Determination of Prenatal Substance Exposure Using Meconium and Orbitrap Mass Spectrometry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Solutions Preparation
2.3. Sample Preparation
2.4. Instruments
2.4.1. Liquid Chromatography
2.4.2. Mass Spectrometry
2.5. Data Reprocessing
- (1)
- MassList: this process includes an in-house library containing 150 molecules. Identification is carried out using exact mass, isotopic profile and retention time.
- (2)
- MzCloud: mzCloud™ is an online library containing 19,521 molecules with MS and MS2 spectra [22]. The mzCloud™ database contains 17 compound classes, screening was performed including all classes. Identification was performed using the HighChem HighRes algorithm.
- (3)
- NIST: the NIST is a downloaded library constituted by the National Institute of Standards and Technology, recently a spectra database compatible with LC-HRMS technology has been released. This library contained 26,000 molecules with MS and MS2 spectra. The identification is performed using the NIST identification algorithm.
2.6. Method Validation
2.6.1. Specificity
2.6.2. Matrix Effect and Extraction Yield
2.6.3. Limit of Detection and Identification
2.6.4. Cross-Contamination
2.6.5. Application
3. Results and Discussion
3.1. Method Development and Validation
3.2. Application
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- United Nations Office on Drug and Crime World Drug Report 2021. Available online: https://www.unodc.org/unodc/en/data-and-analysis/wdr2021.html (accessed on 13 October 2021).
- Observatoire Français des Drogues et des Toxicomanies. Available online: https://www.ofdt.fr/publications/collections/periodiques/drogues-chiffres-cles/drogues-chiffres-cles-8eme-edition-2019 (accessed on 13 October 2021).
- Ostrea, E.M.; Brady, M.; Gause, S.; Raymundo, A.L.; Stevens, M. Drug screening of newborns by meconium analysis: A large-scale, prospective, epidemiologic study. Pediatrics 1992, 89, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Gray, T.R.; Choo, R.E.; Concheiro, M.; Williams, E.; Elko, A.; Jansson, L.M.; Jones, H.E.; Huestis, M.A. Prenatal methadone exposure, meconium biomarker concentrations and neonatal abstinence syndrome. Addict. Abingdon Engl. 2010, 105, 2151–2159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moore, C.; Negrusz, A.; Lewis, D. Determination of drugs of abuse in meconium. J. Chromatogr. B Biomed. Sci. Appl. 1998, 713, 137–146. [Google Scholar] [CrossRef]
- Tamama, K. Advances in drugs of abuse testing. Clin. Chim. Acta 2021, 514, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Pichini, S.; Pacifici, R.; Pellegrini, M.; Marchei, E.; Pérez-Alarcón, E.; Puig, C.; Vall, O.; García-Algar, O. Development and validation of a liquid chromatography-mass spectrometry assay for the determination of opiates and cocaine in meconium. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2003, 794, 281–292. [Google Scholar] [CrossRef]
- Bearer, C.F.; Santiago, L.M.; O’Riordan, M.A.; Buck, K.; Lee, S.C.; Singer, L.T. Fatty acid ethyl esters: Quantitative biomarkers for maternal alcohol consumption. J. Pediatr. 2005, 146, 824–830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sampériz, S.; Millet, V.; Arditti, J.; Lacroze, V.; Masset, D.; Bourdon, H.; Jouglard, J.; Unal, D. Value of toxicological research in newborn infants of addicted mothers by the study of several samples (urine, meconium, hair). Arch. Pediatr. Organe Off. Soc. Francaise Pediatr. 1996, 3, 440–444. [Google Scholar] [CrossRef]
- Colby, J.M.; Adams, B.C.; Morad, A.; Presley, L.D.; Patrick, S.W. Umbilical cord tissue and meconium may not be equivalent for confirming in utero substance exposure. J. Pediatr. 2019, 205, 277–280. [Google Scholar] [CrossRef]
- Joya, X.; Marchei, E.; Salat-Batlle, J.; García-Algar, O.; Calvaresi, V.; Pacifici, R.; Pichini, S. Drugs of abuse in maternal hair and paired neonatal meconium: An objective assessment of foetal exposure to gestational consumption. Drug Test. Anal. 2016, 8, 864–868. [Google Scholar] [CrossRef]
- Meyer-Monath, M.; Chatellier, C.; Rouget, F.; Morel, I.; Lestremau, F. Development of a multi-residue method in a fetal matrix: Analysis of meconium. Anal. Bioanal. Chem. 2014, 406, 7785–7797. [Google Scholar] [CrossRef]
- López-Rabuñal, A.; Lendoiro, E.; Concheiro, M.; López-Rivadulla, M.; Cruz, A.; de-Castro-Ríos, A. LC–MS-MS method for the determination of antidepressants and benzodiazepines in meconium. J. Anal. Toxicol. 2020, 44, 580–588. [Google Scholar] [CrossRef] [PubMed]
- Nemeškalová, A.; Bursová, M.; Sýkora, D.; Kuchař, M.; Čabala, R.; Hložek, T. Salting out assisted liquid-liquid extraction for liquid chromatography tandem-mass spectrometry determination of amphetamine-like stimulants in meconium. J. Pharm. Biomed. Anal. 2019, 172, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Abernethy, C.; McCall, K.E.; Cooper, G.; Favretto, D.; Vaiano, F.; Bertol, E.; Mactier, H. Determining the pattern and prevalence of alcohol consumption in pregnancy by measuring biomarkers in meconium. Arch. Dis. Child. Fetal Neonatal 2018, 103, F216–F220. [Google Scholar] [CrossRef] [PubMed]
- Prego-Meleiro, P.; Lendoiro, E.; Concheiro, M.; Cruz, A.; López-Rivadulla, M.; de Castro, A. Development and validation of a liquid chromatography tandem mass spectrometry method for the determination of cannabinoids and phase I and II metabolites in meconium. J. Chromatogr. A 2017, 1497, 118–126. [Google Scholar] [CrossRef]
- Ristimaa, J.; Gergov, M.; Pelander, A.; Halmesmäki, E.; Ojanperä, I. Broad-Spectrum drug screening of meconium by liquid chromatography with tandem mass spectrometry and time-of-flight mass spectrometry. Anal. Bioanal. Chem. 2010, 398, 925–935. [Google Scholar] [CrossRef] [PubMed]
- Malaca, S.; Marchei, E.; Barceló Martín, B.; Minutillo, A.; Pichini, S. Novel fast ultra-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) and extraction of Ethylglucuronide in meconium samples. Drug Test. Anal. 2019, 11, 1471–1475. [Google Scholar] [CrossRef] [PubMed]
- Coles, R.; Kushnir, M.M.; Nelson, G.J.; McMillin, G.A.; Urry, F.M. Simultaneous determination of codeine, morphine, hydrocodone, hydromorphone, oxycodone, and 6-Acetylmorphine in Urine, Serum, Plasma, whole blood, and meconium by LC-MS-MS. J. Anal. Toxicol. 2007, 31, 1–14. [Google Scholar] [CrossRef] [Green Version]
- De Carvalho Mantovani, C.; Silva, J.P.E.; Forster, G.; de Almeida, R.M.; de Albuquerque Diniz, E.M.; Yonamine, M. Simultaneous Accelerated Solvent Extraction and Hydrolysis of 11-nor-Δ9-Tetrahydrocannabinol-9-Carboxylic Acid Glucuronide in Meconium Samples for Gas Chromatography-Mass Spectrometry Analysis. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2018, 1074–1075, 1–7. [Google Scholar] [CrossRef]
- López-Rabuñal, Á.; Di Corcia, D.; Amante, E.; Massano, M.; Cruz-Landeira, A.; de-Castro-Ríos, A.; Salomone, A. Simultaneous determination of 137 drugs of abuse, new psychoactive substances, and novel synthetic opioids in meconium by UHPLC-QTOF. Anal. Bioanal. Chem. 2021, 413, 5493–5507. [Google Scholar] [CrossRef]
- MzCloud Database. Available online: https://www.mzcloud.org/home (accessed on 13 October 2021).
- Scientific Working Group for Forensic Toxicology. Scientific working Group for Forensic Toxicology (SWGTOX) standard practices for method validation in forensic toxicology. J. Anal. Toxicol. 2013, 37, 452–474. [Google Scholar] [CrossRef]
- Kacinko, S.L.; Shakleya, D.M.; Huestis, M.A. Validation and application of a method for the determination of buprenorphine, norbuprenorphine, and their glucuronide conjugates in human meconium. Anal. Chem. 2008, 80, 246–252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marchei, E.; Pellegrini, M.; Pacifici, R.; Palmi, I.; Lozano, J.; García-Algar, O.; Pichini, S. Quantification of Delta9-Tetrahydrocannabinol and its major metabolites in meconium by gas chromatographic-mass spectrometric assay: Assay validation and preliminary results of the “meconium project”. Ther. Drug Monit. 2006, 28, 700–706. [Google Scholar] [CrossRef] [PubMed]
- Pichini, S.; Pacifici, R.; Pellegrini, M.; Marchei, E.; Lozano, J.; Murillo, J.; Vall, O.; García-Algar, Ó. Development and validation of a high-performance liquid chromatography−mass spectrometry assay for determination of amphetamine, methamphetamine, and methylenedioxy derivatives in meconium. Anal. Chem. 2004, 76, 2124–2132. [Google Scholar] [CrossRef] [PubMed]
- Gunn, J.A.; Sweeney, B.; Dahn, T.; Bell, S.; Newhouse, R.; Terrell, A.R. Simultaneous Quantification of amphetamine and methamphetamine in meconium using ISOLUTE HM-N-Supported liquid extraction columns and GC-MS. J. Anal. Toxicol. 2008, 32, 485–490. [Google Scholar] [CrossRef] [Green Version]
- De Castro, A.; Concheiro, M.; Shakleya, D.M.; Huestis, M.A. Simultaneous quantification of methadone, cocaine, opiates, and metabolites in human placenta by liquid Chromatography–Mass spectrometry. J. Anal. Toxicol. 2009, 33, 243–252. [Google Scholar] [CrossRef] [Green Version]
- Concheiro, M.; Gutierrez, F.M.; Ocampo, A.; Lendoiro, E.; González-Colmenero, E.; Concheiro-Guisán, A.; Peñas-Silva, P.; Macías-Cortiña, M.; Cruz-Landeira, A.; López-Rivadulla, M.; et al. Assessment of biological matrices for the detection of in utero cannabis exposure. Drug Test. Anal. 2021, 13, 1371–1382. [Google Scholar] [CrossRef]
- Kelly, T.; Gray, T.R.; Huestis, M.A. Development and validation of a liquid chromatography-atmospheric pressure chemical ionization-tandem mass spectrometry method for simultaneous analysis of ten amphetamine-, methamphetamine- and 3,4-methylenedioxymethamphetamine-related (MDMA) analytes in human meconium. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2008, 867, 194–204. [Google Scholar]
- Marin, S.J.; McMillin, G.A. Quantitation of total buprenorphine and norbuprenorphine in meconium by LC-MS/MS. Methods Mol. Biol. Clifton NJ 2016, 1383, 59–68. [Google Scholar] [CrossRef]
- Kacinko, S.L.; Jones, H.E.; Johnson, R.E.; Choo, R.E.; Huestis, M.A. Correlations of Maternal buprenorphine dose, buprenorphine, and metabolite concentrations in meconium with neonatal outcomes. Clin. Pharmacol. Ther. 2008, 84, 604–612. [Google Scholar] [CrossRef]
- Di Trana, A.; La Maida, N.; Tittarelli, R.; Huestis, M.A.; Pichini, S.; Busardò, F.P.; Carlier, J. Monitoring prenatal exposure to buprenorphine and methadone. Ther. Drug Monit. 2020, 42, 181–193. [Google Scholar] [CrossRef]
- D’Avila, F.B.; Limberger, R.P.; Fröehlich, P.E. Cocaine and crack cocaine abuse by pregnant or lactating mothers and analysis of its biomarkers in meconium and breast milk by LC–MS—A review. Clin. Biochem. 2016, 49, 1096–1103. [Google Scholar] [CrossRef] [PubMed]
- Observatoire Français des Drogues et des Toxicomanies. Available online: https://www.ofdt.fr/publications/collections/rapports/portraits-de-territoire/addictions-en-provence-alpes-cote-dazur-consommations-de-substances-psychoactives-et-offre-medicosociale/ (accessed on 13 October 2021).
- Fleet, J.-A.; Belan, I.; Gordon, A.L.; Cyna, A.M. Fentanyl concentration in maternal and umbilical cord plasma following intranasal or subcutaneous administration in labour. Int. J. Obstet. Anesth. 2020, 42, 34–38. [Google Scholar] [CrossRef] [PubMed]
- Gareri, J.; Klein, J.; Koren, G. Drugs of abuse testing in meconium. Clin. Chim. Acta Int. J. Clin. Chem. 2006, 366, 101–111. [Google Scholar] [CrossRef] [PubMed]
- Gray, T.; Huestis, M. Bioanalytical procedures for monitoring in utero drug exposure. Anal. Bioanal. Chem. 2007, 388, 1455–1465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lombardero, N.; Casanova, O.; Behnke, M.; Eyler, F.D.; Bertholf, R.L. Measurement of Cocaine and metabolites in urine, meconium, and diapers by gas chromatography/mass spectrometry. Ann. Clin. Lab. Sci. 1993, 23, 385–394. [Google Scholar] [PubMed]
100 pg/mg (n = 6) | 500 pg/mg (n = 6) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Compounds | Matrix Effect | Extraction Yield (%) | Process Efficiency (%) | Matrix Effect | ExtractionYield (%) | Process Efficiency (%) | ||||
Raw (%) | Normalized with Internal Standard (%) | CV (%) | Raw (%) | Normalized with Internal Standard (%) | CV (%) | |||||
6-MAM * | −29 | +28 | 10.8 | 52 | 37 | −29 | +15 | 14.9 | 53 | 38 |
Morphine | −42 | +4 | 9.6 | 61 | 35 | −31 | +11 | 10.7 | 55 | 38 |
Buprenorphine * | −25 | −3 | 5.3 | 66 | 50 | −27 | +11 | 10.5 | 61 | 45 |
Norbuprenorphine * | −31 | −4 | 9.1 | 62 | 43 | −39 | +4 | 11.7 | 47 | 29 |
Methadone | −19 | 0 | 10.2 | 70 | 57 | −18 | +13 | 11.6 | 61 | 50 |
EDDP | −22 | −3 | 5.8 | 71 | 55 | −19 | +11 | 11.2 | 72 | 58 |
Amphetamine | −35 | −1 | 12 | 73 | 47 | −22 | +23 | 12.2 | 61 | 48 |
MDA | −29 | −1 | 9.6 | 61 | 43 | −16 | +15 | 12.2 | 68 | 57 |
MDMA | −31 | −3 | 6.7 | 60 | 41 | −25 | +16 | 9.3 | 62 | 47 |
Methamphetamine | −31 | −5 | 7.4 | 69 | 48 | −23 | +13 | 9.7 | 65 | 50 |
Cocaine | −25 | −5 | 6.1 | 61 | 46 | −21 | +11 | 12.7 | 64 | 51 |
Benzoylecgonine | −25 | −2 | 7.6 | 62 | 47 | −26 | +10 | 10.9 | 63 | 47 |
THC * | −79 | −2 | 8.2 | 24 | 5 | −89 | −12 | 14.9 | 19 | 2 |
11-OH-THC * | −49 | +5 | 10.1 | 45 | 23 | −65 | +6 | 8.3 | 31 | 11 |
THC-COOH * | −69 | +14 | 11.6 | 18 | 6 | −72 | +10 | 14.4 | 18 | 5 |
Compounds | LOD (pg/mg) | LOI (pg/mg) | LOD Found in the Literature (pg/mg) | Concentrations Found in the Literature (pg/mg) | References |
---|---|---|---|---|---|
6-MAM | 5 | 5 | 0.3–1.5 | 5–142 (n = 3) | [7,17,28] |
Morphine | 0.5 | 10 | 1.2–6 | 397 (n = 1) | [7,17,28] |
Buprenorphine | 0.5 | 5 | 5–10 | 23.9–240.5 (n = 9) | [17,31,32] |
Norbuprenorphine | 5 | 10 | 5–10 | 323.9–1880.2 (n = 10) | [17,31,32] |
Methadone | 0.1 | 5 | 0.25–10 | 85–21,980 (n = 48) | [17,28,33] |
EDDP | 0.5 | 5 | 0.25–25 | 4431–101,021 (n = 48) | [28,33] |
Methamphetamine | 1 | 50 | 0.2–10 | 18–13,325 (n = 16) | [14,17,27] |
Amphetamine | 5 | 5 | 0.5–10 | 41–2220 (n = 15) | [14,17,27] |
MDA | 5 | 5 | 2–4 | No data | [14,17] |
MDMA | 5 | 10 | 0.3–4 | No data | [14,17] |
Cocaine | 1 | 50 | 0.5–0.9 | 72–903 (n = 3) | [7,28] |
Benzoylecgonine | 0.5 | 5 | 1–1.2 | 134–847 (n = 3) | [7,28] |
THC | 5 | 10 | 1 | 4.2–7.7 (n = 4) | [16] |
11-OH-THC | 5 | 10 | 1 | 11.9 (n = 1) | [16] |
THC-COOH | 5 | NI | 1–20 | 24.1–288.8 (n = 4) | [16,17] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernandez, A.; Lacroze, V.; Doudka, N.; Becam, J.; Pourriere-Fabiani, C.; Lacarelle, B.; Solas, C.; Fabresse, N. Determination of Prenatal Substance Exposure Using Meconium and Orbitrap Mass Spectrometry. Toxics 2022, 10, 55. https://doi.org/10.3390/toxics10020055
Hernandez A, Lacroze V, Doudka N, Becam J, Pourriere-Fabiani C, Lacarelle B, Solas C, Fabresse N. Determination of Prenatal Substance Exposure Using Meconium and Orbitrap Mass Spectrometry. Toxics. 2022; 10(2):55. https://doi.org/10.3390/toxics10020055
Chicago/Turabian StyleHernandez, Atakan, Valerie Lacroze, Natalia Doudka, Jenny Becam, Carole Pourriere-Fabiani, Bruno Lacarelle, Caroline Solas, and Nicolas Fabresse. 2022. "Determination of Prenatal Substance Exposure Using Meconium and Orbitrap Mass Spectrometry" Toxics 10, no. 2: 55. https://doi.org/10.3390/toxics10020055
APA StyleHernandez, A., Lacroze, V., Doudka, N., Becam, J., Pourriere-Fabiani, C., Lacarelle, B., Solas, C., & Fabresse, N. (2022). Determination of Prenatal Substance Exposure Using Meconium and Orbitrap Mass Spectrometry. Toxics, 10(2), 55. https://doi.org/10.3390/toxics10020055