PFAS Molecules: A Major Concern for the Human Health and the Environment
Abstract
:1. Introduction
2. PFAS Properties, Uses, Sources and Their Distribution into the Environmental Compartments
2.1. PFAS Classification
2.2. PFAS Uses
2.3. Sources of PFAS Emissions
2.4. Environmental Fate of PFAS
2.4.1. PFAS Occurrence in the Atmosphere
2.4.2. PFAS Occurrence in the Aquatic Systems
PFAS Occurrence in Freshwater and Sediments
PFAS Occurrence in Marine Water and Sediments
PFAS Occurrence in Ground Water
PFAS Occurrence in Drinking Water
2.4.3. PFAS Occurrence in Soil and Plants
PFAS Occurrence in Soil through Atmospheric Dispersion
PFAS Occurrence in Soil through AFFFs Discharge
PFAS Occurrence in Soil through Irrigation Water
PFAS Occurrence in Soil through the Application of Biosolids
PFAS Impact on Terrestrial Organisms and Human Exposure
3. PFAS Human Exposure and the Potential Effects for Human Health
3.1. In Vitro Studies on PFAS Effects
3.2. In Vivo Studies on PFAS Effects
3.3. Human Studies on PFAS Effects
4. Measures to Mitigate the Impact of PFAS on Human Health and the Environment
4.1. Regulatory Measures Aimed to Restrict or Ban the Use of PFAS
4.2. Remediation Technologies for PFAS Removal
4.2.1. Remediation Technologies for Treatment of PFAS-Contaminated Water
4.2.2. Remediation Technologies for Treatment of PFAS-Contaminated Soil
5. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Buck, R.C.; Franklin, J.; Berger, U.; Conder, J.M.; Cousins, I.T.; de Voogt, P.; Jensen, A.A.; Kannan, K.; Mabury, S.A.; van Leeuwen, S.P. Perfluoroalkyl and polyfluoroalkyl substances in the environment: Terminology, classification, and origins. Integr. Environ. Assess. Manag. 2011, 7, 513–541. [Google Scholar] [CrossRef] [PubMed]
- Gluge, J.; Scheringer, M.; Cousins, I.T.; DeWitt, J.C.; Goldenman, G.; Herzke, D.; Lohmann, R.; Ng, C.A.; Trier, X.; Wang, Z. An overview of the uses of per- and polyfluoroalkyl substances (PFAS). Environ. Sci. Process. Impacts. 2020, 22, 2345–2373. [Google Scholar] [CrossRef] [PubMed]
- Poothong, S.; Papadopoulou, E.; Padilla-Sanchez, J.A.; Thomsen, C.; Haug, L.S. Multiple pathways of human exposure to poly- and perfluoroalkyl substances (PFASs): From external exposure to human blood. Environ. Int. 2020, 134, 105244. [Google Scholar] [CrossRef]
- Domazet, S.L.; Jensen, T.K.; Wedderkopp, N.; Nielsen, F.; Andersen, L.B.; Grontved, A. Exposure to perfluoroalkylated substances (PFAS) in relation to fitness, physical activity, and adipokine levels in childhood: The european youth heart study. Environ. Res. 2020, 191, 110110. [Google Scholar] [CrossRef]
- Cui, Q.; Shi, F.; Pan, Y.; Zhang, H.; Dai, J. Per- and polyfluoroalkyl substances (PFASs) in the blood of two colobine monkey species from China: Occurrence and exposure pathways. Sci. Total. Environ. 2019, 674, 524–531. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Antia, A.; Kavelaars, M.M.; Muller, W.; Bervoets, L.; Eens, M. Understanding PFAAs exposure in a generalist seabird species breeding in the vicinity of a fluorochemical plant: Influence of maternal transfer and diet. Environ. Pollut. 2021, 271, 116355. [Google Scholar] [CrossRef]
- Wang, Y.; Yao, J.; Dai, J.; Ma, L.; Liu, D.; Xu, H.; Cui, Q.; Ma, J.; Zhang, H. Per- and polyfluoroalkyl substances (PFASs) in blood of captive Siberian tigers in China: Occurrence and associations with biochemical parameters. Environ. Pollut. 2020, 265, 114805. [Google Scholar] [CrossRef]
- Meegoda, J.N.; Kewalramani, J.A.; Li, B.; Marsh, R.W. A Review of the Applications, Environmental Release, and Remediation Technologies of Per- and Polyfluoroalkyl Substances. Int. J. Environ. Res. Public. Health. 2020, 17, 8117. [Google Scholar] [CrossRef]
- OECD. Available online: https://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=ENV-JM-MONO(2018)7&doclanguage=en (accessed on 28 November 2021).
- Cousins, I.T.; DeWitt, J.C.; Gluge, J.; Goldenman, G.; Herzke, D.; Lohmann, R.; Miller, M.; Ng, C.A.; Scheringer, M.; Vierke, L.; et al. Strategies for grouping per- and polyfluoroalkyl substances (PFAS) to protect human and environmental health. Environ. Sci. Process. Impacts. 2020, 22, 1444–1460. [Google Scholar] [CrossRef]
- Roscales, J.L.; Vicente, A.; Ryan, P.G.; Gonzalez-Solis, J.; Jimenez, B. Spatial and Interspecies Heterogeneity in Concentrations of Perfluoroalkyl Substances (PFASs) in Seabirds of the Southern Ocean. Environ. Sci. Technol. 2019, 53, 9855–9865. [Google Scholar] [CrossRef]
- Kelly, B.C.; Ikonomou, M.G.; Blair, J.D.; Surridge, B.; Hoover, D.; Grace, R.; Gobas, F.A. Perfluoroalkyl contaminants in an Arctic marine food web: Trophic magnification and wildlife exposure. Environ. Sci. Technol. 2009, 43, 4037–4043. [Google Scholar] [CrossRef]
- MacInnis, J.J.; Lehnherr, I.; Muir, D.C.G.; St Pierre, K.A.; St Louis, V.L.; Spencer, C.; De Silva, A.O. Fate and Transport of Perfluoroalkyl Substances from Snowpacks into a Lake in the High Arctic of Canada. Environ. Sci. Technol. 2019, 53, 10753–10762. [Google Scholar] [CrossRef]
- Xie, Z.; Wang, Z.; Magand, O.; Thollot, A.; Ebinghaus, R.; Mi, W.; Dommergue, A. Occurrence of legacy and emerging organic contaminants in snow at Dome C in the Antarctic. Sci. Total. Environ. 2020, 741, 140200. [Google Scholar] [CrossRef]
- Abercrombie, S.A.; de Perre, C.; Choi, Y.J.; Tornabene, B.J.; Sepulveda, M.S.; Lee, L.S.; Hoverman, J.T. Larval amphibians rapidly bioaccumulate poly- and perfluoroalkyl substances. Ecotoxicol. Environ. Saf. 2019, 178, 137–145. [Google Scholar] [CrossRef] [PubMed]
- Semerad, J.; Hatasova, N.; Grasserova, A.; Cerna, T.; Filipova, A.; Hanc, A.; Innemanova, P.; Pivokonsky, M.; Cajthaml, T. Screening for 32 per- and polyfluoroalkyl substances (PFAS) including GenX in sludges from 43 WWTPs located in the Czech Republic - Evaluation of potential accumulation in vegetables after application of biosolids. Chemosphere 2020, 261, 128018. [Google Scholar] [CrossRef] [PubMed]
- Koch, A.; Jonsson, M.; Yeung, L.W.Y.; Karrman, A.; Ahrens, L.; Ekblad, A.; Wang, T. Per- and Polyfluoroalkyl-Contaminated Freshwater Impacts Adjacent Riparian Food Webs. Environ. Sci. Technol. 2020, 54, 11951–11960. [Google Scholar] [CrossRef] [PubMed]
- Gronnestad, R.; Vazquez, B.P.; Arukwe, A.; Jaspers, V.L.B.; Jenssen, B.M.; Karimi, M.; Lyche, J.L.; Krokje, A. Levels, Patterns, and Biomagnification Potential of Perfluoroalkyl Substances in a Terrestrial Food Chain in a Nordic Skiing Area. Environ. Sci. Technol. 2019, 53, 13390–13397. [Google Scholar] [CrossRef] [Green Version]
- Miranda, D.A.; Benskin, J.P.; Awad, R.; Lepoint, G.; Leonel, J.; Hatje, V. Bioaccumulation of Per- and polyfluoroalkyl substances (PFASs) in a tropical estuarine food web. Sci. Total. Environ. 2021, 754, 142146. [Google Scholar] [CrossRef]
- Kotlarz, N.; McCord, J.; Collier, D.; Lea, C.S.; Strynar, M.; Lindstrom, A.B.; Wilkie, A.A.; Islam, J.Y.; Matney, K.; Tarte, P.; et al. Measurement of Novel, Drinking Water-Associated PFAS in Blood from Adults and Children in Wilmington, North Carolina. Environ. Health. Perspect. 2020, 128, 77005. [Google Scholar] [CrossRef]
- Pitter, G.; Da Re, F.; Canova, C.; Barbieri, G.; Zare Jeddi, M.; Dapra, F.; Manea, F.; Zolin, R.; Bettega, A.M.; Stopazzolo, G.; et al. Serum Levels of Perfluoroalkyl Substances (PFAS) in Adolescents and Young Adults Exposed to Contaminated Drinking Water in the Veneto Region, Italy: A Cross-Sectional Study Based on a Health Surveillance Program. Environ. Health. Perspect. 2020, 128, 27007. [Google Scholar] [CrossRef] [Green Version]
- Papadopoulou, E.; Sabaredzovic, A.; Namork, E.; Nygaard, U.C.; Granum, B.; Haug, L.S. Exposure of Norwegian toddlers to perfluoroalkyl substances (PFAS): The association with breastfeeding and maternal PFAS concentrations. Environ. Int. 2016, 94, 687–694. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.; Mao, L.; Xie, J.; Zhao, M.; Bai, X.; Wen, J.; Shen, T.; Wu, P. Poly- and perfluoroalkyl substance concentrations in human breast milk and their associations with postnatal infant growth. Sci. Total. Environ. 2020, 713, 136417. [Google Scholar] [CrossRef]
- Li, N.; Ying, G.G.; Hong, H.; Deng, W.J. Perfluoroalkyl substances in the urine and hair of preschool children, airborne particles in kindergartens, and drinking water in Hong Kong. Environ. Pollut. 2021, 270, 116219. [Google Scholar] [CrossRef] [PubMed]
- Ruan, Y.; Lalwani, D.; Kwok, K.Y.; Yamazaki, E.; Taniyasu, S.; Kumar, N.J.I.; Lam, P.K.S.; Yamashita, N. Assessing exposure to legacy and emerging per- and polyfluoroalkyl substances via hair - The first nationwide survey in India. Chemosphere 2019, 229, 366–373. [Google Scholar] [CrossRef]
- Kim, D.H.; Oh, J.E. Development and validation of an extraction method for the analysis of perfluoroalkyl substances in human hair. Chemosphere 2017, 175, 446–451. [Google Scholar] [CrossRef] [PubMed]
- Jian, J.M.; Chen, D.; Han, F.J.; Guo, Y.; Zeng, L.; Lu, X.; Wang, F. A short review on human exposure to and tissue distribution of per- and polyfluoroalkyl substances (PFASs). Sci. Total. Environ. 2018, 636, 1058–1069. [Google Scholar] [CrossRef]
- Ding, N.; Harlow, S.D.; Randolph, J.F., Jr.; Loch-Caruso, R.; Park, S.K. Perfluoroalkyl and polyfluoroalkyl substances (PFAS) and their effects on the ovary. Hum. Reprod. Update. 2020, 26, 724–752. [Google Scholar] [CrossRef] [PubMed]
- Mamsen, L.S.; Jonsson, B.A.G.; Lindh, C.H.; Olesen, R.H.; Larsen, A.; Ernst, E.; Kelsey, T.W.; Andersen, C.Y. Concentration of perfluorinated compounds and cotinine in human foetal organs, placenta, and maternal plasma. Sci. Total. Environ. 2017, 596–597, 97–105. [Google Scholar] [CrossRef] [Green Version]
- Salihovic, S.; Stubleski, J.; Karrman, A.; Larsson, A.; Fall, T.; Lind, L.; Lind, P.M. Changes in markers of liver function in relation to changes in perfluoroalkyl substances - A longitudinal study. Environ. Int. 2018, 117, 196–203. [Google Scholar] [CrossRef]
- Stratakis, N.; David, V.C.; Jin, R.; Margetaki, K.; Valvi, D.; Siskos, A.P.; Maitre, L.; Garcia, E.; Varo, N.; Zhao, Y.; et al. Prenatal Exposure to Perfluoroalkyl Substances Associated With Increased Susceptibility to Liver Injury in Children. Hepatology 2020, 72, 1758–1770. [Google Scholar] [CrossRef]
- Jain, R.B.; Ducatman, A. Perfluoroalkyl substances follow inverted U-shaped distributions across various stages of glomerular function: Implications for future research. Environ. Res. 2019, 169, 476–482. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Baumann, K.; Mead, R.N.; Skrabal, S.A.; Kieber, R.J.; Avery, G.B.; Shimizu, M.; DeWitt, J.C.; Sun, M.; Vance, S.A.; et al. PFOS dominates PFAS composition in ambient fine particulate matter (PM2.5) collected across North Carolina nearly 20 years after the end of its US production. Environ. Sci. Process. Impacts. 2021, 23, 580–587. [Google Scholar] [CrossRef]
- D'Ambro, E.L.; Pye, H.O.T.; Bash, J.O.; Bowyer, J.; Allen, C.; Efstathiou, C.; Gilliam, R.C.; Reynolds, L.; Talgo, K.; Murphy, B.N. Characterizing the Air Emissions, Transport, and Deposition of Per- and Polyfluoroalkyl Substances from a Fluoropolymer Manufacturing Facility. Environ. Sci. Technol. 2021, 55, 862–870. [Google Scholar] [CrossRef]
- Yong, Z.Y.; Kim, K.Y.; Oh, J.E. The occurrence and distributions of per- and polyfluoroalkyl substances (PFAS) in groundwater after a PFAS leakage incident in 2018. Environ. Pollut. 2021, 268, 115395. [Google Scholar] [CrossRef]
- Hepburn, E.; Madden, C.; Szabo, D.; Coggan, T.L.; Clarke, B.; Currell, M. Contamination of groundwater with per- and polyfluoroalkyl substances (PFAS) from legacy landfills in an urban re-development precinct. Environ. Pollut. 2019, 248, 101–113. [Google Scholar] [CrossRef]
- Pan, C.G.; Ying, G.G.; Liu, Y.S.; Zhang, Q.Q.; Chen, Z.F.; Peng, F.J.; Huang, G.Y. Contamination profiles of perfluoroalkyl substances in five typical rivers of the Pearl River Delta region, South China. Chemosphere 2014, 114, 16–25. [Google Scholar] [CrossRef]
- Ali, A.M.; Higgins, C.P.; Alarif, W.M.; Al-Lihaibi, S.S.; Ghandourah, M.; Kallenborn, R. Per- and polyfluoroalkyl substances (PFASs) in contaminated coastal marine waters of the Saudi Arabian Red Sea: A baseline study. Environ. Sci. Pollut. Res. Int. 2021, 28, 2791–2803. [Google Scholar] [CrossRef] [PubMed]
- Catherine, M.; Nadege, B.; Charles, P.; Yann, A. Perfluoroalkyl substances (PFASs) in the marine environment: Spatial distribution and temporal profile shifts in shellfish from French coasts. Chemosphere 2019, 228, 640–648. [Google Scholar] [CrossRef]
- Andersson, E.M.; Scott, K.; Xu, Y.; Li, Y.; Olsson, D.S.; Fletcher, T.; Jakobsson, K. High exposure to perfluorinated compounds in drinking water and thyroid disease. A cohort study from Ronneby, Sweden. Environ. Res. 2019, 176, 108540. [Google Scholar] [CrossRef]
- Xu, Y.; Nielsen, C.; Li, Y.; Hammarstrand, S.; Andersson, E.M.; Li, H.; Olsson, D.S.; Engstrom, K.; Pineda, D.; Lindh, C.H.; et al. Serum perfluoroalkyl substances in residents following long-term drinking water contamination from firefighting foam in Ronneby, Sweden. Environ. Int. 2021, 147, 106333. [Google Scholar] [CrossRef]
- Brusseau, M.L.; Anderson, R.H.; Guo, B. PFAS concentrations in soils: Background levels versus contaminated sites. Sci. Total. Environ. 2020, 740, 140017. [Google Scholar] [CrossRef]
- Li, J.; He, J.; Niu, Z.; Zhang, Y. Legacy per- and polyfluoroalkyl substances (PFASs) and alternatives (short-chain analogues, F-53B, GenX and FC-98) in residential soils of China: Present implications of replacing legacy PFASs. Environ. Int. 2020, 135, 105419. [Google Scholar] [CrossRef]
- Ke, Y.; Chen, J.; Hu, X.; Tong, T.; Huang, J.; Xie, S. Emerging perfluoroalkyl substance impacts soil microbial community and ammonia oxidation. Environ. Pollut. 2020, 257, 113615. [Google Scholar] [CrossRef]
- Zhang, D.Q.; Wang, M.; He, Q.; Niu, X.; Liang, Y. Distribution of perfluoroalkyl substances (PFASs) in aquatic plant-based systems: From soil adsorption and plant uptake to effects on microbial community. Environ. Pollut. 2020, 257, 113575. [Google Scholar] [CrossRef]
- Rodriguez-Jorquera, I.A.; Colli-Dula, R.C.; Kroll, K.; Jayasinghe, B.S.; Parachu Marco, M.V.; Silva-Sanchez, C.; Toor, G.S.; Denslow, N.D. Blood Transcriptomics Analysis of Fish Exposed to Perfluoro Alkyls Substances: Assessment of a Non-Lethal Sampling Technique for Advancing Aquatic Toxicology Research. Environ. Sci. Technol. 2019, 53, 1441–1452. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, C.J.; Roark, S.A.; Middleton, E.T. Considerations for toxicity experiments and risk assessments with PFAS mixtures. Integr. Environ. Assess. Manag. 2021, 17, 697–704. [Google Scholar] [CrossRef]
- Hoover, G.; Kar, S.; Guffey, S.; Leszczynski, J.; Sepulveda, M.S. In vitro and in silico modeling of perfluoroalkyl substances mixture toxicity in an amphibian fibroblast cell line. Chemosphere 2019, 233, 25–33. [Google Scholar] [CrossRef]
- Wang, Z.; Buser, A.M.; Cousins, I.T.; Demattio, S.; Drost, W.; Johansson, O.; Ohno, K.; Patlewicz, G.; Richard, A.M.; Walker, G.W.; et al. A New OECD Definition for Per- and Polyfluoroalkyl Substances. Environ. Sci. Technol. 2021, 55, 15575–15578. [Google Scholar] [CrossRef] [PubMed]
- OECD. Toward a New Comprehensive Global Database of Per-and Polyfluoroalkyl Substances (PFASs): Summary Report on Updating the OECD 2007 List of Per-and Polyfluoroalkyl Substances (PFASs); Series on Risk Management, No. 39; OECD: Paris, France, 2018; p. 24. [Google Scholar]
- OECD. Reconciling Terminology of the Universe of Per- and Polyfluoroalkyl Substances: Recommendations and Practical Guidance; Series on Risk Management, No. 61; OECD: Paris, France, 2021; p. 34. Available online: https://www.oecd.org/chemicalsafety/portal-perfluorinated-chemicals/terminology-per-and-polyfluoroalkyl-substances.pdf (accessed on 28 November 2021).
- Johnson, M.S.; Buck, R.C.; Cousins, I.T.; Weis, C.P.; Fenton, S.E. Estimating Environmental Hazard and Risks from Exposure to Per- and Polyfluoroalkyl Substances (PFASs): Outcome of a SETAC Focused Topic Meeting. Environ. Toxicol. Chem. 2021, 40, 543–549. [Google Scholar] [CrossRef]
- Zhao, P.; Xia, X.; Dong, J.; Xia, N.; Jiang, X.; Li, Y.; Zhu, Y. Short- and long-chain perfluoroalkyl substances in the water, suspended particulate matter, and surface sediment of a turbid river. Sci. Total. Environ. 2016, 568, 57–65. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Meng, L.; Ma, D.; Cao, H.; Liang, Y.; Liu, H.; Wang, Y.; Jiang, G. The occurrence of PFAS in human placenta and their binding abilities to human serum albumin and organic anion transporter 4. Environ. Pollut. 2021, 273, 116460. [Google Scholar] [CrossRef] [PubMed]
- Dai, Z.; Xia, X.; Guo, J.; Jiang, X. Bioaccumulation and uptake routes of perfluoroalkyl acids in Daphnia magna. Chemosphere 2013, 90, 1589–1596. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Reinhard, M.; Yin, T.; Nguyen, T.V.; Tran, N.H.; Yew-Hoong Gin, K. Multi-compartment distribution of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in an urban catchment system. Water. Res. 2019, 154, 227–237. [Google Scholar] [CrossRef]
- Group, O.U.G.P. OECD(2013), OECD/UNEP Global PFC Group, Synthesis Paper on per- and Polyfluorinated chemicals (PFCs), Environment, Health and Safety, Environment Directorate, OECD. 2013, p. 60. Available online: https://www.oecd.org/env/ehs/risk-management/PFC_FINAL-Web.pdf (accessed on 28 November 2021).
- Bach, C.; Dauchy, X.; Boiteux, V.; Colin, A.; Hemard, J.; Sagres, V.; Rosin, C.; Munoz, J.F. The impact of two fluoropolymer manufacturing facilities on downstream contamination of a river and drinking water resources with per- and polyfluoroalkyl substances. Environ. Sci. Pollut. Res. Int. 2017, 24, 4916–4925. [Google Scholar] [CrossRef]
- Adamson, D.T.; Nickerson, A.; Kulkarni, P.R.; Higgins, C.P.; Popovic, J.; Field, J.; Rodowa, A.; Newell, C.; DeBlanc, P.; Kornuc, J.J. Mass-Based, Field-Scale Demonstration of PFAS Retention within AFFF-Associated Source Areas. Environ. Sci. Technol. 2020, 54, 15768–15777. [Google Scholar] [CrossRef]
- Janousek, R.M.; Lebertz, S.; Knepper, T.P. Previously unidentified sources of perfluoroalkyl and polyfluoroalkyl substances from building materials and industrial fabrics. Environ. Sci. Process. Impacts. 2019, 21, 1936–1945. [Google Scholar] [CrossRef]
- Barzen-Hanson, K.A.; Roberts, S.C.; Choyke, S.; Oetjen, K.; McAlees, A.; Riddell, N.; McCrindle, R.; Ferguson, P.L.; Higgins, C.P.; Field, J.A. Discovery of 40 Classes of Per- and Polyfluoroalkyl Substances in Historical Aqueous Film-Forming Foams (AFFFs) and AFFF-Impacted Groundwater. Environ. Sci. Technol. 2017, 51, 2047–2057. [Google Scholar] [CrossRef] [PubMed]
- Curtzwiler, G.W.; Silva, P.; Hall, A.; Ivey, A.; Vorst, K. Significance of Perfluoroalkyl Substances (PFAS) in Food Packaging. Integr. Environ. Assess. Manag. 2021, 17, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Favreau, P.; Poncioni-Rothlisberger, C.; Place, B.J.; Bouchex-Bellomie, H.; Weber, A.; Tremp, J.; Field, J.A.; Kohler, M. Multianalyte profiling of per- and polyfluoroalkyl substances (PFASs) in liquid commercial products. Chemosphere 2017, 171, 491–501. [Google Scholar] [CrossRef]
- Allred, B.M.; Lang, J.R.; Barlaz, M.A.; Field, J.A. Physical and Biological Release of Poly- and Perfluoroalkyl Substances (PFASs) from Municipal Solid Waste in Anaerobic Model Landfill Reactors. Environ. Sci. Technol. 2015, 49, 7648–7656. [Google Scholar] [CrossRef] [PubMed]
- Gallen, C.; Eaglesham, G.; Drage, D.; Nguyen, T.H.; Mueller, J.F. A mass estimate of perfluoroalkyl substance (PFAS) release from Australian wastewater treatment plants. Chemosphere 2018, 208, 975–983. [Google Scholar] [CrossRef] [PubMed]
- Ghisi, R.; Vamerali, T.; Manzetti, S. Accumulation of perfluorinated alkyl substances (PFAS) in agricultural plants: A review. Environ. Res. 2019, 169, 326–341. [Google Scholar] [CrossRef]
- Ahrens, L.; Shoeib, M.; Harner, T.; Lee, S.C.; Guo, R.; Reiner, E.J. Wastewater treatment plant and landfills as sources of polyfluoroalkyl compounds to the atmosphere. Environ. Sci. Technol. 2011, 45, 8098–8105. [Google Scholar] [CrossRef] [PubMed]
- Aleksandrov, K.; Gehrmann, H.J.; Hauser, M.; Matzing, H.; Pigeon, D.; Stapf, D.; Wexler, M. Waste incineration of Polytetrafluoroethylene (PTFE) to evaluate potential formation of per- and Poly-Fluorinated Alkyl Substances (PFAS) in flue gas. Chemosphere 2019, 226, 898–906. [Google Scholar] [CrossRef]
- Bjorklund, S.; Weidemann, E.; Yeung, L.W.; Jansson, S. Occurrence of per- and polyfluoroalkyl substances and unidentified organofluorine in leachate from waste-to-energy stockpile—A case study. Chemosphere 2021, 278, 130380. [Google Scholar] [CrossRef] [PubMed]
- Palmer, K.; Bangma, J.T.; Reiner, J.L.; Bonde, R.K.; Korte, J.E.; Boggs, A.S.P.; Bowden, J.A. Per- and polyfluoroalkyl substances (PFAS) in plasma of the West Indian manatee (Trichechus manatus). Mar. Pollut. Bull. 2019, 140, 610–615. [Google Scholar] [CrossRef]
- Shahsavari, E.; Rouch, D.; Khudur, L.S.; Thomas, D.; Aburto-Medina, A.; Ball, A.S. Challenges and Current Status of the Biological Treatment of PFAS-Contaminated Soils. Front. Bioeng. Biotechnol. 2020, 8, 602040. [Google Scholar] [CrossRef]
- Wang, W.; Rhodes, G.; Ge, J.; Yu, X.; Li, H. Uptake and accumulation of per- and polyfluoroalkyl substances in plants. Chemosphere 2020, 261, 127584. [Google Scholar] [CrossRef] [PubMed]
- Scher, D.P.; Kelly, J.E.; Huset, C.A.; Barry, K.M.; Hoffbeck, R.W.; Yingling, V.L.; Messing, R.B. Occurrence of perfluoroalkyl substances (PFAS) in garden produce at homes with a history of PFAS-contaminated drinking water. Chemosphere 2018, 196, 548–555. [Google Scholar] [CrossRef] [PubMed]
- Awad, R.; Zhou, Y.; Nyberg, E.; Namazkar, S.; Yongning, W.; Xiao, Q.; Sun, Y.; Zhu, Z.; Bergman, A.; Benskin, J.P. Emerging per- and polyfluoroalkyl substances (PFAS) in human milk from Sweden and China. Environ. Sci. Process. Impacts. 2020, 22, 2023–2030. [Google Scholar] [CrossRef] [PubMed]
- EFSA Panel on Contaminants in the Food Chain (CONTAM); Schrenk, D.; Bignami, M.; Bodin, L.; Chipman, J.K.; Del Mazo, J.; Grasl-Kraupp, B.; Hogstrand, C.; Hoogenboom, L.R.; Leblanc, J.C.; et al. Risk to human health related to the presence of perfluoroalkyl substances in food. EFSA J. 2020, 18, e06223. [Google Scholar] [CrossRef]
- Calafat, A.M.; Kato, K.; Hubbard, K.; Jia, T.; Botelho, J.C.; Wong, L.Y. Legacy and alternative per- and polyfluoroalkyl substances in the U.S. general population: Paired serum-urine data from the 2013-2014 National Health and Nutrition Examination Survey. Environ. Int. 2019, 131, 105048. [Google Scholar] [CrossRef]
- Lin, Y.; Jiang, J.J.; Rodenburg, L.A.; Cai, M.; Wu, Z.; Ke, H.; Chitsaz, M. Perfluoroalkyl substances in sediments from the Bering Sea to the western Arctic: Source and pathway analysis. Environ. Int. 2020, 139, 105699. [Google Scholar] [CrossRef] [PubMed]
- Toms, L.M.L.; Braunig, J.; Vijayasarathy, S.; Phillips, S.; Hobson, P.; Aylward, L.L.; Kirk, M.D.; Mueller, J.F. Per- and polyfluoroalkyl substances (PFAS) in Australia: Current levels and estimated population reference values for selected compounds. Int. J. Hyg. Environ. Health. 2019, 222, 387–394. [Google Scholar] [CrossRef]
- Skaar, J.S.; Raeder, E.M.; Lyche, J.L.; Ahrens, L.; Kallenborn, R. Elucidation of contamination sources for poly- and perfluoroalkyl substances (PFASs) on Svalbard (Norwegian Arctic). Environ. Sci. Pollut. Res. Int. 2019, 26, 7356–7363. [Google Scholar] [CrossRef]
- Ellis, D.A.; Martin, J.W.; De Silva, A.O.; Mabury, S.A.; Hurley, M.D.; Sulbaek Andersen, M.P.; Wallington, T.J. Degradation of fluorotelomer alcohols: A likely atmospheric source of perfluorinated carboxylic acids. Environ. Sci. Technol. 2004, 38, 3316–3321. [Google Scholar] [CrossRef] [PubMed]
- Paul, A.G.; Jones, K.C.; Sweetman, A.J. A first global production, emission, and environmental inventory for perfluorooctane sulfonate. Environ. Sci. Technol. 2009, 43, 386–392. [Google Scholar] [CrossRef]
- Prevedouros, K.; Cousins, I.T.; Buck, R.C.; Korzeniowski, S.H. Sources, fate and transport of perfluorocarboxylates. Environ. Sci. Technol. 2006, 40, 32–44. [Google Scholar] [CrossRef] [PubMed]
- Butt, C.M.; Muir, D.C.; Mabury, S.A. Biotransformation pathways of fluorotelomer-based polyfluoroalkyl substances: A review. Environ. Toxicol. Chem. 2014, 33, 243–267. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Mejia Avendano, S. Microbial degradation of polyfluoroalkyl chemicals in the environment: A review. Environ. Int. 2013, 61, 98–114. [Google Scholar] [CrossRef]
- Dinglasan, M.J.; Ye, Y.; Edwards, E.A.; Mabury, S.A. Fluorotelomer alcohol biodegradation yields poly- and perfluorinated acids. Environ. Sci. Technol. 2004, 38, 2857–2864. [Google Scholar] [CrossRef]
- Rand, A.A.; Mabury, S.A. Protein binding associated with exposure to fluorotelomer alcohols (FTOHs) and polyfluoroalkyl phosphate esters (PAPs) in rats. Environ. Sci. Technol. 2014, 48, 2421–2429. [Google Scholar] [CrossRef]
- Leeson, A.; Thompson, T.; Stroo, H.F.; Anderson, R.H.; Speicher, J.; Mills, M.A.; Willey, J.; Coyle, C.; Ghosh, R.; Lebron, C.; et al. Identifying and Managing Aqueous Film-Forming Foam-Derived Per- and Polyfluoroalkyl Substances in the Environment. Environ. Toxicol. Chem. 2021, 40, 24–36. [Google Scholar] [CrossRef]
- Liu, Y.; Li, X.; Wang, X.; Qiao, X.; Hao, S.; Lu, J.; Duan, X.; Dionysiou, D.D.; Zheng, B. Contamination Profiles of Perfluoroalkyl Substances (PFAS) in Groundwater in the Alluvial-Pluvial Plain of Hutuo River, China. Water 2019, 11, 2316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharp, S.; Sardina, P.; Metzeling, L.; McKenzie, R.; Leahy, P.; Menkhorst, P.; Hinwood, A. Per- and Polyfluoroalkyl Substances in Ducks and the Relationship with Concentrations in Water, Sediment, and Soil. Environ. Toxicol. Chem. 2021, 40, 846–858. [Google Scholar] [CrossRef]
- Sima, M.W.; Jaffe, P.R. A critical review of modeling Poly- and Perfluoroalkyl Substances (PFAS) in the soil-water environment. Sci. Total. Environ. 2021, 757, 143793. [Google Scholar] [CrossRef]
- Kwok, K.Y.; Yamazaki, E.; Yamashita, N.; Taniyasu, S.; Murphy, M.B.; Horii, Y.; Petrick, G.; Kallerborn, R.; Kannan, K.; Murano, K.; et al. Transport of perfluoroalkyl substances (PFAS) from an arctic glacier to downstream locations: Implications for sources. Sci. Total. Environ. 2013, 447, 46–55. [Google Scholar] [CrossRef]
- Bossi, R.; Vorkamp, K.; Skov, H. Concentrations of organochlorine pesticides, polybrominated diphenyl ethers and perfluorinated compounds in the atmosphere of North Greenland. Environ. Pollut. 2016, 217, 4–10. [Google Scholar] [CrossRef]
- Fromme, H.; Dreyer, A.; Dietrich, S.; Fembacher, L.; Lahrz, T.; Volkel, W. Neutral polyfluorinated compounds in indoor air in Germany--the LUPE 4 study. Chemosphere 2015, 139, 572–578. [Google Scholar] [CrossRef]
- Wang, Z.; Xie, Z.; Mi, W.; Moller, A.; Wolschke, H.; Ebinghaus, R. Neutral Poly/Per-Fluoroalkyl Substances in Air from the Atlantic to the Southern Ocean and in Antarctic Snow. Environ. Sci. Technol. 2015, 49, 7770–7775. [Google Scholar] [CrossRef]
- Lai, S.; Song, J.; Song, T.; Huang, Z.; Zhang, Y.; Zhao, Y.; Liu, G.; Zheng, J.; Mi, W.; Tang, J.; et al. Neutral polyfluoroalkyl substances in the atmosphere over the northern South China Sea. Environ. Pollut. 2016, 214, 449–455. [Google Scholar] [CrossRef]
- Ge, H.; Yamazaki, E.; Yamashita, N.; Taniyasu, S.; Ogata, A.; Furuuchi, M. Particle size specific distribution of perfluoro alkyl substances in atmospheric particulate matter in Asian cities. Environ. Sci. Process. Impacts. 2017, 19, 549–560. [Google Scholar] [CrossRef]
- Lin, H.; Taniyasu, S.; Yamazaki, E.; Wei, S.; Wang, X.; Gai, N.; Kim, J.H.; Eun, H.; Lam, P.K.S.; Yamashita, N. Per- and Polyfluoroalkyl Substances in the Air Particles of Asia: Levels, Seasonality, and Size-Dependent Distribution. Environ. Sci. Technol. 2020, 54, 14182–14191. [Google Scholar] [CrossRef]
- Yu, N.; Wen, H.; Wang, X.; Yamazaki, E.; Taniyasu, S.; Yamashita, N.; Yu, H.; Wei, S. Nontarget Discovery of Per- and Polyfluoroalkyl Substances in Atmospheric Particulate Matter and Gaseous Phase Using Cryogenic Air Sampler. Environ. Sci. Technol. 2020, 54, 3103–3113. [Google Scholar] [CrossRef]
- Yeung, L.W.Y.; Dassuncao, C.; Mabury, S.; Sunderland, E.M.; Zhang, X.; Lohmann, R. Vertical Profiles, Sources, and Transport of PFASs in the Arctic Ocean. Environ. Sci. Technol. 2017, 51, 6735–6744. [Google Scholar] [CrossRef]
- Casas, G.; Martinez-Varela, A.; Roscales, J.L.; Vila-Costa, M.; Dachs, J.; Jimenez, B. Enrichment of perfluoroalkyl substances in the sea-surface microlayer and sea-spray aerosols in the Southern Ocean. Environ. Pollut. 2020, 267, 115512. [Google Scholar] [CrossRef] [PubMed]
- Pike, K.A.; Edmiston, P.L.; Morrison, J.J.; Faust, J.A. Correlation Analysis of Perfluoroalkyl Substances in Regional U.S. Precipitation Events. Water. Res. 2021, 190, 116685. [Google Scholar] [CrossRef] [PubMed]
- Schroeder, T.; Bond, D.; Foley, J. PFAS soil and groundwater contamination via industrial airborne emission and land deposition in SW Vermont and Eastern New York State, USA. Environ. Sci. Process Impacts 2021, 23, 291–301. [Google Scholar] [CrossRef] [PubMed]
- Le, S.T.; Kibbey, T.C.G.; Weber, K.P.; Glamore, W.C.; O’Carroll, D.M. A group-contribution model for predicting the physicochemical behavior of PFAS components for understanding environmental fate. Sci. Total. Environ. 2021, 764, 142882. [Google Scholar] [CrossRef] [PubMed]
- Schaefer, C.E.; Culina, V.; Nguyen, D.; Field, J. Uptake of Poly- and Perfluoroalkyl Substances at the Air-Water Interface. Environ. Sci. Technol. 2019, 53, 12442–12448. [Google Scholar] [CrossRef]
- Costanza, J.; Arshadi, M.; Abriola, L.M.; Pennell, K.D. Accumulation of PFOA and PFOS at the Air–Water Interface. Environ. Sci. Technol. Lett. 2019, 6, 487–491. [Google Scholar] [CrossRef]
- Mussabek, D.; Ahrens, L.; Persson, K.M.; Berndtsson, R. Temporal trends and sediment-water partitioning of per- and polyfluoroalkyl substances (PFAS) in lake sediment. Chemosphere 2019, 227, 624–629. [Google Scholar] [CrossRef]
- Langberg, H.A.; Breedveld, G.D.; Slinde, G.A.; Gronning, H.M.; Hoisaeter, A.; Jartun, M.; Rundberget, T.; Jenssen, B.M.; Hale, S.E. Fluorinated Precursor Compounds in Sediments as a Source of Perfluorinated Alkyl Acids (PFAA) to Biota. Environ. Sci. Technol. 2020, 54, 13077–13089. [Google Scholar] [CrossRef]
- Remucal, C.K. Spatial and temporal variability of perfluoroalkyl substances in the Laurentian Great Lakes. Environ. Sci. Process Impacts 2019, 21, 1816–1834. [Google Scholar] [CrossRef]
- Reid, A.J.; Carlson, A.K.; Creed, I.F.; Eliason, E.J.; Gell, P.A.; Johnson, P.T.J.; Kidd, K.A.; MacCormack, T.J.; Olden, J.D.; Ormerod, S.J.; et al. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev. Camb. Philos. Soc. 2019, 94, 849–873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orata, F.; Quinete, N.; Werres, F.; Wilken, R.D. Determination of perfluorooctanoic acid and perfluorooctane sulfonate in Lake Victoria Gulf water. Bull. Environ. Contam. Toxicol. 2009, 82, 218–222. [Google Scholar] [CrossRef]
- Groffen, T.; Wepener, V.; Malherbe, W.; Bervoets, L. Distribution of perfluorinated compounds (PFASs) in the aquatic environment of the industrially polluted Vaal River, South Africa. Sci Total Environ 2018, 627, 1334–1344. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Wang, T.; Jiang, Z.; Kong, X.; Li, Q.; Sun, Y.; Wang, P.; Liu, Z. Ecological effect and risk towards aquatic plants induced by perfluoroalkyl substances: Bridging natural to culturing flora. Chemosphere 2017, 167, 98–106. [Google Scholar] [CrossRef] [PubMed]
- Tan, K.Y.; Lu, G.H.; Yuan, X.; Zheng, Y.; Shao, P.W.; Cai, J.Y.; Zhao, Y.R.; Zhu, X.H.; Yang, Y.L. Perfluoroalkyl Substances in Water from the Yangtze River and Its Tributaries at the Dividing Point Between the Middle and Lower Reaches. Bull. Environ. Contam. Toxicol. 2018, 101, 598–603. [Google Scholar] [CrossRef] [PubMed]
- Pignotti, E.; Casas, G.; Llorca, M.; Tellbuscher, A.; Almeida, D.; Dinelli, E.; Farre, M.; Barcelo, D. Seasonal variations in the occurrence of perfluoroalkyl substances in water, sediment and fish samples from Ebro Delta (Catalonia, Spain). Sci. Total. Environ. 2017, 607–608, 933–943. [Google Scholar] [CrossRef] [PubMed]
- Allinson, M.; Yamashita, N.; Taniyasu, S.; Yamazaki, E.; Allinson, G. Occurrence of perfluoroalkyl substances in selected Victorian rivers and estuaries: An historical snapshot. Heliyon 2019, 5, e02472. [Google Scholar] [CrossRef] [Green Version]
- Sempéré, R.; Charrière, B.; Van Wambeke, F.; Cauwet, G. Carbon inputs of the Rhône River to the Mediterranean Sea: Biogeochemical implications. Glob. Biogeochem. Cycles 2000, 14, 669–681. [Google Scholar] [CrossRef]
- Mourier, B.; Labadie, P.; Desmet, M.; Grosbois, C.; Raux, J.; Debret, M.; Copard, Y.; Pardon, P.; Budzinski, H.; Babut, M. Combined spatial and retrospective analysis of fluoroalkyl chemicals in fluvial sediments reveal changes in levels and patterns over the last 40 years. Environ. Pollut. 2019, 253, 1117–1125. [Google Scholar] [CrossRef]
- Schmidt, N.; Fauvelle, V.; Castro-Jimenez, J.; Lajaunie-Salla, K.; Pinazo, C.; Yohia, C.; Sempere, R. Occurrence of perfluoroalkyl substances in the Bay of Marseille (NW Mediterranean Sea) and the Rhone River. Mar. Pollut. Bull. 2019, 149, 110491. [Google Scholar] [CrossRef]
- Codling, G.; Sturchio, N.C.; Rockne, K.J.; Li, A.; Peng, H.; Tse, T.J.; Jones, P.D.; Giesy, J.P. Spatial and temporal trends in poly- and per-fluorinated compounds in the Laurentian Great Lakes Erie, Ontario and St. Clair. Environ. Pollut. 2018, 237, 396–405. [Google Scholar] [CrossRef] [PubMed]
- Mussabek, D.; Persson, K.M.; Berndtsson, R.; Ahrens, L.; Nakagawa, K.; Imura, T. Impact of the Sediment Organic vs. Mineral Content on Distribution of the Per- and Polyfluoroalkyl Substances (PFAS) in Lake Sediment. Int. J. Environ. Res. Public. Health 2020, 17, 5642. [Google Scholar] [CrossRef] [PubMed]
- Guo, R.; Megson, D.; Myers, A.L.; Helm, P.A.; Marvin, C.; Crozier, P.; Mabury, S.; Bhavsar, S.P.; Tomy, G.; Simcik, M.; et al. Application of a comprehensive extraction technique for the determination of poly- and perfluoroalkyl substances (PFASs) in Great Lakes Region sediments. Chemosphere 2016, 164, 535–546. [Google Scholar] [CrossRef]
- Tornabene, B.J.; Chislock, M.F.; Gannon, M.E.; Sepulveda, M.S.; Hoverman, J.T. Relative Acute Toxicity of Three Per- and Polyfluoroalkyl Substances on Nine Species of Larval Amphibians. Integr. Environ. Assess. Manag. 2021, 17, 684–690. [Google Scholar] [CrossRef] [PubMed]
- Colli-Dula, R.C.; Martyniuk, C.J.; Streets, S.; Denslow, N.D.; Lehr, R. Molecular impacts of perfluorinated chemicals (PFASs) in the liver and testis of male largemouth bass (Micropterus salmoides) in Minnesota Lakes. Comp. Biochem. Physiol. Part D Genom. Proteom. 2016, 19, 129–139. [Google Scholar] [CrossRef]
- Guillette, T.C.; McCord, J.; Guillette, M.; Polera, M.E.; Rachels, K.T.; Morgeson, C.; Kotlarz, N.; Knappe, D.R.U.; Reading, B.J.; Strynar, M.; et al. Elevated levels of per- and polyfluoroalkyl substances in Cape Fear River Striped Bass (Morone saxatilis) are associated with biomarkers of altered immune and liver function. Environ. Int. 2020, 136, 105358. [Google Scholar] [CrossRef] [PubMed]
- Barbier, E.B. Marine ecosystem services. Curr. Biol. 2017, 27, R507–R510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Lohmann, R.; Sunderland, E.M. Poly- and Perfluoroalkyl Substances in Seawater and Plankton from the Northwestern Atlantic Margin. Environ. Sci. Technol. 2019, 53, 12348–12356. [Google Scholar] [CrossRef]
- Yan, H.; Zhang, C.; Zhou, Q.; Yang, S. Occurrence of perfluorinated alkyl substances in sediment from estuarine and coastal areas of the East China Sea. Environ. Sci. Pollut. Res. Int. 2015, 22, 1662–1669. [Google Scholar] [CrossRef] [PubMed]
- Kwok, K.Y.; Wang, X.H.; Ya, M.; Li, Y.; Zhang, X.H.; Yamashita, N.; Lam, J.C.; Lam, P.K. Occurrence and distribution of conventional and new classes of per- and polyfluoroalkyl substances (PFASs) in the South China Sea. J. Hazard. Mater. 2015, 285, 389–397. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Sun, R.; Zhang, C.; Han, J.; Wang, X.; Han, G.; He, X. Occurrence, spatial and temporal distributions of perfluoroalkyl substances in wastewater, seawater and sediment from Bohai Sea, China. Environ. Pollut. 2016, 219, 389–398. [Google Scholar] [CrossRef]
- Chen, H.; Wang, X.; Zhang, C.; Sun, R.; Han, J.; Han, G.; Yang, W.; He, X. Occurrence and inputs of perfluoroalkyl substances (PFASs) from rivers and drain outlets to the Bohai Sea, China. Environ. Pollut. 2017, 221, 234–243. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Han, J.; Zhang, C.; Cheng, J.; Sun, R.; Wang, X.; Han, G.; Yang, W.; He, X. Occurrence and seasonal variations of per- and polyfluoroalkyl substances (PFASs) including fluorinated alternatives in rivers, drain outlets and the receiving Bohai Sea of China. Environ. Pollut. 2017, 231, 1223–1231. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, Y.; Li, J.; Wu, N.; Li, W.; Niu, Z. Distribution, partitioning behavior and positive matrix factorization-based source analysis of legacy and emerging polyfluorinated alkyl substances in the dissolved phase, surface sediment and suspended particulate matter around coastal areas of Bohai Bay, China. Environ. Pollut. 2019, 246, 34–44. [Google Scholar] [CrossRef]
- Wang, Q.; Tsui, M.M.P.; Ruan, Y.; Lin, H.; Zhao, Z.; Ku, J.P.H.; Sun, H.; Lam, P.K.S. Occurrence and distribution of per- and polyfluoroalkyl substances (PFASs) in the seawater and sediment of the South China sea coastal region. Chemosphere 2019, 231, 468–477. [Google Scholar] [CrossRef]
- Brumovsky, M.; Karaskova, P.; Borghini, M.; Nizzetto, L. Per- and polyfluoroalkyl substances in the Western Mediterranean Sea waters. Chemosphere 2016, 159, 308–316. [Google Scholar] [CrossRef]
- Zafeiraki, E.; Gebbink, W.A.; van Leeuwen, S.P.J.; Dassenakis, E.; Megalofonou, P. Occurrence and tissue distribution of perfluoroalkyl substances (PFASs) in sharks and rays from the eastern Mediterranean Sea. Environ. Pollut. 2019, 252, 379–387. [Google Scholar] [CrossRef]
- Hayman, N.T.; Rosen, G.; Colvin, M.A.; Conder, J.; Arblaster, J.A. Aquatic toxicity evaluations of PFOS and PFOA for five standard marine endpoints. Chemosphere 2021, 273, 129699. [Google Scholar] [CrossRef] [PubMed]
- Bernardini, I.; Matozzo, V.; Valsecchi, S.; Peruzza, L.; Rovere, G.D.; Polesello, S.; Iori, S.; Marin, M.G.; Fabrello, J.; Ciscato, M.; et al. The new PFAS C6O4 and its effects on marine invertebrates: First evidence of transcriptional and microbiota changes in the Manila clam Ruditapes philippinarum. Environ. Int. 2021, 152, 106484. [Google Scholar] [CrossRef]
- Yao, Y.; Zhu, H.; Li, B.; Hu, H.; Zhang, T.; Yamazaki, E.; Taniyasu, S.; Yamashita, N.; Sun, H. Distribution and primary source analysis of per- and poly-fluoroalkyl substances with different chain lengths in surface and groundwater in two cities, North China. Ecotoxicol. Environ. Saf. 2014, 108, 318–328. [Google Scholar] [CrossRef]
- Chen, S.; Jiao, X.C.; Gai, N.; Li, X.J.; Wang, X.C.; Lu, G.H.; Piao, H.T.; Rao, Z.; Yang, Y.L. Perfluorinated compounds in soil, surface water, and groundwater from rural areas in eastern China. Environ. Pollut. 2016, 211, 124–131. [Google Scholar] [CrossRef]
- Bao, J.; Liu, W.; Liu, L.; Jin, Y.; Dai, J.; Ran, X.; Zhang, Z.; Tsuda, S. Perfluorinated compounds in the environment and the blood of residents living near fluorochemical plants in Fuxin, China. Environ. Sci. Technol. 2011, 45, 8075–8080. [Google Scholar] [CrossRef] [PubMed]
- Bao, J.; Yu, W.J.; Liu, Y.; Wang, X.; Jin, Y.H.; Dong, G.H. Perfluoroalkyl substances in groundwater and home-produced vegetables and eggs around a fluorochemical industrial park in China. Ecotoxicol. Environ. Saf. 2019, 171, 199–205. [Google Scholar] [CrossRef]
- Bao, J.; Li, C.L.; Liu, Y.; Wang, X.; Yu, W.J.; Liu, Z.Q.; Shao, L.X.; Jin, Y.H. Bioaccumulation of perfluoroalkyl substances in greenhouse vegetables with long-term groundwater irrigation near fluorochemical plants in Fuxin, China. Environ. Res. 2020, 188, 109751. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Liu, Z.; Song, X.; Ding, X.; Ding, D. Legacy and emerging per- and polyfluoroalkyl substances (PFASs) in multi-media around a landfill in China: Implications for the usage of PFASs alternatives. Sci. Total. Environ. 2021, 751, 141767. [Google Scholar] [CrossRef]
- Wei, C.; Wang, Q.; Song, X.; Chen, X.; Fan, R.; Ding, D.; Liu, Y. Distribution, source identification and health risk assessment of PFASs and two PFOS alternatives in groundwater from non-industrial areas. Ecotoxicol. Environ. Saf. 2018, 152, 141–150. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Li, S.; Liang, X.; Feng, X.; Wang, T.; Li, Z.; Zhu, L. First report on the sources, vertical distribution and human health risks of legacy and novel per- and polyfluoroalkyl substances in groundwater from the Loess Plateau, China. J. Hazard. Mater. 2021, 404, 124134. [Google Scholar] [CrossRef] [PubMed]
- Sharma, B.M.; Bharat, G.K.; Tayal, S.; Larssen, T.; Becanova, J.; Karaskova, P.; Whitehead, P.G.; Futter, M.N.; Butterfield, D.; Nizzetto, L. Perfluoroalkyl substances (PFAS) in river and ground/drinking water of the Ganges River basin: Emissions and implications for human exposure. Environ. Pollut. 2016, 208, 704–713. [Google Scholar] [CrossRef]
- Szabo, D.; Coggan, T.L.; Robson, T.C.; Currell, M.; Clarke, B.O. Investigating recycled water use as a diffuse source of per- and polyfluoroalkyl substances (PFASs) to groundwater in Melbourne, Australia. Sci. Total. Environ. 2018, 644, 1409–1417. [Google Scholar] [CrossRef]
- Moody, C.A.; Hebert, G.N.; Strauss, S.H.; Field, J.A. Occurrence and persistence of perfluorooctanesulfonate and other perfluorinated surfactants in groundwater at a fire-training area at Wurtsmith Air Force Base, Michigan, USA. J. Environ. Monit. 2003, 5, 341–345. [Google Scholar] [CrossRef] [PubMed]
- Schultz, M.M.; Barofsky, D.F.; Field, J.A. Quantitative determination of fluorotelomer sulfonates in groundwater by LC MS/MS. Environ. Sci. Technol. 2004, 38, 1828–1835. [Google Scholar] [CrossRef]
- Houtz, E.F.; Higgins, C.P.; Field, J.A.; Sedlak, D.L. Persistence of perfluoroalkyl acid precursors in AFFF-impacted groundwater and soil. Environ. Sci. Technol. 2013, 47, 8187–8195. [Google Scholar] [CrossRef] [PubMed]
- Braunig, J.; Baduel, C.; Heffernan, A.; Rotander, A.; Donaldson, E.; Mueller, J.F. Fate and redistribution of perfluoroalkyl acids through AFFF-impacted groundwater. Sci. Total. Environ. 2017, 596–597, 360–368. [Google Scholar] [CrossRef]
- Dauchy, X.; Boiteux, V.; Colin, A.; Hemard, J.; Bach, C.; Rosin, C.; Munoz, J.F. Deep seepage of per- and polyfluoroalkyl substances through the soil of a firefighter training site and subsequent groundwater contamination. Chemosphere 2019, 214, 729–737. [Google Scholar] [CrossRef] [PubMed]
- Munoz, G.; Labadie, P.; Botta, F.; Lestremau, F.; Lopez, B.; Geneste, E.; Pardon, P.; Devier, M.H.; Budzinski, H. Occurrence survey and spatial distribution of perfluoroalkyl and polyfluoroalkyl surfactants in groundwater, surface water, and sediments from tropical environments. Sci. Total. Environ. 2017, 607–608, 243–252. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Junaid, M.; Zhong, W.; Zhu, Y.; Xu, N. A sensitive method for simultaneous determination of 12 classes of per- and polyfluoroalkyl substances (PFASs) in groundwater by ultrahigh performance liquid chromatography coupled with quadrupole orbitrap high resolution mass spectrometry. Chemosphere 2020, 251, 126327. [Google Scholar] [CrossRef]
- Cousins, I.T.; Vestergren, R.; Wang, Z.; Scheringer, M.; McLachlan, M.S. The precautionary principle and chemicals management: The example of perfluoroalkyl acids in groundwater. Environ. Int. 2016, 94, 331–340. [Google Scholar] [CrossRef] [PubMed]
- US-EPA. Drinking Water Health Advisory for PFOA. US-EPA: 2016. Available online: https://www.epa.gov/ground-water-and-drinking-water/drinking-water-health-advisories-pfoa-and-pfos (accessed on 28 November 2021).
- Garnick, L.; Massarsky, A.; Mushnick, A.; Hamaji, C.; Scott, P.; Monnot, A. An evaluation of health-based federal and state PFOA drinking water guidelines in the United States. Sci. Total. Environ. 2021, 761, 144107. [Google Scholar] [CrossRef]
- Li, Y.; Fletcher, T.; Mucs, D.; Scott, K.; Lindh, C.H.; Tallving, P.; Jakobsson, K. Half-lives of PFOS, PFHxS and PFOA after end of exposure to contaminated drinking water. Occup. Environ. Med. 2018, 75, 46–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, X.C.; Andrews, D.Q.; Lindstrom, A.B.; Bruton, T.A.; Schaider, L.A.; Grandjean, P.; Lohmann, R.; Carignan, C.C.; Blum, A.; Balan, S.A.; et al. Detection of Poly- and Perfluoroalkyl Substances (PFASs) in U.S. Drinking Water Linked to Industrial Sites, Military Fire Training Areas, and Wastewater Treatment Plants. Environ. Sci. Technol. Lett. 2016, 3, 344–350. [Google Scholar] [CrossRef]
- Zhu, Y.; Bartell, S.M. Per- and polyfluoroalkyl substances in drinking water and birthweight in the US: A county-level study. Environ. Epidemiol. 2020, 4, e0107. [Google Scholar] [CrossRef]
- Domingo, J.L.; Nadal, M. Human exposure to per- and polyfluoroalkyl substances (PFAS) through drinking water: A review of the recent scientific literature. Environ. Res. 2019, 177, 108648. [Google Scholar] [CrossRef]
- Zafeiraki, E.; Costopoulou, D.; Vassiliadou, I.; Leondiadis, L.; Dassenakis, E.; Traag, W.; Hoogenboom, R.L.; van Leeuwen, S.P. Determination of perfluoroalkylated substances (PFASs) in drinking water from the Netherlands and Greece. Food Addit. Contam. Part A Chem. Anal. Control. Expo. Risk Assess. 2015, 32, 2048–2057. [Google Scholar] [CrossRef]
- Ullah, S.; Alsberg, T.; Berger, U. Simultaneous determination of perfluoroalkyl phosphonates, carboxylates, and sulfonates in drinking water. J. Chromatogr. A 2011, 1218, 6388–6395. [Google Scholar] [CrossRef] [PubMed]
- Holzer, J.; Midasch, O.; Rauchfuss, K.; Kraft, M.; Reupert, R.; Angerer, J.; Kleeschulte, P.; Marschall, N.; Wilhelm, M. Biomonitoring of perfluorinated compounds in children and adults exposed to perfluorooctanoate-contaminated drinking water. Environ. Health. Perspect. 2008, 116, 651–657. [Google Scholar] [CrossRef]
- Skutlarek, D.; Exner, M.; Farber, H. Perfluorinated surfactants in surface and drinking waters. Environ. Sci. Pollut. Res. Int. 2006, 13, 299–307. [Google Scholar] [CrossRef]
- Wilhelm, M.; Bergmann, S.; Dieter, H.H. Occurrence of perfluorinated compounds (PFCs) in drinking water of North Rhine-Westphalia, Germany and new approach to assess drinking water contamination by shorter-chained C4-C7 PFCs. Int. J. Hyg. Environ. Health. 2010, 213, 224–232. [Google Scholar] [CrossRef]
- Boiteux, V.; Dauchy, X.; Rosin, C.; Munoz, J.F. National screening study on 10 perfluorinated compounds in raw and treated tap water in France. Arch. Environ. Contam. Toxicol. 2012, 63, 1–12. [Google Scholar] [CrossRef] [PubMed]
- de Voogt, P.; Berger, U.; de Coen, W.; de Wolf, W.; Heimstad, E.; McLachlan, M.; van Leeuwen, S.; van Roon, A. Perfluorinated Organic Compounds in the European Environment (Perforce); Report to the EU; University of Amsterdam: Amsterdam, NL, USA, 2006; p. 132. Available online: https://ibed.fnwi.uva.nl/perforce/Final%20reportA.pdf (accessed on 28 November 2021).
- Tromba, C. [PFASs pollution in Veneto Region (Northern Italy). After USA, it is the turn of Italy]. Epidemiol. Prev. 2017, 41, 232–236. [Google Scholar] [CrossRef]
- WHO. Keeping our Water Clean: The Case of Water Contamination in the Veneto Region, Italy; 2017. Available online: https://apps.who.int/iris/handle/10665/344113 (accessed on 28 November 2021).
- Mastrantonio, M.; Bai, E.; Uccelli, R.; Cordiano, V.; Screpanti, A.; Crosignani, P. Drinking water contamination from perfluoroalkyl substances (PFAS): An ecological mortality study in the Veneto Region, Italy. Eur. J. Public Health 2018, 28, 180–185. [Google Scholar] [CrossRef]
- Ingelido, A.M.; Abballe, A.; Gemma, S.; Dellatte, E.; Iacovella, N.; De Angelis, G.; Zampaglioni, F.; Marra, V.; Miniero, R.; Valentini, S.; et al. Biomonitoring of perfluorinated compounds in adults exposed to contaminated drinking water in the Veneto Region, Italy. Environ. Int. 2018, 110, 149–159. [Google Scholar] [CrossRef] [PubMed]
- Vughs, D.; Baken, K.A.; Dingemans, M.M.L.; de Voogt, P. The determination of two emerging perfluoroalkyl substances and related halogenated sulfonic acids and their significance for the drinking water supply chain. Environ. Sci. Process Impacts 2019, 21, 1899–1907. [Google Scholar] [CrossRef]
- Li, Y.; Barregard, L.; Xu, Y.; Scott, K.; Pineda, D.; Lindh, C.H.; Jakobsson, K.; Fletcher, T. Associations between perfluoroalkyl substances and serum lipids in a Swedish adult population with contaminated drinking water. Environ. Health 2020, 19, 33. [Google Scholar] [CrossRef] [Green Version]
- Sun, M.; Arevalo, E.; Strynar, M.; Lindstrom, A.; Richardson, M.; Kearns, B.; Pickett, A.; Smith, C.; Knappe, D.R.U. Legacy and Emerging Perfluoroalkyl Substances Are Important Drinking Water Contaminants in the Cape Fear River Watershed of North Carolina. Environ. Sci. Technol. Lett. 2016, 3, 415–419. [Google Scholar] [CrossRef]
- Tan, K.Y.; Lu, G.H.; Piao, H.T.; Chen, S.; Jiao, X.C.; Gai, N.; Yamazaki, E.; Yamashita, N.; Pan, J.; Yang, Y.L. Current Contamination Status of Perfluoroalkyl Substances in Tapwater from 17 Cities in the Eastern China and Their Correlations with Surface Waters. Bull. Environ. Contam. Toxicol. 2017, 99, 224–231. [Google Scholar] [CrossRef] [PubMed]
- Guardian, M.G.E.; Boongaling, E.G.; Bernardo-Boongaling, V.R.R.; Gamonchuang, J.; Boontongto, T.; Burakham, R.; Arnnok, P.; Aga, D.S. Prevalence of per- and polyfluoroalkyl substances (PFASs) in drinking and source water from two Asian countries. Chemosphere 2020, 256, 127115. [Google Scholar] [CrossRef]
- Jiang, J.J.; Okvitasari, A.R.; Huang, F.Y.; Tsai, C.S. Characteristics, pollution patterns and risks of Perfluoroalkyl substances in drinking water sources of Taiwan. Chemosphere 2021, 264, 128579. [Google Scholar] [CrossRef]
- Sharifan, H.; Bagheri, M.; Wang, D.; Burken, J.G.; Higgins, C.P.; Liang, Y.; Liu, J.; Schaefer, C.E.; Blotevogel, J. Fate and transport of per- and polyfluoroalkyl substances (PFASs) in the vadose zone. Sci. Total. Environ. 2021, 771, 145427. [Google Scholar] [CrossRef]
- Strynar, M.J.; Lindstrom, A.B.; Nakayama, S.F.; Egeghy, P.P.; Helfant, L.J. Pilot scale application of a method for the analysis of perfluorinated compounds in surface soils. Chemosphere 2012, 86, 252–257. [Google Scholar] [CrossRef]
- Liu, Z.; Lu, Y.; Song, X.; Jones, K.; Sweetman, A.J.; Johnson, A.C.; Zhang, M.; Lu, X.; Su, C. Multiple crop bioaccumulation and human exposure of perfluoroalkyl substances around a mega fluorochemical industrial park, China: Implication for planting optimization and food safety. Environ. Int. 2019, 127, 671–684. [Google Scholar] [CrossRef]
- Beser, M.I.; Pardo, O.; Beltran, J.; Yusa, V. Determination of per- and polyfluorinated substances in airborne particulate matter by microwave-assisted extraction and liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 2011, 1218, 4847–4855. [Google Scholar] [CrossRef]
- Barber, J.L.; Berger, U.; Chaemfa, C.; Huber, S.; Jahnke, A.; Temme, C.; Jones, K.C. Analysis of per- and polyfluorinated alkyl substances in air samples from Northwest Europe. J. Environ. Monit. 2007, 9, 530–541. [Google Scholar] [CrossRef] [PubMed]
- Rankin, K.; Mabury, S.A.; Jenkins, T.M.; Washington, J.W. A North American and global survey of perfluoroalkyl substances in surface soils: Distribution patterns and mode of occurrence. Chemosphere 2016, 161, 333–341. [Google Scholar] [CrossRef]
- Chen, H.; Yao, Y.; Zhao, Z.; Wang, Y.; Wang, Q.; Ren, C.; Wang, B.; Sun, H.; Alder, A.C.; Kannan, K. Multimedia Distribution and Transfer of Per- and Polyfluoroalkyl Substances (PFASs) Surrounding Two Fluorochemical Manufacturing Facilities in Fuxin, China. Environ. Sci. Technol. 2018, 52, 8263–8271. [Google Scholar] [CrossRef]
- Galloway, J.E.; Moreno, A.V.P.; Lindstrom, A.B.; Strynar, M.J.; Newton, S.; May, A.A.; Weavers, L.K. Evidence of Air Dispersion: HFPO-DA and PFOA in Ohio and West Virginia Surface Water and Soil near a Fluoropolymer Production Facility. Environ. Sci. Technol. 2020, 54, 7175–7184. [Google Scholar] [CrossRef]
- Mejia-Avendano, S.; Munoz, G.; Vo Duy, S.; Desrosiers, M.; Benoi, T.P.; Sauve, S.; Liu, J. Novel Fluoroalkylated Surfactants in Soils Following Firefighting Foam Deployment During the Lac-Megantic Railway Accident. Environ. Sci. Technol. 2017, 51, 8313–8323. [Google Scholar] [CrossRef] [PubMed]
- Milley, S.A.; Koch, I.; Fortin, P.; Archer, J.; Reynolds, D.; Weber, K.P. Estimating the number of airports potentially contaminated with perfluoroalkyl and polyfluoroalkyl substances from aqueous film forming foam: A Canadian example. J. Environ. Manag. 2018, 222, 122–131. [Google Scholar] [CrossRef]
- Hoisaeter, A.; Pfaff, A.; Breedveld, G.D. Leaching and transport of PFAS from aqueous film-forming foam (AFFF) in the unsaturated soil at a firefighting training facility under cold climatic conditions. J. Contam. Hydrol. 2019, 222, 112–122. [Google Scholar] [CrossRef] [PubMed]
- Choi, G.H.; Lee, D.Y.; Bruce-Vanderpuije, P.; Song, A.R.; Lee, H.S.; Park, S.W.; Lee, J.H.; Megson, D.; Kim, J.H. Environmental and dietary exposure of perfluorooctanoic acid and perfluorooctanesulfonic acid in the Nakdong River, Korea. Environ. Geochem. Health 2021, 43, 347–360. [Google Scholar] [CrossRef]
- Kelessidis, A.; Stasinakis, A.S. Comparative study of the methods used for treatment and final disposal of sewage sludge in European countries. Waste Manag. 2012, 32, 1186–1195. [Google Scholar] [CrossRef]
- Gottschall, N.; Topp, E.; Edwards, M.; Payne, M.; Kleywegt, S.; Lapen, D.R. Brominated flame retardants and perfluoroalkyl acids in groundwater, tile drainage, soil, and crop grain following a high application of municipal biosolids to a field. Sci. Total. Environ. 2017, 574, 1345–1359. [Google Scholar] [CrossRef]
- Coggan, T.L.; Moodie, D.; Kolobaric, A.; Szabo, D.; Shimeta, J.; Crosbie, N.D.; Lee, E.; Fernandes, M.; Clarke, B.O. An investigation into per- and polyfluoroalkyl substances (PFAS) in nineteen Australian wastewater treatment plants (WWTPs). Heliyon 2019, 5, e02316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lenka, S.P.; Kah, M.; Padhye, L.P. A review of the occurrence, transformation, and removal of poly- and perfluoroalkyl substances (PFAS) in wastewater treatment plants. Water Res. 2021, 199, 117187. [Google Scholar] [CrossRef] [PubMed]
- Washington, J.W.; Yoo, H.; Ellington, J.J.; Jenkins, T.M.; Libelo, E.L. Concentrations, distribution, and persistence of perfluoroalkylates in sludge-applied soils near Decatur, Alabama, USA. Environ. Sci. Technol. 2010, 44, 8390–8396. [Google Scholar] [CrossRef]
- Sepulvado, J.G.; Blaine, A.C.; Hundal, L.S.; Higgins, C.P. Occurrence and fate of perfluorochemicals in soil following the land application of municipal biosolids. Environ. Sci. Technol. 2011, 45, 8106–8112. [Google Scholar] [CrossRef]
- Yoo, H.; Washington, J.W.; Jenkins, T.M.; Ellington, J.J. Quantitative determination of perfluorochemicals and fluorotelomer alcohols in plants from biosolid-amended fields using LC/MS/MS and GC/MS. Environ. Sci. Technol. 2011, 45, 7985–7990. [Google Scholar] [CrossRef]
- Blaine, A.C.; Rich, C.D.; Sedlacko, E.M.; Hyland, K.C.; Stushnoff, C.; Dickenson, E.R.; Higgins, C.P. Perfluoroalkyl acid uptake in lettuce (Lactuca sativa) and strawberry (Fragaria ananassa) irrigated with reclaimed water. Environ. Sci. Technol. 2014, 48, 14361–14368. [Google Scholar] [CrossRef]
- Wen, B.; Li, L.; Zhang, H.; Ma, Y.; Shan, X.Q.; Zhang, S. Field study on the uptake and translocation of perfluoroalkyl acids (PFAAs) by wheat (Triticum aestivum L.) grown in biosolids-amended soils. Environ. Pollut. 2014, 184, 547–554. [Google Scholar] [CrossRef] [PubMed]
- Dalahmeh, S.; Tirgani, S.; Komakech, A.J.; Niwagaba, C.B.; Ahrens, L. Per- and polyfluoroalkyl substances (PFASs) in water, soil and plants in wetlands and agricultural areas in Kampala, Uganda. Sci. Total. Environ. 2018, 631–632, 660–667. [Google Scholar] [CrossRef]
- Gobelius, L.; Lewis, J.; Ahrens, L. Plant Uptake of Per- and Polyfluoroalkyl Substances at a Contaminated Fire Training Facility to Evaluate the Phytoremediation Potential of Various Plant Species. Environ. Sci. Technol. 2017, 51, 12602–12610. [Google Scholar] [CrossRef]
- Karnjanapiboonwong, A.; Deb, S.K.; Subbiah, S.; Wang, D.; Anderson, T.A. Perfluoroalkylsulfonic and carboxylic acids in earthworms (Eisenia fetida): Accumulation and effects results from spiked soils at PFAS concentrations bracketing environmental relevance. Chemosphere 2018, 199, 168–173. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Zhang, W.; Liang, Y. Distribution of eight perfluoroalkyl acids in plant-soil-water systems and their effect on the soil microbial community. Sci. Total. Environ. 2019, 697, 134146. [Google Scholar] [CrossRef] [PubMed]
- De Silva, A.O.; Armitage, J.M.; Bruton, T.A.; Dassuncao, C.; Heiger-Bernays, W.; Hu, X.C.; Karrman, A.; Kelly, B.; Ng, C.; Robuck, A.; et al. PFAS Exposure Pathways for Humans and Wildlife: A Synthesis of Current Knowledge and Key Gaps in Understanding. Environ. Toxicol. Chem. 2021, 40, 631–657. [Google Scholar] [CrossRef]
- Post, G.B.; Cohn, P.D.; Cooper, K.R. Perfluorooctanoic acid (PFOA), an emerging drinking water contaminant: A critical review of recent literature. Environ. Res. 2012, 116, 93–117. [Google Scholar] [CrossRef]
- Augustsson, A.; Lennqvist, T.; Osbeck, C.M.G.; Tibblin, P.; Glynn, A.; Nguyen, M.A.; Westberg, E.; Vestergren, R. Consumption of freshwater fish: A variable but significant risk factor for PFOS exposure. Environ. Res. 2021, 192, 110284. [Google Scholar] [CrossRef]
- Kaiser, M.A.; Dawson, B.J.; Barton, C.A.; Botelho, M.A. Understanding potential exposure sources of perfluorinated carboxylic acids in the workplace. Ann. Occup. Hyg. 2010, 54, 915–922. [Google Scholar] [CrossRef]
- Nilsson, H.; Karrman, A.; Rotander, A.; van Bavel, B.; Lindstrom, G.; Westberg, H. Professional ski waxers' exposure to PFAS and aerosol concentrations in gas phase and different particle size fractions. Environ. Sci. Process Impacts 2013, 15, 814–822. [Google Scholar] [CrossRef] [PubMed]
- Franko, J.; Meade, B.J.; Frasch, H.F.; Barbero, A.M.; Anderson, S.E. Dermal penetration potential of perfluorooctanoic acid (PFOA) in human and mouse skin. J. Toxicol. Environ. Health A 2012, 75, 50–62. [Google Scholar] [CrossRef] [PubMed]
- EFSA Panel on Contaminants in the Food Chain (CONTAM); Knutsen, H.K.; Alexander, J.; Barregard, L.; Bignami, M.; Bruschweiler, B.; Ceccatelli, S.; Cottrill, B.; Dinovi, M.; Edler, L.; et al. Risk to human health related to the presence of perfluorooctane sulfonic acid and perfluorooctanoic acid in food. EFSA J. 2018, 16, e05194. [Google Scholar] [CrossRef]
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans; International Agency for Research on Cancer. Some Chemicals Used as Solvents and in Polymer Manufacture; IARC: Lyon, France. Available online: https://publications.iarc.fr/Book-And-Report-Series/Iarc-Monographs-On-The-Identification-Of-Carcinogenic-Hazards-To-Humans/Some-Chemicals-Used-As-Solvents-And-In-Polymer-Manufacture-2016 (accessed on 28 November 2021).
- Fenton, S.E.; Ducatman, A.; Boobis, A.; DeWitt, J.C.; Lau, C.; Ng, C.; Smith, J.S.; Roberts, S.M. Per- and Polyfluoroalkyl Substance Toxicity and Human Health Review: Current State of Knowledge and Strategies for Informing Future Research. Environ. Toxicol. Chem. 2021, 40, 606–630. [Google Scholar] [CrossRef] [PubMed]
- Conti, A.; Strazzeri, C.; Rhoden, K.J. Perfluorooctane sulfonic acid, a persistent organic pollutant, inhibits iodide accumulation by thyroid follicular cells in vitro. Mol. Cell. Endocrinol. 2020, 515, 110922. [Google Scholar] [CrossRef]
- Song, M.; Kim, Y.J.; Park, Y.K.; Ryu, J.C. Changes in thyroid peroxidase activity in response to various chemicals. J. Environ. Monit. 2012, 14, 2121–2126. [Google Scholar] [CrossRef]
- Coperchini, F.; Pignatti, P.; Lacerenza, S.; Negri, S.; Sideri, R.; Testoni, C.; de Martinis, L.; Cottica, D.; Magri, F.; Imbriani, M.; et al. Exposure to perfluorinated compounds: In vitro study on thyroid cells. Environ. Sci. Pollut. Res. Int. 2015, 22, 2287–2294. [Google Scholar] [CrossRef] [PubMed]
- Croce, L.; Coperchini, F.; Tonacchera, M.; Imbriani, M.; Rotondi, M.; Chiovato, L. Effect of long- and short-chain perfluorinated compounds on cultured thyroid cells viability and response to TSH. J. Endocrinol. Investig. 2019, 42, 1329–1335. [Google Scholar] [CrossRef]
- Hu, X.Z.; Hu, D.C. Effects of perfluorooctanoate and perfluorooctane sulfonate exposure on hepatoma Hep G2 cells. Arch. Toxicol. 2009, 83, 851–861. [Google Scholar] [CrossRef]
- Wielsoe, M.; Long, M.; Ghisari, M.; Bonefeld-Jorgensen, E.C. Perfluoroalkylated substances (PFAS) affect oxidative stress biomarkers in vitro. Chemosphere 2015, 129, 239–245. [Google Scholar] [CrossRef] [PubMed]
- Zeng, H.C.; Zhu, B.Q.; Wang, Y.Q.; He, Q.Z. ROS-Triggered Autophagy Is Involved in PFOS-Induced Apoptosis of Human Embryo Liver L-02 Cells. Biomed. Res. Int. 2021, 2021, 6625952. [Google Scholar] [CrossRef] [PubMed]
- Louisse, J.; Rijkers, D.; Stoopen, G.; Janssen, A.; Staats, M.; Hoogenboom, R.; Kersten, S.; Peijnenburg, A. Perfluorooctanoic acid (PFOA), perfluorooctane sulfonic acid (PFOS), and perfluorononanoic acid (PFNA) increase triglyceride levels and decrease cholesterogenic gene expression in human HepaRG liver cells. Arch. Toxicol. 2020, 94, 3137–3155. [Google Scholar] [CrossRef]
- Behr, A.C.; Kwiatkowski, A.; Stahlman, M.; Schmidt, F.F.; Luckert, C.; Braeuning, A.; Buhrke, T. Correction to: Impairment of bile acid metabolism by perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) in human HepaRG hepatoma cells. Arch. Toxicol. 2021, 95, 2891. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Jin, Y.; Liu, W.; Wang, F.; Hao, S. Possible mechanism of perfluorooctane sulfonate and perfluorooctanoate on the release of calcium ion from calcium stores in primary cultures of rat hippocampal neurons. Toxicol. Vitro 2011, 25, 1294–1301. [Google Scholar] [CrossRef]
- Tukker, A.M.; Bouwman, L.M.S.; van Kleef, R.; Hendriks, H.S.; Legler, J.; Westerink, R.H.S. Perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) acutely affect human alpha1beta2gamma2L GABAA receptor and spontaneous neuronal network function in vitro. Sci. Rep. 2020, 10, 5311. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Liu, Q.; Liu, C.; Li, C.; Li, Y.; Li, S.; Liu, X.; Shao, J. Evaluation of PFOS-mediated neurotoxicity in rat primary neurons and astrocytes cultured separately or in co-culture. Toxicol. Vitro 2017, 38, 77–90. [Google Scholar] [CrossRef]
- Wan Ibrahim, W.N.; Tofighi, R.; Onishchenko, N.; Rebellato, P.; Bose, R.; Uhlen, P.; Ceccatelli, S. Perfluorooctane sulfonate induces neuronal and oligodendrocytic differentiation in neural stem cells and alters the expression of PPARgamma in vitro and in vivo. Toxicol. Appl. Pharmacol. 2013, 269, 51–60. [Google Scholar] [CrossRef]
- Pierozan, P.; Karlsson, O. Differential susceptibility of rat primary neurons and neural stem cells to PFOS and PFOA toxicity. Toxicol. Lett. 2021, 349, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Eggert, A.; Cisneros-Montalvo, S.; Anandan, S.; Musilli, S.; Stukenborg, J.B.; Adamsson, A.; Nurmio, M.; Toppari, J. The effects of perfluorooctanoic acid (PFOA) on fetal and adult rat testis. Reprod. Toxicol. 2019, 90, 68–76. [Google Scholar] [CrossRef]
- Behr, A.C.; Lichtenstein, D.; Braeuning, A.; Lampen, A.; Buhrke, T. Perfluoroalkylated substances (PFAS) affect neither estrogen and androgen receptor activity nor steroidogenesis in human cells in vitro. Toxicol. Lett. 2018, 291, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Elcombe, C.R.; Elcombe, B.M.; Foster, J.R.; Chang, S.C.; Ehresman, D.J.; Noker, P.E.; Butenhoff, J.L. Evaluation of hepatic and thyroid responses in male Sprague Dawley rats for up to eighty-four days following seven days of dietary exposure to potassium perfluorooctanesulfonate. Toxicology 2012, 293, 30–40. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Jiang, L.; Hong, Y.; Cai, Z. Multilayered glycoproteomic analysis reveals the hepatotoxic mechanism in perfluorooctane sulfonate (PFOS) exposure mice. Environ. Pollut. 2021, 268, 115774. [Google Scholar] [CrossRef]
- Li, X.; Li, T.; Wang, Z.; Wei, J.; Liu, J.; Zhang, Y.; Zhao, Z. Distribution of perfluorooctane sulfonate in mice and its effect on liver lipidomic. Talanta 2021, 226, 122150. [Google Scholar] [CrossRef]
- Owumi, S.; Bello, T.; Oyelere, A.K. N-acetyl cysteine abates hepatorenal toxicities induced by perfluorooctanoic acid exposure in male rats. Environ. Toxicol. Pharmacol. 2021, 86, 103667. [Google Scholar] [CrossRef]
- Rashid, F.; Ramakrishnan, A.; Fields, C.; Irudayaraj, J. Acute PFOA exposure promotes epigenomic alterations in mouse kidney tissues. Toxicol. Rep. 2020, 7, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.; Butenhoff, J.L.; Parker, G.A.; Coder, P.S.; Zitzow, J.D.; Krisko, R.M.; Bjork, J.A.; Wallace, K.B.; Seed, J.G. Reproductive and developmental toxicity of potassium perfluorohexanesulfonate in CD-1 mice. Reprod. Toxicol. 2018, 78, 150–168. [Google Scholar] [CrossRef]
- Ramhoj, L.; Hass, U.; Gilbert, M.E.; Wood, C.; Svingen, T.; Usai, D.; Vinggaard, A.M.; Mandrup, K.; Axelstad, M. Evaluating thyroid hormone disruption: Investigations of long-term neurodevelopmental effects in rats after perinatal exposure to perfluorohexane sulfonate (PFHxS). Sci. Rep. 2020, 10, 2672. [Google Scholar] [CrossRef]
- Sim, K.H.; Lee, Y.J. Perfluorohexane sulfonate induces memory impairment and downregulation of neuroproteins via NMDA receptor-mediated PKC-ERK/AMPK signaling pathway. Chemosphere 2022, 288, 132503. [Google Scholar] [CrossRef] [PubMed]
- Eriksen, K.T.; Raaschou-Nielsen, O.; McLaughlin, J.K.; Lipworth, L.; Tjonneland, A.; Overvad, K.; Sorensen, M. Association between plasma PFOA and PFOS levels and total cholesterol in a middle-aged Danish population. PLoS One 2013, 8, e56969. [Google Scholar] [CrossRef] [PubMed]
- Geiger, S.D.; Xiao, J.; Ducatman, A.; Frisbee, S.; Innes, K.; Shankar, A. The association between PFOA, PFOS and serum lipid levels in adolescents. Chemosphere 2014, 98, 78–83. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, T.; Galloway, T.S.; Melzer, D.; Holcroft, P.; Cipelli, R.; Pilling, L.C.; Mondal, D.; Luster, M.; Harries, L.W. Associations between PFOA, PFOS and changes in the expression of genes involved in cholesterol metabolism in humans. Environ. Int. 2013, 57–58, 2–10. [Google Scholar] [CrossRef]
- Jain, R.B.; Ducatman, A. Selective Associations of Recent Low Concentrations of Perfluoroalkyl Substances With Liver Function Biomarkers: NHANES 2011 to 2014 Data on US Adults Aged >/=20 Years. J. Occup. Environ. Med. 2019, 61, 293–302. [Google Scholar] [CrossRef]
- Joensen, U.N.; Veyrand, B.; Antignac, J.P.; Blomberg Jensen, M.; Petersen, J.H.; Marchand, P.; Skakkebaek, N.E.; Andersson, A.M.; Le Bizec, B.; Jorgensen, N. PFOS (perfluorooctanesulfonate) in serum is negatively associated with testosterone levels, but not with semen quality, in healthy men. Hum. Reprod. 2013, 28, 599–608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lewis, R.C.; Johns, L.E.; Meeker, J.D. Serum Biomarkers of Exposure to Perfluoroalkyl Substances in Relation to Serum Testosterone and Measures of Thyroid Function among Adults and Adolescents from NHANES 2011-2012. Int. J. Environ. Res. Public Health 2015, 12, 6098–6114. [Google Scholar] [CrossRef]
- Lopez-Espinosa, M.J.; Fletcher, T.; Armstrong, B.; Genser, B.; Dhatariya, K.; Mondal, D.; Ducatman, A.; Leonardi, G. Association of Perfluorooctanoic Acid (PFOA) and Perfluorooctane Sulfonate (PFOS) with age of puberty among children living near a chemical plant. Environ. Sci. Technol. 2011, 45, 8160–8166. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Espinosa, M.J.; Mondal, D.; Armstrong, B.G.; Eskenazi, B.; Fletcher, T. Perfluoroalkyl Substances, Sex Hormones, and Insulin-like Growth Factor-1 at 6–9 Years of Age: A Cross-Sectional Analysis within the C8 Health Project. Environ. Health Perspect. 2016, 124, 1269–1275. [Google Scholar] [CrossRef]
- Wang, H.; Du, H.; Yang, J.; Jiang, H.; O, K.; Xu, L.; Liu, S.; Yi, J.; Qian, X.; Chen, Y.; et al. PFOS, PFOA, estrogen homeostasis, and birth size in Chinese infants. Chemosphere 2019, 221, 349–355. [Google Scholar] [CrossRef] [PubMed]
- Gallo, V.; Leonardi, G.; Genser, B.; Lopez-Espinosa, M.J.; Frisbee, S.J.; Karlsson, L.; Ducatman, A.M.; Fletcher, T. Serum perfluorooctanoate (PFOA) and perfluorooctane sulfonate (PFOS) concentrations and liver function biomarkers in a population with elevated PFOA exposure. Environ. Health Perspect. 2012, 120, 655–660. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Xu, Y.; Fletcher, T.; Scott, K.; Nielsen, C.; Pineda, D.; Lindh, C.H.; Olsson, D.S.; Andersson, E.M.; Jakobsson, K. Associations between perfluoroalkyl substances and thyroid hormones after high exposure through drinking water. Environ. Res. 2021, 194, 110647. [Google Scholar] [CrossRef]
- Abraham, K.; Mielke, H.; Fromme, H.; Volkel, W.; Menzel, J.; Peiser, M.; Zepp, F.; Willich, S.N.; Weikert, C. Internal exposure to perfluoroalkyl substances (PFASs) and biological markers in 101 healthy 1-year-old children: Associations between levels of perfluorooctanoic acid (PFOA) and vaccine response. Arch. Toxicol. 2020, 94, 2131–2147. [Google Scholar] [CrossRef] [Green Version]
- Budtz-Jorgensen, E.; Grandjean, P. Application of benchmark analysis for mixed contaminant exposures: Mutual adjustment of perfluoroalkylate substances associated with immunotoxicity. PLoS One 2018, 13, e0205388. [Google Scholar] [CrossRef] [Green Version]
- Grandjean, P.; Heilmann, C.; Weihe, P.; Nielsen, F.; Mogensen, U.B.; Timmermann, A.; Budtz-Jorgensen, E. Estimated exposures to perfluorinated compounds in infancy predict attenuated vaccine antibody concentrations at age 5-years. J. Immunotoxicol. 2017, 14, 188–195. [Google Scholar] [CrossRef] [PubMed]
- Grandjean, P.; Heilmann, C.; Weihe, P.; Nielsen, F.; Mogensen, U.B.; Budtz-Jorgensen, E. Serum Vaccine Antibody Concentrations in Adolescents Exposed to Perfluorinated Compounds. Environ. Health Perspect. 2017, 125, 077018. [Google Scholar] [CrossRef]
- US-EPA; 3M. Phase-out Plan for POSF-based Products. Available online: https://archive.epa.gov/epapages/newsroom_archive/newsreleases/33aa946e6cb11f35852568e1005246b4.html (accessed on 28 November 2021).
- US-EPA. 2010/2015 PFOA Stewardship Program. Available online: https://www.epa.gov/assessing-and-managing-chemicals-under-tsca/fact-sheet-20102015-pfoa-stewardship-program (accessed on 28 November 2021).
- EuropeanCommission. European Comission, 2006. Directive 2006/122/ECOF. Off. J. Eur. Union 2006, 372, 32e34. [Google Scholar]
- UNEP. Listing of Perfluorooctane Sulfonic Acid, Its Salts and Perfluorooctane Sulfonyl Fluoride. In Stockholm Convention on Persistent Organic Pollutants; UNEP/POPS/COP.4/SC-4/17.2009/5:COP.4; UNEP: Geneva, Switzerland, 2009. [Google Scholar]
- UNEP. Global Chemical Experts Take Science to Action by Moving towards Phase Out of Toxic Chemicals. Available online: http://chm.pops.int/Implementation/PublicAwareness/PressReleases/OutcomesofPOPRC11/tabid/4692/Default.aspx (accessed on 28 November 2021).
- ECHA. Call for Evidence on Broad PFAS Restriction. 2020. Available online: https://echa.europa.eu/-/five-european-states-call-for-evidence-on-broad-pfas-restriction (accessed on 28 November 2021).
- Kwiatkowski, C.F.; Andrews, D.Q.; Birnbaum, L.S.; Bruton, T.A.; DeWitt, J.C.; Knappe, D.R.U.; Maffini, M.V.; Miller, M.F.; Pelch, K.E.; Reade, A.; et al. Scientific Basis for Managing PFAS as a Chemical Class. Environ. Sci. Technol. Lett. 2020, 7, 532–543. [Google Scholar] [CrossRef] [PubMed]
- Simon, J.A.; Abrams, S.; Bradburne, T.; Bryant, D.; Burns, M.; Cassidy, D.; Cherry, J.; Chiang, S.Y.; Cox, D.; Crimi, M.; et al. PFAS Experts Symposium: Statements on regulatory policy, chemistry and analytics, toxicology, transport/fate, and remediation for per- and polyfluoroalkyl substances (PFAS) contamination issues. Remediat. J. 2019, 29, 31–48. [Google Scholar] [CrossRef]
- Gagliano, E.; Sgroi, M.; Falciglia, P.P.; Vagliasindi, F.G.A.; Roccaro, P. Removal of poly- and perfluoroalkyl substances (PFAS) from water by adsorption: Role of PFAS chain length, effect of organic matter and challenges in adsorbent regeneration. Water Res. 2020, 171, 115381. [Google Scholar] [CrossRef]
- Deng, S.; Yu, Q.; Huang, J.; Yu, G. Removal of perfluorooctane sulfonate from wastewater by anion exchange resins: Effects of resin properties and solution chemistry. Water Res. 2010, 44, 5188–5195. [Google Scholar] [CrossRef] [PubMed]
- Appleman, T.D.; Higgins, C.P.; Quinones, O.; Vanderford, B.J.; Kolstad, C.; Zeigler-Holady, J.C.; Dickenson, E.R. Treatment of poly- and perfluoroalkyl substances in U.S. full-scale water treatment systems. Water Res. 2014, 51, 246–255. [Google Scholar] [CrossRef]
- Woodard, S.; Berry, J.; Newman, B. Ion exchange resin for PFAS removal and pilot test comparison to GAC. Remediat. J. 2017, 27, 19–27. [Google Scholar] [CrossRef]
- McCleaf, P.; Englund, S.; Ostlund, A.; Lindegren, K.; Wiberg, K.; Ahrens, L. Removal efficiency of multiple poly- and perfluoroalkyl substances (PFASs) in drinking water using granular activated carbon (GAC) and anion exchange (AE) column tests. Water Res. 2017, 120, 77–87. [Google Scholar] [CrossRef]
- Ochoa-Herrera, V.; Sierra-Alvarez, R. Removal of perfluorinated surfactants by sorption onto granular activated carbon, zeolite and sludge. Chemosphere 2008, 72, 1588–1593. [Google Scholar] [CrossRef]
- Appleman, T.D.; Dickenson, E.R.; Bellona, C.; Higgins, C.P. Nanofiltration and granular activated carbon treatment of perfluoroalkyl acids. J. Hazard. Mater. 2013, 260, 740–746. [Google Scholar] [CrossRef]
- Xiao, X.; Ulrich, B.A.; Chen, B.; Higgins, C.P. Sorption of Poly- and Perfluoroalkyl Substances (PFASs) Relevant to Aqueous Film-Forming Foam (AFFF)-Impacted Groundwater by Biochars and Activated Carbon. Environ. Sci. Technol. 2017, 51, 6342–6351. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.J.; Werner, D.; Bellona, C. Removal of per- and polyfluoroalkyl substances (PFASs) from contaminated groundwater using granular activated carbon: A pilot-scale study with breakthrough modeling. Environ. Sci. Water Res. Technol. 2019, 5, 1844–1853. [Google Scholar] [CrossRef]
- Soriano, A.; Gorri, D.; Urtiaga, A. Efficient treatment of perfluorohexanoic acid by nanofiltration followed by electrochemical degradation of the NF concentrate. Water Res. 2017, 112, 147–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, C.Y.; Fu, Q.S.; Robertson, A.P.; Criddle, C.S.; Leckie, J.O. Use of reverse osmosis membranes to remove perfluorooctane sulfonate (PFOS) from semiconductor wastewater. Environ. Sci. Technol. 2006, 40, 7343–7349. [Google Scholar] [CrossRef] [PubMed]
- Tang, C.Y.; Fu, Q.S.; Criddle, C.S.; Leckie, J.O. Effect of flux (transmembrane pressure) and membrane properties on fouling and rejection of reverse osmosis and nanofiltration membranes treating perfluorooctane sulfonate containing wastewater. Environ. Sci. Technol. 2007, 41, 2008–2014. [Google Scholar] [CrossRef]
- Mastropietro, T.F.; Bruno, R.; Pardo, E.; Armentano, D. Reverse osmosis and nanofiltration membranes for highly efficient PFASs removal: Overview, challenges and future perspectives. Dalton. Trans. 2021, 50, 5398–5410. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Li, X.; Tang, Y.; Lu, P.; Chen, W.; Xu, X.; Li, L. Mechanism insight of PFOA degradation by ZnO assisted-photocatalytic ozonation: Efficiency and intermediates. Chemosphere 2017, 180, 247–252. [Google Scholar] [CrossRef]
- Park, S.; Lee, L.S.; Medina, V.F.; Zull, A.; Waisner, S. Heat-activated persulfate oxidation of PFOA, 6:2 fluorotelomer sulfonate, and PFOS under conditions suitable for in-situ groundwater remediation. Chemosphere 2016, 145, 376–383. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, S.M.; Ahmad, M.; Teel, A.L.; Watts, R.J. Degradation of Perfluorooctanoic Acid by Reactive Species Generated through Catalyzed H2O2 Propagation Reactions. Environ. Sci. Technol. Lett. 2013, 1, 117–121. [Google Scholar] [CrossRef]
- Singh, R.K.; Fernando, S.; Baygi, S.F.; Multari, N.; Thagard, S.M.; Holsen, T.M. Breakdown Products from Perfluorinated Alkyl Substances (PFAS) Degradation in a Plasma-Based Water Treatment Process. Environ. Sci. Technol. 2019, 53, 2731–2738. [Google Scholar] [CrossRef]
- Lin, J.C.; Hu, C.Y.; Lo, S.L. Effect of surfactants on the degradation of perfluorooctanoic acid (PFOA) by ultrasonic (US) treatment. Ultrason. Sonochem. 2016, 28, 130–135. [Google Scholar] [CrossRef] [PubMed]
- Taseidifar, M. Environmental applications of a biodegradable cysteine-based surfactant. Ecotoxicol. Environ. Saf. 2020, 206, 111389. [Google Scholar] [CrossRef] [PubMed]
- Mahinroosta, R.; Senevirathna, L. A review of the emerging treatment technologies for PFAS contaminated soils. J. Environ. Manag. 2020, 255, 109896. [Google Scholar] [CrossRef] [PubMed]
- Sorengard, M.; Kleja, D.B.; Ahrens, L. Stabilization and solidification remediation of soil contaminated with poly- and perfluoroalkyl substances (PFASs). J. Hazard. Mater. 2019, 367, 639–646. [Google Scholar] [CrossRef] [PubMed]
- Sorengard, M.; Kleja, D.B.; Ahrens, L. Stabilization of per- and polyfluoroalkyl substances (PFASs) with colloidal activated carbon (PlumeStop(R)) as a function of soil clay and organic matter content. J. Environ. Manag. 2019, 249, 109345. [Google Scholar] [CrossRef] [PubMed]
- Trellu, C.; Pechaud, Y.; Oturan, N.; Mousset, E.; van Hullebusch, E.D.; Huguenot, D.; Oturan, M.A. Remediation of soils contaminated by hydrophobic organic compounds: How to recover extracting agents from soil washing solutions? J. Hazard. Mater. 2021, 404, 124137. [Google Scholar] [CrossRef]
- Senevirathna, S.; Mahinroosta, R.; Li, M.; KrishnaPillai, K. In situ soil flushing to remediate confined soil contaminated with PFOS- an innovative solution for emerging environmental issue. Chemosphere 2021, 262, 127606. [Google Scholar] [CrossRef]
- Uriakhil, M.A.; Sidnell, T.; De Castro Fernandez, A.; Lee, J.; Ross, I.; Bussemaker, M. Per- and poly-fluoroalkyl substance remediation from soil and sorbents: A review of adsorption behaviour and ultrasonic treatment. Chemosphere 2021, 282, 131025. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.O.; Kim, W.S.; Kim, K.W. Evaluation of electrokinetic remediation of arsenic-contaminated soils. Environ. Geochem. Health 2005, 27, 443–453. [Google Scholar] [CrossRef] [PubMed]
- Mejia-Avendano, S.; Munoz, G.; Sauve, S.; Liu, J. Assessment of the Influence of Soil Characteristics and Hydrocarbon Fuel Cocontamination on the Solvent Extraction of Perfluoroalkyl and Polyfluoroalkyl Substances. Anal. Chem. 2017, 89, 2539–2546. [Google Scholar] [CrossRef] [PubMed]
- Gusiatin, Z.M.; Kulikowska, D.; Klik, B. New-Generation Washing Agents in Remediation of Metal-Polluted Soils and Methods for Washing Effluent Treatment: A Review. Int. J. Environ. Res. Public Health 2020, 17, 6220. [Google Scholar] [CrossRef] [PubMed]
- Crownover, E.; Oberle, D.; Kluger, M.; Heron, G. Perfluoroalkyl and polyfluoroalkyl substances thermal desorption evaluation. Remediat. J. 2019, 29, 77–81. [Google Scholar] [CrossRef]
- Sorengard, M.; Lindh, A.S.; Ahrens, L. Thermal desorption as a high removal remediation technique for soils contaminated with per- and polyfluoroalkyl substances (PFASs). PLoS One 2020, 15, e0234476. [Google Scholar] [CrossRef]
- Lee, Y.-C.; Lo, S.-L.; Kuo, J.; Lin, Y.-L. Persulfate oxidation of perfluorooctanoic acid under the temperatures of 20–40 °C. Chem. Eng. J. 2012, 198–199, 27–32. [Google Scholar] [CrossRef]
- Tran, T.; Abrell, L.; Brusseau, M.L.; Chorover, J. Iron-activated persulfate oxidation degrades aqueous Perfluorooctanoic acid (PFOA) at ambient temperature. Chemosphere 2021, 281, 130824. [Google Scholar] [CrossRef]
- Bruton, T.A.; Sedlak, D.L. Treatment of perfluoroalkyl acids by heat-activated persulfate under conditions representative of in situ chemical oxidation. Chemosphere 2018, 206, 457–464. [Google Scholar] [CrossRef] [PubMed]
- Bruton, T.A.; Sedlak, D.L. Treatment of Aqueous Film-Forming Foam by Heat-Activated Persulfate Under Conditions Representative of In Situ Chemical Oxidation. Environ. Sci. Technol. 2017, 51, 13878–13885. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.; Cheng, J.; Sun, J.; Hu, Y.; Liang, X. Defluorination of aqueous perfluorooctanesulfonate by activated persulfate oxidation. PLoS One 2013, 8, e74877. [Google Scholar] [CrossRef]
- Su, Y.; Rao, U.; Khor, C.M.; Jensen, M.G.; Teesch, L.M.; Wong, B.M.; Cwiertny, D.M.; Jassby, D. Potential-Driven Electron Transfer Lowers the Dissociation Energy of the C-F Bond and Facilitates Reductive Defluorination of Perfluorooctane Sulfonate (PFOS). ACS Appl. Mater. Interfaces 2019, 11, 33913–33922. [Google Scholar] [CrossRef]
- Tenorio, R.; Liu, J.; Xiao, X.; Maizel, A.; Higgins, C.P.; Schaefer, C.E.; Strathmann, T.J. Destruction of Per- and Polyfluoroalkyl Substances (PFASs) in Aqueous Film-Forming Foam (AFFF) with UV-Sulfite Photoreductive Treatment. Environ. Sci. Technol. 2020, 54, 6957–6967. [Google Scholar] [CrossRef] [PubMed]
- Montinaro, S.; Concas, A.; Pisu, M.; Cao, G. Remediation of heavy metals contaminated soils by ball milling. Chemosphere 2007, 67, 631–639. [Google Scholar] [CrossRef]
- Turner, L.P.; Kueper, B.H.; Jaansalu, K.M.; Patch, D.J.; Battye, N.; El-Sharnouby, O.; Mumford, K.G.; Weber, K.P. Mechanochemical remediation of perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) amended sand and aqueous film-forming foam (AFFF) impacted soil by planetary ball milling. Sci. Total. Environ. 2021, 765, 142722. [Google Scholar] [CrossRef]
- Kwon, B.G.; Lim, H.J.; Na, S.H.; Choi, B.I.; Shin, D.S.; Chung, S.Y. Biodegradation of perfluorooctanesulfonate (PFOS) as an emerging contaminant. Chemosphere 2014, 109, 221–225. [Google Scholar] [CrossRef] [PubMed]
- Yi, L.B.; Chai, L.Y.; Xie, Y.; Peng, Q.J.; Peng, Q.Z. Isolation, identification, and degradation performance of a PFOA-degrading strain. Genet. Mol. Res. 2016, 15. [Google Scholar] [CrossRef]
- Chetverikov, S.P.; Sharipov, D.A.; Korshunova, T.Y.; Loginov, O.N. Degradation of perfluorooctanyl sulfonate by strain Pseudomonas plecoglossicida 2.4-D. Appl. Biochem. Microbiol. 2017, 53, 533–538. [Google Scholar] [CrossRef]
- Presentato, A.; Lampis, S.; Vantini, A.; Manea, F.; Dapra, F.; Zuccoli, S.; Vallini, G. On the Ability of Perfluorohexane Sulfonate (PFHxS) Bioaccumulation by Two Pseudomonas sp. Strains Isolated from PFAS-Contaminated Environmental Matrices. Microorg. 2020, 8, 92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huff, D.K.; Morris, L.A.; Sutter, L.; Costanza, J.; Pennell, K.D. Accumulation of six PFAS compounds by woody and herbaceous plants: Potential for phytoextraction. Int. J. Phytoremediation 2020, 22, 1538–1550. [Google Scholar] [CrossRef]
Non-Polymeric PFAS | |||
---|---|---|---|
Perfluorinated PFAS | Polyfluorinated PFAS | ||
Subgroup | Examples | Subgroup | Examples |
Perfluoroalkyl acids (PFAAs) Perfluoroalkane sulfonic acids & sulfonates (PFSAs) Perfluoroalkane sulfnic acids (PFSIAs) Perfluorocarboxylic acids & carboxylates (PFCAs) Perfluoroalkyl phosphonic acids (PFPAs) Perfluoroalkyl phosphinic acids (PFPIAs) | PFBS, PFHxS, PFOS PFOSI PFBA, PFHxA, PFOA C8-PFPA C8/C8-PFPiA | Fluorotelomer compounds (FT) | 6:2 FTO, 8:2 FTI |
Perfluoroalkane sulfonamido compounds (Me/Et/Bu-FASAs) Miscellaneous | MeFOSA, FOSE 4,8-Dioxa-3H-perfluorononanoate | ||
Perfluoroalkyl ether acids (PFEAs) | GenX, Adona, F-53B | ||
Perfluoroalkane sulfonamides (FASA) | FOSA | ||
Perfluoroalkane sulfonyl fluorides (PASFs) | PBSF, POSF | ||
Perfluoroalkyl iodides (PFAIs) | PFHxI | ||
Perfluoroalkanoyl fluorides (PAFs) | POF | ||
Perfluoroalkyl aldehydes (PFALs) | PFNAL | ||
Polymeric PFAS | |||
Subgroup | Examples | ||
Fluoropolymers | PVDF, FEP, PFA, ETFE, PTFE (Teflon) | ||
Side-chain Fluorinated Polymers | Fluorinated urethane/acrylate/methacrylate/oxetane plolymers | ||
Perfluoropolyethers (PFPEs) | PFPE-BP, Fluorolink-PFPE |
SECTOR OF USE | TYPE OF USE |
---|---|
Non-Polymeric PFAS | |
Fire prevention | Fire-fighting foams such as foams based on aqueous films (Acqueous Film-Forming Foams, AFFs) |
Biocides | Active products in plants grow regulators (PGRs) Active or inert (emulsifiers, solvents, carriers, aerosol propellants) ingredients in pesticides |
Electronic | Flame retardants |
Aviation and Aerospace | Additives for hydraulic fluids |
Metal plating | Humectants and anti-fog agents |
Household Products | Surfactants in floor cleaning; treatment for textiles, leather, carpets; car waxes |
Building and Construction | Additives in coatings and paints |
Medical Products | Stain-resistant and water-repellent articles, X-ray film |
Personal care products | Cosmetics, makeup, nail polish, shampoo |
Metal plating | Wetting agent, anti-mist agents |
Oil and mining production | Surfactants used in oil-well production and mining flotation |
PFAS synthesis | Use as monomers for the synthesis of fluoropolymers with fluorinated side chain |
Automotive | Treatment for external surfaces and internal leather coatings, textiles or carpets |
Textiles and leather | Treatment aimed to create a coating with oil-water-stain-repellent properties |
Semiconductors | Use in the production of semiconductor chips |
Polymeric PFAS | |
Fire prevention | Raw materials for firefighting equipment, protective clothes and fuel repellents |
Electronic | Insulators and materials for welding |
Aviation and Aerospace | Insulators, sleeves |
Household Products | Non-stick coatings |
Building and Construction | Coating of architectural materials, additives in paints, dyes, stains and sealants |
Medical Products | Use in surgical patches, biocompatible human implants and medical prosthesis |
Personal care products | Use in dental floss and lotions |
Oil and mining production | Use in lining of gas pipes |
Automotive | Mechanical components, seals and lubricants |
Textiles, leather and clothing | Use in the manufacture of clothing and housewares as well as in coatings having oil-water-repellent properties |
Semiconductors | Use as fluids in mechanical vacuum pumps |
Energy | Film for solar panels |
Paper and packaging | Use in water-oil-repellent materials, paperboard, and bags for food packaging |
Cables and wiring | Coatings resistant to weathering, flame and soil |
Food processing | Production of materials used for cooking (non-stick pans) and food storage (containers) |
PFAS Chemical Name | PFAS Acronym | PFAS Chemical Name | PFAS Acronym |
---|---|---|---|
Perfluorooctanoic acid | PFOA | N-ethyl perfluorooctane sulfonamide | Et-FOSA |
Perfluorooctane sulfonic acid | PFOS | N-methyl perfluorooctane sulfonamide | Me-FOSA |
Perfluorooctanesulfonamide | PFOSA/FOSA | N-ethyl-perfluorooctane sulfonamido acetic acid | N-Et-FOSAA |
Perfluorooctane sulfinic acid | PFOSI | N-methyl-perfluorooctane sulfonamido acetic acid | N-Me-FOSAA |
Perfluorononanoic acid | PFNA | 2-(N-Methyl-perfluorooctane sulfonamido) acetic acid | Me-FOSAA/Me-PFOSA-AcOH) |
Perfluorononanal | PFNAL | 2-(N-Ethyl-perfluorooctane sulfonamido) acetic acid | Et-FOSAA/Et-PFOSA-AcOH |
Perfluorononane sulfonic acid | PFNS | perfluorooctane sulfonamido ethanol | FOSE |
Perfluoroundecanoic acid | PFUnDA | N-ethyl perfluorooctane sulfonamido ethanol | Et-FOSE |
Perfluoroundecanoate | PFUnA | perfluorohexane sulfonamide | FHxSA |
Perfluorodecanoic acid | PFDA | bis(perfluorooctyl)phosphinic acid | C8/C8-PFPiA |
Perfluorododecanoic acid | PFDoA | 6:2 Fluorotelomer olefin | 6:2 FTO |
Perfluorodecane sulfonic acid | PFDS | 6:2,8:2,10:2 fluorotelomer alcohol | 6:2,8:2,10:2 FTOH |
Perfluorobutanoic acid | PFBA | 6:2,8:2 fluorotelomer sulfonic acid | 6:2,8:2 FTSA |
Perfluorobutane sulfonic acid | PFBS | 6:2 fluorotelomer thioether amido sulfonate | 6:2 FtTAoS |
Perfluorophosphonic acid | PFPA | 8:2 fluorotelomer iodide | 8:2 FTI |
Perfluoropentanoic acid | PFPeA | 8:2 fluorotelomer unsaturated carboxylic acid | 8:2 FTUCA |
Perfluoropolyether-benzophenone | PFPE-BP | 9-chlorohexadecafluoro-3-oxanone-1-sulfonic acid | 6:2 Cl-PFESA (F-53B) |
Perfluorohexanoic acid | PFHxA | 1-chloroeicosafluoro-3-oxaundecane-1-sulfonic acid | 8:2 Cl-PFESA |
Perfluorohexyl iodide | PFHxI | Polyvinylidene fluoride | PVDF |
Perfluorohexane sulfonic acid | PFHxS | Fluorinated ethylene propylene | FEP |
Perfluoroheptanoic acid | PFHpA | Perfluoroalkoxy polymer | PFA |
Perfluoroheptane sulfonic acid | PFHpS | Ethylene tetrafluoroethylene | ETFE |
Perfluorotridecanoic acid | PFTrDA | Polytetrafluoroethylene | PTFE |
Perfluorooctanoyl fluoride | POF | Hexafluoropropylene oxide dimer acid | HFPO-DA/GenX |
Perfluorobutane sulfonyl fluoride | PBSF | 3H-perfluoro-3-[(3-methoxy-propoxy)] propanoic acid | ADONA |
Perfluorooctane sulfonyl fluoride | POSF | Ammonium pentadecafluorooctanoate | APFO |
Ammonium perfluoro(2-methyl-3-oxahexanoate) | PMOH |
Cell Type | Substance | Treatment Concentration | Incubation Time | Effects | Ref. |
---|---|---|---|---|---|
thyroid follicular cells | PFOS PFOA | PFOS or PFOA (1–100 mM) | Cytotoxicity: 1 h |
| (Conti, Strazzeri, and Rhoden 2020) [213] |
FTC-238/hrTPO/RSK008 cells | PFOS PFOA | 10−9, 10−8, 10−7, 10−6, 10−5, 10−4 M | / |
| (Song et al., 2012) [214] |
rat thyroid line-5 (FRTL-5) | PFOS PFOA | 1, 10, 102, 103, 104, and 105 nM | 72 h |
| (Coperchini et al., 2015) [215] |
rat thyroid line-5 (FRTL-5) | FOA, PFOS, perfluorobutanesulfonic acid (PFBS), perfluorobutanoic acid (PFBA), pentafluoropropionic anhydride (PFPA), perfluoropentanoic acid (PFPeA) | 0.0001; 0.001; 0.01; 0.1; 1; 100 μM | 24 h |
| (Croce et al. 2019) [216] |
Human hepatoma cell line (HepG2) | perfluorohexane sulfonate (PFHxS), perfluorooctane sulfonic acid (PFOS), perfluoroctanoic acid (PFOA), perfluorononanoate (PFNA), perfluorodecanoate (PFDA), perfluoroundecanoate (PFUnA), and perfluorododecanoate (PFDoA). | 2 × 10−7, 1 × 10−6, 2 × 10−6, 1 × 10−5, 2 × 10−5 M | 24 h |
| (Wielsøe et al., 2015) [218] |
Human Embryo Liver L-02 Cells | PFOS | 0, 50, 100, 150, 200, or 250 μmol/L | 24 or 48 h |
| (Zeng et al., 2021) [219] |
Human HepaRG liver cells | PFOA, PFOS, and perfluorononanoic acid (PFNA) | 6.25, 12.5, 25, 50, 100, 200, 400 μM | 6, 24, or 72 h |
| (Louisse et al., 2020) [220] |
HepaRG cell line | PFOS PFOA | 100, 250, 500, 750 μM PFOA 50, 100, 250, 500 μM PFOS | / |
| Behr et al., 2021) [221] |
Neurons | PFOS PFOA | 30–300 µM | 30 min |
| (Liu et al., 2011) [222] |
Primary rat cortical cultures and hiPSC-derived neuronal co-cultures | PFOS PFOA | 0.01, 0.1, 1, 10, 100 µM | / |
| (Tukker et al., 2020) [223] |
Rat primary hippocampal neurons and astrocytes | PFOS | 25, 50, 75, 100, 125 μM for neurons 15, 25, 50, 75, 100 μM for astrocytes | 24 h |
| (Li et al., 2017) [224] |
primary rat embryonic neural stem cells (NSCs) | PFOS | 12.5–100 nM | 48 h |
| (Wan Ibrahim et al., 2013) [225] |
rat primary neurons and neural stem cells (NSC) | PFOS PFOA | 1–250 μM | 24 h |
| (Pierozan and Karlsson 2021) [226] |
fetal rat testes or seminiferous tubule segments (stage VII-VIII) of adult rats | PFOA | 0–100 μg/mL | 24 h |
| (Eggert et al., 2019) [227] |
human cell lines such as MCF-7, H295R, LNCaP and MDA-kb2 | PFOA, PFOS, and of six substitutes including perfluorohexanesulfonic acid (PFHxS), perfluorobutanesulfonic acid (PFBS), perfluorohexanoic acid (PFHxA), perfluorobutanoic acid (PFBA), ammonium perfluoro(2-methyl-3-oxahexanoate) (PMOH), and 3H-perfluoro-3-[(3-methoxypropoxy) propanoic acid] (PMPP) | various concentrations | 24 h when cytotoxicity was assayed in HEK293T, LNCaP or MDA-kb2 cells, for 6 d in MCF-7 cells and for 48 h in H295R cells |
| (Behr et al.,2018) [228] |
Species | Substance | Dose and Route of Exposure | Exposure Time | Effects | Ref. |
---|---|---|---|---|---|
Rats | PFOS | 20 or 100 ppm, dietary exposure | 7 days |
| (Elcombe et al., 2012) [229] |
Mice | PFOS | 10 mg PFOS/kg b.w./day), oral gavage | 14 days |
| (D. Li et al., 2021) [230] |
Mice | PFOS | 100 μg/kg b.w./day and 1000 μg/kg b.w./day, oral gavage | 2 months |
| (X. Li et al., 2021) [231] |
Rats | PFOA | 5 mg/kg b.w./day, oral gavage | 28 days |
| (Owumi, Bello, and Oyelere 2021) [232] |
Mice | PFOA | 1, 5, 10, or 20 mg/kg/day, oral gavage | 10 days |
| (Rashid et al., 2020) [233] |
Mice | PFHxS | Up to 3 mg/kg b.w./day, oral gavage | Administered before mating, for at least 42 days in F0 males, and for F0 females, through gestation and lactation. F1 pups-directly for 14 days after weaning |
| (Chang et al., 2018) [234] |
Rats | PFHxS | 0.05, 5 or 25 mg/kg b.w./day, oral gavage | From gestation day 7 through to postnatal day 22 |
| (Ramhøj et al., 2020) [235] |
Mice | 6.1, and 9.1 mg/kg b.w., oral gavage | Neonatal exposure from postnatal day 10 |
| (Sim and Lee, 2022) [236] |
Substance | Population | Measured Parameters | Results | Ref. |
---|---|---|---|---|
PFOS PFOA | middle-aged Danish population; 753 individuals (663 men and 90 women), 50–65 years of age, nested within a Danish cohort of 57,053 participants | serum levels of total cholesterol |
| (Eriksen et al., 2013) [237] |
PFOS PFOA | 815 participants ≤18 years of age from the National Health and Nutrition Examination Survey 1999–2008 | dyslipidemia: total cholesterol >170 mg/dL, low-density lipoprotein cholesterol (LDL-C) >110 mg/dL, high-density lipoprotein cholesterol (HDL-C) <40 mg/dL or triglycerides >150 mg/dL. |
| (Geiger et al., 2014) [238] |
PFOS PFOA | 290 individuals (144 men + 146 women) exposed to background levels of PFOS and elevated concentrations of PFOA through drinking water, aged between 20 and 60 years | expression of genes involved in cholesterol metabolism |
| (Fletcher et al., 2013) [239] |
PFOA PFOS PFHxS PFNA PFDA | 2883 participants, (1801 non-obese and 1082 obese), aged more than or equal to 20 years old | liver function parameters: AST, ALT, GGT, ALP, and total bilirubin (TB) |
| (Jain and Ducatman 2019) [240] |
14 PFCs | Healthy men from the general population, median age of 19 years | total testosterone (T), estradiol (E), sex hormone-binding globulin (SHBG), luteinizing hormone (LH), follicle-stimulating hormone (FSH) and inhibin-B and Semen samples analysis |
| (Joensen et al., 2013) [241] |
PFOA PFOS PFHxS PFNA | 1682 males and females 12 to 80 years of age | testosterone (T), thyroid stimulating hormone (TSH), and free and total triiodothyronine (FT3, TT3) and thyroxine (FT4, TT4) |
| (Lewis, Johns, and Meeker 2015) [242] |
PFOS PFOA | 3076 boys and 2931 girls aged 8–18 years | subjects were classified as having reached puberty based on either hormone levels (total >50 ng/dL and free >5 pg/mL testosterone in boys and estradiol >20 pg/mL in girls) or onset of menarche |
| (Lopez-Espinosa et al., 2011) [243] |
PFOS PFOA PFNA | 2292 children (6–9 years of age) | estradiol, total testosterone, and IGF-1 |
| (Lopez-Espinosa et al., 2016) [244] |
PFOS PFOA | 424 mother-infant pairs | estrone (E1), b-estradiol (E2), and estriol (E3), infants: head circumference, body weight, body length |
| (Wang et al., 2019) [245] |
PFOS PFOA | 47,092 adults | alanine transaminase (ALT), γ-glutamyltransferase (GGT), direct bilirubin |
| (Gallo et al., 2012) [246] |
PFHpA PFOA PFNA PFDA PFUnDA PFDoDA PFHxS PFOSA | 1002 individuals from Sweden (50% women) at ages 70, 75 and 80 | bilirubin and hepatic enzymes alanine aminotransferase (ALT), alkaline phosphatase (ALP), and γ-glutamyltransferase (GGT) |
| (Salihovic et al., 2018) [30] |
PFOS PFOA PFHxS | 3297 participants from Ronneby, a municipality with drinking water highly contaminated by PFAS (exposed group) | thyroid hormone levels, with adjustments for age, sex and BMI |
| (Y. Li et al., 2021) [247] |
PFOA PFOS | 101 healthy 1-year-old children | Antibodies against haemophilus infuenza type b, tetanus and diphtheria, interferon gamma, cholesterol |
| (Abraham et al., 2020) [248] |
PFOA PFOS | 1146 children | serum concentrations of specific IgG antibodies against tetanus and diphtheria at ages 5 and 7 |
| (Budtz-Jørgensenet al., 2018) [249] |
PFHxS, PFOS, PFOA, PFDA, PFNA | 275 males and 349 females participated in clinical examinations and provided blood samples at ages 18 months and 5 years | serum concentrations of antibodies against tetanus and diphtheria vaccines determined at age 5 |
| (Grandjean et al., 2017) [250] |
PFHxS, PFOA, PFOS, PFNA, PFDA. | 516 subjects | PFAS serum concentrations and concentration of antibodies against diphtheria and tetanus |
| (Grandjean et al., 2017) [251] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panieri, E.; Baralic, K.; Djukic-Cosic, D.; Buha Djordjevic, A.; Saso, L. PFAS Molecules: A Major Concern for the Human Health and the Environment. Toxics 2022, 10, 44. https://doi.org/10.3390/toxics10020044
Panieri E, Baralic K, Djukic-Cosic D, Buha Djordjevic A, Saso L. PFAS Molecules: A Major Concern for the Human Health and the Environment. Toxics. 2022; 10(2):44. https://doi.org/10.3390/toxics10020044
Chicago/Turabian StylePanieri, Emiliano, Katarina Baralic, Danijela Djukic-Cosic, Aleksandra Buha Djordjevic, and Luciano Saso. 2022. "PFAS Molecules: A Major Concern for the Human Health and the Environment" Toxics 10, no. 2: 44. https://doi.org/10.3390/toxics10020044
APA StylePanieri, E., Baralic, K., Djukic-Cosic, D., Buha Djordjevic, A., & Saso, L. (2022). PFAS Molecules: A Major Concern for the Human Health and the Environment. Toxics, 10(2), 44. https://doi.org/10.3390/toxics10020044