1670, 462968. [Google Scholar] [CrossRef] [PubMed]
- Shin, D.; Kim, J.; Kang, H.S. Simultaneous determination of multi-pesticide residues in fish and shrimp using dispersive-solid phase extraction with liquid chromatography–tandem mass spectrometry. Food Control 2021, 120, 107552. [Google Scholar] [CrossRef]
- Liu, G.Y.; Zhang, X.; Lu, M.; Tian, M.S.; Liu, Y.; Wang, J. Adsorption and removal of organophosphorus pesticides from Chinese cabbages and green onions by using metal organic frameworks based on the mussel-inspired adhesive interface. Food Chem. 2022, 393, 133337. [Google Scholar] [CrossRef] [PubMed]
- Mahmoudian, M.R.; Alias, Y.B.; Meng, W.P.; Yousefi, R.; Basirun, W.J. An electrochemical sensor based on Pt/g-C3N4/polyaniline nanocomposite for detection of Hg2+. Adv. Powder Technol. 2020, 31, 3372–3380. [Google Scholar] [CrossRef]
- Kesavan, G.; Chen, S.M. Highly sensitive electrochemical sensor based on carbon-rich graphitic carbon nitride as an electrocatalyst for the detection of diphenylamine. Microchem. J. 2020, 159, 105587. [Google Scholar] [CrossRef]
- Zhang, J.R.; Kan, Y.S.; Gu, L.L.; Wang, C.Y.; Zhang, Y. Graphite carbon nitride and its composites for medicine and health applications. Chemistry 2021, 16, 2003–2013. [Google Scholar] [CrossRef] [PubMed]
- Roselin, L.S.; Patel, N.; Khayyat, S.A. Codoped g-C3N4 nanosheet for degradation of organic pollutants from oily wastewater. Appl. Surf. Sci. 2019, 494, 952–958. [Google Scholar] [CrossRef]
- George, J.K.; Verma, N.; Bhaduri, B. Hydrophilic graphitic carbon nitride-supported Cu-CNFs: An efficient adsorbent for aqueous cationic dye molecules. Mater. Lett. 2021, 294, 129762. [Google Scholar] [CrossRef]
- Lu, P.; Hu, X.L.; Li, Y.J.; Zhang, M.; Liu, X.P.; He, Y.Z. One-step preparation of a novel SrCO3/g-C3N4 nano-composite and its application in selective adsorption of crystal violet. RSC Adv. 2018, 8, 6315–6325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, F.J.; Li, H.L.; Yan, X.R.; Yan, L.; Zhang, X.F.; Wang, M. Graphitic carbon nitride/graphene oxide (g-C3N4/GO) nanocomposites covalently linked with ferrocene containing dendrimer for ultrasensitive detection of pesticide. Anal. Chim. Acta 2020, 1103, 84–96. [Google Scholar] [CrossRef]
- Zhang, N.; Gao, J.; Huang, C.H.; Liu, W.; Tong, P.; Zhang, L. In situ hydrothermal growth of ZnO/g-C3N4 nanoflowers coated solid-phase microextraction fibers coupled with GC-MS for determination of pesticides residues. Anal. Chim. Acta 2016, 934, 122–131. [Google Scholar] [CrossRef]
- Rutkowska, E.; Lozowicka, B.; Kaczynski, P. Three approaches to minimize matrix effects in residue analysis of multiclass pesticides in dried complex matrices using gas chromatography tandem mass spectrometry. Food Chem. 2019, 279, 20–29. [Google Scholar] [CrossRef]
- Lee, S.H.; Kwak, S.Y.; Sarker, A.; Moon, J.K.; Kim, J.E. Optimization of a multi-residue analytical method during determination of pesticides in meat products by GC-MS/MS. Foods 2022, 11, 2930. [Google Scholar] [CrossRef]
- Wang, F.; Xu, J.; Wang, Z.P.; Lou, Y.; Pan, C.G.; Zhu, Y.F. Unprecedentedly efficient mineralization performance of photocatalysis-self-Fenton system towards organic pollutants overoxygen-doped porous g-C3N4 nanosheets. Appl. Catal. B Environ. 2022, 312, 121438. [Google Scholar] [CrossRef]
- Xiong, C.Y.; Ren, Q.F.; Liu, X.Y.; Jin, Z.; Ding, Y.; Zhu, H.T. Fenton activity on RhB degradation of magnetic g-C3N4/diatomite/Fe3O4 composites. Appl. Surf. Sci. 2021, 543, 148844. [Google Scholar] [CrossRef]
- Kim, L.; Lee, D.; Cho, H.K.; Choi, S. Review of the QuEChERS method for the analysis of organic pollutants: Persistent organic pollutants, polycyclic aromatic hydrocarbons, and pharmaceuticals. Trends Environ. Anal. Chem. 2019, 22, e00063. [Google Scholar] [CrossRef]
- Chen, H.P.; Wang, X.L.; Liu, P.X.; Jia, Q.; Han, H.L.; Jiang, C.L. Determination of three typical metabolites of pyrethroid pesticides in tea using a modified QuEChERS sample preparation by ultra-high performance liquid chromatography tandem mass spectrometry. Foods 2021, 10, 189. [Google Scholar] [CrossRef]
- Behra, P.; Ly, T.K.; Nhu-Trang, T.T. Quantification of 397 pesticide residues in different types of commercial teas: Validation of high accuracy methods and quality assessment. Food Chem. 2022, 370, 130986. [Google Scholar]
- Mohanta, P.K.; Regnet, F.; Jörissen, L. Graphitized Carbon: A Promising Stable Cathode Catalyst Support Material for Long Term PEMFC Applications. Materials 2018, 11, 907. [Google Scholar] [CrossRef] [Green Version]
- Periat, A.C.; Kohler, I.; Bugey, A.; Bieri, S.; Versace, F.; Staub, C. Hydrophilic interaction chromatography versus reversed phase liquid chromatography coupled to mass spectrometry: Effect of electrospray ionization source geometry on sensitivity. J. Chromatogr. A 2014, 1356, 211–220. [Google Scholar] [CrossRef]
- Pang, X.; Liu, X.H.; Peng, L.R.; Chen, Z.; Qiu, J.; Su, X. Wide-scope multi-residue analysis of pesticides in beef by ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. Food Chem. 2021, 351, 129345. [Google Scholar] [CrossRef]
- Islam, A.K.; Noh, H.H.; Ro, J.; Kim, D.B.; Oh, M.; Son, K. Optimization and validation of a method for the determination of acidic pesticides in cabbage and spinach by modifying QuEChERS procedure and liquid chromatography-tandem mass spectrometry. J. Chromatogr. B 2021, 1173, 122667. [Google Scholar] [CrossRef] [PubMed]
- Anastassiades, M.; Lehotay, S.J.; Stajnbaher, D.; Schenck, F.J. Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce. J. AOAC Int. 2003, 86, 412–431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qi, P.P.; Wang, J.; Liu, Z.Z.; Wang, Z.W.; Xu, H.; Di, S.S. Integrated QuEChERS strategy for high-throughput multi-pesticide residues analysis of vegetables. J. Chromatogr. A 2019, 1659, 462589. [Google Scholar] [CrossRef] [PubMed]
- Mol, H.G.; Rooseboom, A.; van Dam, R.C.; Roding, M.; Arondeus, K.; Sunarto, S. Modification and re-validation of the ethyl acetate-based multi-residue method for pesticides in produce. Anal. Bioanal. Chem. 2007, 389, 1715–1754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bordin, A.B.; Minetto, L.; do Nascimento Filho, I.; Beal, L.L.; Moura, S. Determination of pesticide residues in whole wheat flour using modified QuEChERS and LC-MS/MS. Food Anal. Methods 2017, 10, 1–9. [Google Scholar] [CrossRef]
- Grande-Martínez, Á.; Arrebola-Liébanas, F.J.; Martínez-Vidal, J.L.; Hernández-Torres, M.E.; Garrido-Frenich, A. Optimization and validation of a multi-residue pesticide method in rice and wheat flour by modified QuEChERS and GC-MS/MS. Food Anal. Methods 2016, 9, 548–563. [Google Scholar] [CrossRef]
- Han, L.; Matarrita, J.; Sapozhnikova, Y.; Lehotay, S.J. Evaluation of a recent product to remove lipids and other matrix co-extractives in the analysis of pesticide residues and environmental contaminants in foods. J. Chromatogr. A 2016, 1449, 17–29. [Google Scholar] [CrossRef]
- Muñoz, N.C.; Floriano, L.; de Souza, M.P.; Bandeira, N.M.G.; Prestes, O.D.; Zanella, R. Determination of Pesticide Residues in Golden Berry (Physalis peruviana L.) by modified QuEChERS method and ultra-high performance liquid chromatography-tandem quadrupole mass spectrometry. Food Anal. Methods 2017, 10, 320–329. [Google Scholar] [CrossRef]
- Fernanda, R.B.K.; Márcia, C.B.; Isabel, C.S.F.J. Revisiting quick, easy, cheap, effective, rugged, and safe parameters for sample preparation in pesticide residue analysis of lettuce by liquid chromatography–tandem mass spectrometry. J. Chromatogr. A 2017, 1482, 11–22. [Google Scholar]
- Zhan, X.P.; Ma, L.; Huang, L.Q.; Chen, J.B.; Zhao, L. The optimization and establishment of QuEChERS-UPLC–MS/MS method for simultaneously detecting various kinds of pesticides residues in fruits and vegetables. J. Chromatogr. B 2017, 1060, 281–290. [Google Scholar]
- Sivaperumal, P.; Salauddin, A.; Ramesh Kumar, A.; Santhosh, K.; Rupal, T. Determination of pesticide residues in mango matrices by ultra high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. Food Anal. Methods 2017, 10, 2346–2357. [Google Scholar] [CrossRef]
- Kemmerich, M.; Bernardi, G.; Prestes, O.D.; Adaime, M.B.; Zanella, R. Comprehensive method validation for the determination of 170 pesticide residues in pear employing modified QuEChERS without clean-up and ultra-high performance liquid chromatography coupled to tandem mass spectrometry. Food Anal. Methods 2018, 11, 556–577. [Google Scholar] [CrossRef]
- Bernardi, G.; Kemmerich, M.; Ribeiro, L.C.; Adaime, M.B.; Zanella, R.; Prestes, O.D. An effective method for pesticide residues determination in tobacco by GC-MS/MS and UHPLC-MS/MS employing acetonitrile extraction with low-temperature precipitation and d-SPE clean-up. Talanta 2016, 161, 40–47. [Google Scholar] [CrossRef]
- Pszczolińska, K.; Shakeel, N.; Barchanska, H. A simple approach for pesticide residues determination in green vegetables based on QuEChERS and gas chromatography tandem mass spectrometry. J. Food Compos. Anal. 2022, 114, 104783. [Google Scholar] [CrossRef]
Pesticides | Spiked 10 μg/kg | Spiked 20 μg/kg | Spiked 100 μg/kg | LOD | LOQ | ME | |||
---|---|---|---|---|---|---|---|---|---|
Mean Recovery (%) | RSD (n = 3) (%) | Mean Recovery (%) | RSD (n = 3) (%) | Mean Recovery (%) | RSD (n = 3) (%) | (μg/kg) | (μg/kg) | (%) | |
Carbendazim | 75.4 ± 5.4 | 7.1 | 78.5 ± 5.1 | 6.5 | 92.8 ± 3.9 | 4.2 | 0.3 | 1 | −9.5 |
Thiabendazole | 77.2 ± 5.7 | 7.4 | 82.0 ± 5.5 | 6.7 | 91.4 ± 4.6 | 5.0 | 0.3 | 1 | −8.1 |
Thiophanate-Methyl | 77.4 ± 6.7 | 8.6 | 78.3 ± 5.8 | 7.4 | 87.4 ± 3.8 | 4.3 | 1.5 | 5 | −9.7 |
Simetryn | 81.8 ± 6.7 | 8.2 | 87.9 ± 8.3 | 9.4 | 93.6 ± 4.8 | 5.1 | 0.6 | 2 | −7.8 |
Terbumeton | 76.9 ± 4.2 | 5.4 | 79.4 ± 4.1 | 5.2 | 91.5 ± 3.8 | 4.1 | 0.6 | 2 | −9.3 |
Rabenzazole | 86.0 ± 7.1 | 8.2 | 88.1 ± 5.9 | 6.7 | 94.4 ± 5.0 | 5.3 | 3 | 10 | −5.2 |
Carbofuran | 87.0 ± 7.5 | 8.6 | 86.8 ± 7.1 | 8.2 | 97.1 ± 6.3 | 6.5 | 3 | 10 | −6.1 |
Carbaryl | 79.9 ± 6.6 | 8.2 | 81.4 ± 6.4 | 7.9 | 93.2 ± 4.8 | 5.2 | 3 | 10 | −9.5 |
Thiofanox | 84.8 ± 7.6 | 9 | 87.7 ± 5.5 | 6.3 | 95.3 ± 4.2 | 4.4 | 3 | 10 | −6.3 |
Cycluron | 83.2 ± 5.2 | 6.2 | 87.0 ± 5.1 | 5.9 | 97.2 ± 3.7 | 3.8 | 0.6 | 2 | −6.7 |
Methoprotryne | 75.7 ± 6.3 | 8.3 | 79.1 ± 6.5 | 8.2 | 90.2 ± 5.7 | 6.3 | 1.5 | 5 | −6.2 |
Ametryn | 83.2 ± 7.2 | 8.7 | 87.2 ± 7.1 | 8.1 | 95.7 ± 5.4 | 5.6 | 0.6 | 2 | −5.3 |
Norflurazon | 79.4 ± 7.7 | 9.7 | 81.3 ± 7.0 | 8.6 | 90.2 ± 6.0 | 6.7 | 0.6 | 2 | −5.6 |
Pyrimethanil | 88.7 ± 7.4 | 8.3 | 89.7 ± 6.4 | 7.1 | 93.9 ± 5.2 | 5.5 | 3 | 10 | −3.7 |
Chlorantraniliprole | 86.1 ± 5.7 | 6.6 | 88.2 ± 5.4 | 6.1 | 93.9 ± 4.2 | 4.5 | 3 | 10 | −4.6 |
Prometryn | 83.5 ± 7.6 | 9.1 | 88.8 ± 7.4 | 8.3 | 94.1 ± 6.1 | 6.5 | 0.3 | 1 | −4.2 |
Flonicamid | 87.5 ± 6.6 | 7.5 | 89.4 ± 6.3 | 7.0 | 95.7 ± 5.6 | 5.9 | 3 | 10 | −4.9 |
Mefenacet | 86.9 ± 7.0 | 8.1 | 89.8 ± 6.3 | 7.0 | 96.7 ± 5.4 | 5.6 | 1.5 | 5 | −4.5 |
Cyprodinil | 80.3 ± 6.9 | 8.6 | 81.1 ± 6.6 | 8.1 | 94.9 ± 5.9 | 6.2 | 0.6 | 2 | −5.7 |
Mandipropamid | 81.9 ± 5.3 | 6.5 | 84.4 ± 5.2 | 6.2 | 94.2 ± 4.1 | 4.3 | 0.6 | 2 | −3.8 |
Bupirimate | 88.4 ± 6.3 | 7.1 | 85.5 ± 5.6 | 6.5 | 96.7 ± 5.4 | 3.9 | 1.5 | 5 | −3.5 |
Metconazole | 85.9 ± 7.3 | 8.5 | 88.6 ± 7.3 | 8.2 | 96.8 ± 5.7 | 5.9 | 3 | 10 | −3.1 |
Isazofos | 81.1 ± 6.3 | 7.8 | 84.1 ± 5.8 | 6.9 | 93.9 ± 3.8 | 4.0 | 0.6 | 2 | −4.2 |
Rotenone | 81.0 ± 5.9 | 7.3 | 84.8 ± 5.9 | 6.9 | 95.9 ± 3.9 | 4.1 | 3 | 10 | −4.5 |
Triflumuron | 82.0 ± 7.2 | 8.8 | 82.2 ± 7.2 | 8.8 | 94.3 ± 4.0 | 4.2 | 3 | 10 | −3.7 |
Difenoconazole | 87.9 ± 7.8 | 8.9 | 88.2 ± 7.2 | 8.2 | 96.1 ± 5.0 | 5.2 | 3 | 10 | −3.3 |
Diazinon | 79.8 ± 6.1 | 7.6 | 81.8 ± 5.6 | 6.8 | 95.6 ± 4.2 | 4.4 | 1.5 | 5 | −5.1 |
Triflumizole | 86.6 ± 7.2 | 8.3 | 87.0 ± 6.5 | 7.5 | 97.1 ± 5.0 | 5.1 | 0.3 | 1 | −3.5 |
Myclobutanil | 82.6 ± 6.0 | 7.3 | 85.5 ± 5.6 | 6.6 | 96.0 ± 4.9 | 5.1 | 0.6 | 2 | −5.2 |
3-Hydroxycarbofuran | 80.3 ± 7.1 | 8.9 | 81.2 ± 6.3 | 7.7 | 95.1 ± 5.9 | 6.2 | 3 | 10 | −5.5 |
Aldicarb | 78.3 ± 7.2 | 9.2 | 77.7 ± 6.6 | 8.5 | 89.0 ± 6.0 | 6.7 | 3 | 10 | −9.2 |
Aldicarb sulfone | 76.3 ± 6.8 | 8.9 | 78.8 ± 6.5 | 8.3 | 87.2 ± 5.3 | 6.1 | 3 | 10 | −8.0 |
Aldicarb sulfoxide | 77.1 ± 7.5 | 9.7 | 84.1 ± 7.1 | 8.5 | 90.4 ± 5.7 | 6.3 | 3 | 10 | −9.5 |
Fenobucarb | 80.6 ± 5.2 | 6.4 | 84.4 ± 4.8 | 5.7 | 93.6 ± 4.0 | 4.3 | 1.5 | 5 | −4.5 |
Isoprocarb | 81.3 ± 6.9 | 8.5 | 80.9 ± 6.8 | 8.4 | 93.3 ± 6.2 | 6.6 | 3 | 10 | −8.3 |
Methomyl | 75.8 ± 6.7 | 8.9 | 78.6 ± 5.6 | 7.1 | 92.5 ± 3.3 | 3.6 | 3 | 10 | −9.8 |
Metolcarb | 87.1 ± 7.1 | 8.2 | 88.9 ± 7.4 | 8.3 | 96.5 ± 5.3 | 5.5 | 3 | 10 | −2.9 |
Propoxur | 86.6 ± 7.4 | 8.6 | 87.8 ± 6.8 | 7.8 | 97.4 ± 5.9 | 6.1 | 3 | 10 | −3.8 |
Imidacloprid | 86.8 ± 7.3 | 8.4 | 89.2 ± 6.6 | 7.4 | 97.6 ± 4.5 | 4.6 | 3 | 10 | −4.7 |
Thiamethoxam | 70.4 ± 6.1 | 8.7 | 76.9 ± 6.1 | 7.9 | 92.7 ± 5.7 | 6.1 | 3 | 10 | −10.1 |
Clothianidin | 78.8 ± 6.9 | 8.8 | 80.5 ± 7.0 | 8.7 | 94.3 ± 5.8 | 6.2 | 3 | 10 | −9.7 |
Thiacloprid | 76.8 ± 6.3 | 8.2 | 80.6 ± 6.1 | 7.6 | 94.9 ± 5.4 | 5.7 | 0.6 | 2 | −9.8 |
Acetamiprid | 86.9 ± 6.7 | 7.7 | 87.6 ± 6.8 | 7.8 | 95.3 ± 5.2 | 5.5 | 1.5 | 5 | −3.3 |
Chlorpyrifos | 78.3 ± 6.4 | 8.2 | 81.8 ± 6.9 | 8.4 | 91.3 ± 5.4 | 5.9 | 3 | 10 | −7.5 |
Fenthion | 88.5 ± 6.5 | 7.4 | 88.9 ± 6.4 | 7.2 | 94.1 ± 4.3 | 4.6 | 3 | 10 | −3.8 |
Coumaphos | 78.2 ± 6.3 | 8.1 | 81.8 ± 5.9 | 7.2 | 90.6 ± 4.8 | 5.3 | 3 | 10 | −5.8 |
Propachlor | 73.9 ± 5.0 | 6.8 | 76.3 ± 4.7 | 6.1 | 91.7 ± 4.6 | 5.0 | 0.6 | 2 | −9.7 |
Atrazine | 85.8 ± 6.8 | 7.9 | 88.3 ± 6.1 | 6.9 | 92.9 ± 4.2 | 4.5 | 1.5 | 5 | −3.0 |
Acetochlor | 83.3 ± 6.6 | 7.9 | 85.9 ± 6.3 | 7.3 | 93.6 ± 4.8 | 5.1 | 3 | 10 | −4.3 |
Metolachlor | 87.8 ± 6.6 | 7.5 | 87.5 ± 4.9 | 5.6 | 96.9 ± 4.4 | 4.5 | 0.6 | 2 | −3.9 |
Dimethenamid | 75.0 ± 5.7 | 7.6 | 79.6 ± 5.3 | 6.7 | 90.7 ± 4.2 | 4.6 | 0.6 | 2 | −5.8 |
Alachlor | 85.9 ± 7.5 | 8.7 | 88.9 ± 6.8 | 7.6 | 93.4 ± 4.8 | 5.1 | 3 | 10 | −4.7 |
Butachlor | 82.9 ± 5.1 | 6.2 | 85.2 ± 5.5 | 6.4 | 92.3 ± 3.6 | 3.9 | 3 | 10 | −4.6 |
Clean-Up Method | Sample Matrix | Quantity of Pesticides | LOD (μg/kg) | LOQ (μg/kg) | Time (min) | Recovery (%) | Reference |
---|---|---|---|---|---|---|---|
Without Clean-Up | Wheat Flour | 37 | / | 10 | 18 | 70–120 | [40] |
MgSO4 + PSA + C18 | Rice and Wheat | 100 | / | 3.6 | 27.4 | 70–116 | [41] |
MgSO4 + Multi-Walled Carbon Nanotubes | Cowpea | 65 | 5–10 | / | 9 | 70–120 | [42] |
MgSO4 + PSA + C18 + GCB | Golden Berry | 42 | 1.5 | 5 | 8 | 70–114 | [43] |
MgSO4 + PSA + GCB | Lettuce | 16 | / | 5 | / | 70–120 | [44] |
MgSO4 + PSA + C18 + Carb | Fruits and Vegetables | 54 | 0.003–2 | 0.01–6.67 | 16 | 73.2–134.3 | [45] |
MgSO4 + PSA | Mango | 68 | 0.5–7 | 2–25 | 5 | 70–122 | [46] |
MgSO4 + PSA + C18 + Florisil | Pear | 170 | / | 2.5–10 | / | 70–120 | [47] |
MgSO4 + PSA + C18 + GCB | Tobacco | 55 | 8–23 | 25–75 | 10 + 35 | 63–161 | [48] |
MgSO4 + C18 + ChloroFiltr | Green Vegetables | 164 | / | 5 | 20 | 70–120 | [49] |
MgSO4 + PSA + C18 + GCB | Beef | 129 | / | 0.003–11.37 | / | 70.5–128.1 | [35] |
MgSO4 + PVPP + PSA + GCB | Tea | 134 | / | <10 | 23 | 66.8–118.3 | [10] |
MgSO4 + PVPP + PSA + GCB | Polyphenol-Rich Foods | 20 | / | 10–20 | / | 73–106 | [12] |
Sodium Acetate+Ammonium Acetate/Na2-EDTA + PSA + C18 | Fish and Shrimp | 66 | <5 | <10 | 18 | 70–125 | [16] |
MgSO4 + PSA + C18 + GCB | Safflower | 53 | / | / | 18 | 2.0–98.3 | This work |
MgSO4 + PSA + C18 + g-C3N4 | Safflower | 53 | 0.3–3 | 1–10 | 18 | 70.4–97.6 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, W.; Peng, C.; Liu, Y.; Han, F.; Zhu, H.; Zhou, D.; Wang, Y.; Chen, L.; Meng, X.; Hou, R. Simultaneous Analysis of 53 Pesticides in Safflower (Carthamus tinctorius L.) by Using LC–MS/MS Coupled with a Modified QuEChERS Technique. Toxics 2023, 11, 537. https://doi.org/10.3390/toxics11060537
Song W, Peng C, Liu Y, Han F, Zhu H, Zhou D, Wang Y, Chen L, Meng X, Hou R. Simultaneous Analysis of 53 Pesticides in Safflower (Carthamus tinctorius L.) by Using LC–MS/MS Coupled with a Modified QuEChERS Technique. Toxics. 2023; 11(6):537. https://doi.org/10.3390/toxics11060537
Chicago/Turabian StyleSong, Wei, Chuanyi Peng, Yuxin Liu, Fang Han, Haitao Zhu, Dianbing Zhou, Yu Wang, Lijun Chen, Xiaodi Meng, and Ruyan Hou. 2023. "Simultaneous Analysis of 53 Pesticides in Safflower (Carthamus tinctorius L.) by Using LC–MS/MS Coupled with a Modified QuEChERS Technique" Toxics 11, no. 6: 537. https://doi.org/10.3390/toxics11060537
APA StyleSong, W., Peng, C., Liu, Y., Han, F., Zhu, H., Zhou, D., Wang, Y., Chen, L., Meng, X., & Hou, R. (2023). Simultaneous Analysis of 53 Pesticides in Safflower (Carthamus tinctorius L.) by Using LC–MS/MS Coupled with a Modified QuEChERS Technique. Toxics, 11(6), 537. https://doi.org/10.3390/toxics11060537