A Simplified Method for Anionic Surfactant Analysis in Water Using a New Solvent
Abstract
:1. Introduction
2. Materials and Methods
2.1. Removal of Anionic Interferences
2.1.1. Washing Efficiency of Deionized Water on Interferences from Anions
2.1.2. Washing Efficiency of Silver Sulfate (Ag2SO4) on Interferences from Halogen-Ion
2.1.3. Washing Efficiency of pH Adjustment on Interferences from Cyanide ion (CN−) and Carboxylic Organic Acids
2.1.4. Washing Efficiency of Buffer Solution and Complexing Agents on Interferences from Phthalate and Salicylate
2.1.5. Development of Washing Agents
2.2. Development of MIBK-DCE Method for the Analysis of AS
2.3. Suitability of the MIBK-DCE Method for the Analysis of AS
2.3.1. Validation of the MIBK-DCE Method
2.3.2. Sensitivity Analysis of the MIBK-DCE Method
3. Results and Discussion
3.1. Removal Efficiency of Anionic Interferences
3.1.1. Washing Efficiency of Deionized Water on Interferences from Anions
3.1.2. Washing Efficiency of Silver Sulfate (Ag2SO4) for Halide Interferences
3.1.3. Washing Efficiency of pH Adjustment on Interferences from Cyanide ion (CN−) and Carboxylic Organic Acids
3.1.4. Effects of Buffer Solution and Complexing Reagents on Salicylate and Biphthalate Interferences
3.1.5. Development of Washing Reagents
- (i)
- Pre-treatment reagent: 0.025 M H2SO4 + 0.2 M MgSO4: This reagent is used to treat the sample before the extraction step. It is intended for reduction of interferences by CN and organic acids.
- (ii)
- First washing reagent: 20 mL of 0.2 M Na2CO3 was mixed with 230 mL of 0.2 M NaHCO3 and leveled to 1000 mL. This buffer solution is for maintaining the pH of the solution at 9.2 and preventing interferences from biphthalate and multi-elemental anions such as nitrate ion.
- (iii)
- Second washing reagent: 1.0 g silver sulfate (Ag2SO4) and 2.0 g potassium alum (AlK(SO4)2) were dissolved in 1000 mL of hot water and cooled at room temperature, followed by adding 1 mL of 0.05 M H2SO4. Use of Ag2SO4 and AlK(SO4)2 prevent interferences from halogen ions, the CN ion, and the salicylate ion.
3.2. Validation of the MIBK-DCE Method
3.2.1. QC/QA Criteria of MIBK-DCE Method
3.2.2. Recovery of MIBK-DCE Method
3.2.3. Scale of Operation of MIBK-DCE Method
3.2.4. Sensitivity Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Badmus, S.O.; Amusa, H.K.; Oyehan, T.A.; Saleh, T.A. Environmental risks and toxicity of surfactants: Overview of analysis, assessment, and remediation techniques. Environ. Sci. Pollut. Res. 2021, 28, 62085–62104. [Google Scholar] [CrossRef]
- Collivignarelli, M.C.; Miino, M.C.; Baldi, M.; Manzi, S.; Abbà, A.; Bertanza, G. Removal of non-ionic and anionic surfactants from real laundry wastewater by means of a full-scale treatment system. Process Saf. Environ. Prot. 2019, 132, 105–115. [Google Scholar] [CrossRef]
- Farn, R.J. Chemistry and Technology of Surfactants; Wiley-Blackwell Publishing Ltd.: Oxford, UK, 2006; pp. 1–132. [Google Scholar]
- Jardak, K.; Drogui, P.; Daghrir, R. Surfactants in aquatic and terrestrial environment: Occurrence, behavior, and treatment processes. Environ. Sci. Pollut. Res. 2016, 23, 3195–3216. [Google Scholar] [CrossRef] [PubMed]
- Lara-Martin, P.S.; Gomex-Parra, A.; Gonzalez-Mazo. E. Simultaneous extraction and determination of anionic surfactants in waters and sediments. J. Chromatogr. A 2006, 1114, 205–210. [Google Scholar] [CrossRef] [PubMed]
- Olkowska, E.; Ruman, M.; Polkowska, Z. Occurrence of surface active agents in the environment. J. Anal. Methods Chem. 2014, 2014, 769708. [Google Scholar] [CrossRef] [PubMed]
- Cierniak, D.; Woźniak-Karczewska, M.; Parus, A.; Wyrwas, B.; Loibner, A.P.; Heipieper, H.J.; Ławniczak, Ł.; Chrzanowski, Ł. How to accurately assess surfactant biodegradation-impact of sorption on the validity of results. Appl. Microbiol. Biotechnol. 2020, 104, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Moura, A.G.L.; Centurion, V.B.; Okada, D.Y.; Motteran, F.; Delforno, T.P.; Oliveira, V.M.; Varesche, M.B.A. Laundry wastewater and domestic sewage pilot-scale anaerobic treatment: Microbial community resilience regarding sulfide production. J. Environ. Manag. 2019, 251, 109495. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F.J.; Ma, W.L.; Xu, T.F.; Ding, Y.; Zhao, X.; Li, W.L.; Liu, L.Y.; Song, W.W.; Li, Y.F.; Zhang, Z.F. Removal characteristic of surfactants in typical industrial and domestic wastewater treatment plants in Northeast China. Ecotoxicol. Environ. Saf. 2018, 153, 84–90. [Google Scholar] [CrossRef]
- American Public Health Association (APHA). Standard Methods for the Examination of Water and Wastewater, 21st ed.; American Public Health Association, American Water Works Association and Water Environmental Federation: Washington, DC, USA, 2005. [Google Scholar]
- European Commission (EC). Regulation (EC) No 648/2004 of the European Parliament and of the Council of 31 March 2004 on Detergents. Off. J. Eur. Union 2004, 50, 1–35. [Google Scholar]
- George, A.L.; White, G.F. Optimization of the methylene blue assay for anionic surfactants added to estuarine and marine water. Environ. Toxicol. Chem. 2009, 18, 2232–2236. [Google Scholar] [CrossRef]
- Ministry of Environment (MOE), Korea. Standard Methods for the Examination of Water Pollution: Anionic Surfactants-UV/Visible Spectrometry, ES 04359.1c; Ministry of Environment (MOE): Sejong City, Korea, 2017; pp. 376–382. [Google Scholar]
- Pedraza, A.; Sicilia, M.D.; Rubio, S.; Perez-Bendito, D. Assessment of the surfactant-dye binding degree method as an alternative to the methylene blue method for the determination of anionic surfactants in aqueous environmental samples. Anal. Chim. Acta 2007, 588, 252–260. [Google Scholar] [CrossRef]
- Jurado, E.; Fernández-Serrano, M.; Núñez-Olea, J.; Luzón, G.; Lechuga, M. Simplified spectrophotometric method using methylene blue for determining anionic surfactants: Applications to the study of primary biodegradation in aerobic screening tests. Chemosphere 2006, 65, 278–285. [Google Scholar] [CrossRef]
- Yoon, J.H.; Shin, Y.G.; Kim, H.S.; Kirkham, M.B.; Yang, J.E. Screening of a novel solvent for optimum extraction of anionic surfactants in water. Toxics 2022, 10, 80. [Google Scholar] [CrossRef]
- Olkowska, E.; Polkowska, Ż.; Namieśnik, J. Analytical procedures for the determination of surfactants in environmental samles. Talanta 2012, 88, 1–13. [Google Scholar] [CrossRef]
- Ródenas-Torralba, E.; Reis, B.F.; Morales-Rubio, Á.; de la Guardia, M. An environmentally friendly multicommutated alternative to the reference method for anionic surfactant determination in water. Talanta 2005, 66, 591–599. [Google Scholar] [CrossRef]
- Soni, A.; Rai, N.; Sar, S.K. A study of spectrophotometric determination of ion association complex, formed by anionic surfactant sodium dodecyl by using crystal violet as a cationic dye in Region Bilaspur (Chhattisgarh). Orient. J. Chem. 2014, 30, 1335–1341. [Google Scholar] [CrossRef] [Green Version]
- Harvey, D. Analytical Chemistry 2.1, 3.4: Selecting an Analytical Method; LibreTexts; DePauw University: Greencastle, IN, USA, 2021; Available online: https://chem.libretexts.org/@go/page/127190 (accessed on 14 March 2022).
- Cantarero, S.; Camino-Sanchez, F.J.; Zafra-Gomez, A.; Ballesteros, O.; Navalon, A.; Vilchez, J.L.; Verge, C.; Reis, M.S.; Paraiva, P.M. Evaluation of the presence of major anionic surfactants in marine sediments. Mar. Pollut. Bull. 2012, 64, 587–594. [Google Scholar] [CrossRef]
- Robert-Peillard, F.; Coulomb, A.D.S.B.; Doumenq, P.; Malleret, L.; Asia, L.; Boudenne, J.L. Occurrence and fate of selected surfactants in seawater at the outfall of the Marseille urban sewerage system. Int. J. Environ. Sci. Technol. 2015, 12, 1527–1538. [Google Scholar] [CrossRef] [Green Version]
- Hounslow, A.W. Water Quality Data: Analysis and Interpretation; CRC Press: Boca Raton, FL, USA, 1995. [Google Scholar]
- Nhantumbo, C.; Larsson, R.; Larson, M.; Juízo, D.; Persson, K.M. A Simplified Model to Estimate the Concentration of Inorganic Ions and Heavy Metals in Rivers. Waters 2016, 8, 453. [Google Scholar] [CrossRef] [Green Version]
- Stumm, W.; Morgan, J.J. Aquatic Chemistry; John Wiley & Sons: Hoboken, NJ, USA, 1981. [Google Scholar]
- Allen, H.E.; Hansen, D.J. The importance of trace metal speciation to water quality criteria. Water Environ. Res. 1996, 68, 42–54. [Google Scholar] [CrossRef]
- Padan, P.; Marcinek, S.; Cindri, A.M.; Santinelli, C.; Brogi, S.R.; Radakovitch, O.R.; Garnier, C.; Omanovi, D. Organic Copper Speciation by Anodic Stripping Voltammetry in Estuarine Waters with High Dissolved Organic Matter. Front. Chem. 2021, 8, 628749. [Google Scholar] [CrossRef] [PubMed]
- Vraspir, J.M.; Butler, A. Chemistry of marine ligands and siderophores. Ann. Rev. Mar. Sci. 2009, 1, 43–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiwit; Wong, K.H.; Fukuda, H.; Ogawa, H.; Mashio, A.S.; Kondo, Y.; Nishioka, J.; Obata, H. Wide-range detection of Cu-binding organic ligands in seawater using reverse titration. Mar. Chem. 2021, 230, 103927. [Google Scholar] [CrossRef]
- Beck, M.T. Critical survey of stability constants of cyano complexes, International Union of Pure and Applied Chemistry, Analytical Chemistry Division Commission on Equilibrium Data. Pure Appl. Chem. 1987, 59, 1703–1720. [Google Scholar] [CrossRef]
- Eisler, R. Cyanide Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review; Biological Report 85(1.23); U.S. Fish Wildlife Service Patuxent Wildlife Research Center: Laurel, MD, USA, 1991. [Google Scholar]
- Lide, D.R. CRC Handbook of Chemistry and Physics, 84th ed.; CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar]
- Reger, D.L.; Goode, S.R.; Ball, D.W. Chemistry: Principles and Practice, 3rd ed.; Thomson Learning/Cengage Learning: Bedford, CA, USA, 2010; pp. 17–20. [Google Scholar]
- Lajunen, L.H.J.; Portanova, R.; Piispanen, J.; Tolazzi, M. Critical evaluation of stability constants for alpha-hydroxycarboxylic acid complexes with protons and metal ions and the accompanying enthalpy changes. Part I: Aromatic ortho-hydroxycarboxylic acids (Technical Report). Pure Appl. Chem. 1997, 69, 329–382. [Google Scholar] [CrossRef]
- Wisconsin Department of Natural Resources. Analytical Detection Limit Guidance and Laboratory Guide for Determining Method Detection Limits; PBUL-TS-056-96; Wisconsin Department of Natural Resources: Madison, WI, USA, 1996. [Google Scholar]
- Rao, T.N. Validation of Analytical Methods. In Calibration and Validation of Analytical Methods: A Sampling of Current Approaches; Stauffer, M.T., Ed.; IntechOpen Book: London, UK, 2018; p. 174. [Google Scholar]
- Swartz, M.E.; Krull, I.S. (Eds.) Analytical Method Development and Validation; CRC Press: Boca Raton, FL, USA, 2017; p. 96. [Google Scholar]
- Ibanez, J.G.; Hernandez-Esparza, M.; Doria-Serrano, C.; Fregoso-Infante, A.; Singh, M.M. Environmental Chemistry: Fundamentals; Springer: New York, NY, USA, 2007. [Google Scholar]
- ASTM International. ASTM D6696-05; Standard Guide for Understanding Cyanide Species. ASTM International: West Conshohocken, PA, USA, 2005.
- Dzombak, D.A.; Ghosh, R.S.; Wong-Chong, G.M. Cyanide in Water and Soil. Chemistry, Risk and Management; CRC Press: Boca Raton, FL, USA, 2005; p. 616. [Google Scholar]
- Abbot, D.C. The colorimetric determination of anionic surface active materials in water. Analyst 1962, 87, 286–293. [Google Scholar] [CrossRef]
- Turney, M.E.; Cannell, D.W. Alkaline methylene blue method for determination of anionic surfactants and for amine oxides in detergents. J. Am. Oil Chem. Soc. 1965, 42, 544–546. [Google Scholar] [CrossRef]
Anions and Treatment Concentrations (M) | Without Washing | Washing Once | |
---|---|---|---|
Interfering MB+A− Concentration † (mg/L) | Interfering MB+A− Concentration † (mg/L) | ||
F− | 0.5 | 0.049 ± 0.002 | 0.013 ± 0.001 |
Cl− | 1.0 | 0.972 ± 0.015 | 0.065 ± 0.005 |
Br− | 0.02 | 0.722 ± 0.012 | 0.101 ± 0.002 |
I− | 0.0002 | 1.250 ± 0.010 | 0.206 ± 0.006 |
NO2− | 0.25 | 0.932 ± 0.011 | 0.113 ± 0.006 |
NO3− | 0.0025 | 0.825 ± 0.007 | 0.048 ± 0.005 |
CN− | 0.2 | 0.647 ± 0.046 | 0.366 ± 0.052 |
H2PO4− | 1.0 | 0.174 ± 0.004 | 0.086 ± 0.005 |
HCO3− | 1.0 | 0.143 ± 0.003 | 0.058 ± 0.005 |
Acetate | 1.0 | 0.203 ± 0.023 | 0.029 ± 0.001 |
Tartrate | 0.5 | 0.162 ± 0.020 | 0.068 ± 0.015 |
Citrate | 0.5 | 0.262 ± 0.036 | 0.102 ± 0.007 |
Benzoate | 0.05 | 0.524 ± 0.018 | 0.073 ± 0.014 |
Biphthalate | 0.05 | 0.899 ± 0.123 | 0.180 ± 0.015 |
Salicylate | 0.0002 | 1.082 ± 0.016 | 0.253 ± 0.001 |
Anions and Treatment Concentrations (M) | Interfering MB+A− Concentrations † (mg/L) | |
F− | 0.5 | 0.002 ± 0.001 |
Cl− | 1.0 | 0.007 ± 0.002 |
Br− | 0.5 | 0.016 ± 0.002 |
I− | 0.001 | 0.011 ± 0.001 |
pH | 1.2 | 1.4 | 1.7 | 2.7 | 5.9 | 8.6 | 9.2 | 10.3 |
---|---|---|---|---|---|---|---|---|
MB+CN− * (mg/L) | 0.098 ± 0.024 | 0.130 ± 0.091 | 0.084 ± 0.008 | 0.082 ± 0.024 | 0.130 ± 0.005 | 0.715 ± 0.133 | 0.564 ± 0.006 | 0.314 ± 0.113 |
Anions | Washing Reagents | Interfering MB+-CN− Concentrations (mg/L) † | |
---|---|---|---|
1st | 2nd | ||
0.1 M CN as KCN | Deionized water | 0.001 M Ag2SO4 | 0.054 ± 0.001 |
0.002 M Ag2SO4 | 0.044 ± 0.003 | ||
0.003 M Ag2SO4 | 0.014 ± 0.002 | ||
0.004 M Ag2SO4 | 0.007 ± 0.002 |
Anions and Treatment Concentrations (M) | pKa * | MB+A− (mg/L) † |
---|---|---|
Acetate, 1.0 | a1 = 4.76 | −0.004 ± 0.000 |
Tartrate, 0.5 | a1 = 3.04, a2 = 4.37 | 0.003 ± 0.003 |
Citrate, 0.5 | a1 = 3.13, a2 = 4.76, a3 = 6.40 | 0.020 ± 0.001 |
Benzoate, 0.02 | a1 = 4.20 | 0.026 ± 0.000 |
Benzoate, 0.05 | 0.059 ± 0.002 | |
Salicylate, 0.0002 | a1 = 2.98 | 0.044 ± 0.003 |
Salicylate, 0.002 | 0.122 ± 0.001 | |
Biphthalate, 0.002 | a1 = 2.95, a2 = 5.41 | 0.553 ± 0.001 |
Biphthalate, 0.02 | 1.434 ± 0.034 |
Anions | Concentrations (M) | 1st Washing and pH | 2nd Washing | MB+A− Interfering Concentration † (mg/L) | |
---|---|---|---|---|---|
Biphthalate | 0.005 | D-water | 6.1 | Deionized water | 1.013 ± 0.015 |
Carbonate–bicarbonate buffer solution | 9.2 | Deionized water | 0.030 ± 0.002 | ||
Salicylate | 0.01 | D-water | 6.1 | Deionized water | 0.496 ± 0.002 |
Carbonate–bicarbonate buffer solution | 9.2 | Deionized water | 0.395 ± 0.002 |
Anion | Washing Reagents | MB+A− Interfering Concentration † (mg/L) | |
---|---|---|---|
1st Washing | 2nd Washing | ||
Salicylate (0.01 M) | Carbonate–bicarbonate buffer solution at pH 9.2 | Deionized water | 0.294 ± 0.013 |
0.1% Ag2SO4 | 0.317 ± 0.040 | ||
0.1% Ag2SO4 + 0.005 M Al3+ | 0.113 ± 0.004 | ||
0.1% Ag2SO4 + 0.005 M Mn2+ | 0.283 ± 0.017 | ||
0.1% Ag2SO4 + 0.005 M Zn2+ | 0.303 ± 0.005 |
QA/QC Criteria | MIBK-DCE Method | Chloroform Method | |
---|---|---|---|
SDS Standard Curve | Slope | 0.6396 | 0.5252 |
r2 | 0.9999 | 0.9995 | |
Detection Limit | MDL 1 | 0.0001 | 0.0041 |
LOQ 2 | 0.0005 | 0.0137 | |
Accuracy (%, recovery) | Low Concentration 3 | 104.7 | 96.5 |
Medium Concentration 4 | 99.0 | 83.3 | |
Precision (%, RSD 5) | Low Concentration | 0.2 | 7.1 |
Medium Concentration | 0.1 | 13.9 |
Type of Water Samples | Locations | Spiked SDS Conc. (mg/L) | Measured SDS Conc. (mg/L) | Recovery (%) |
---|---|---|---|---|
Groundwater | Seomyeon, Chuncheon | 0.000 | 0.012 ± 0.004 | - |
0.3~0.9 | - | 97.5–98.2 | ||
Stream water | Namdaecheon, Yangyang | 0.0 | 0.004 ± 0.005 | - |
0.3~0.9 | - | 97.8–98.4 | ||
Gongjicheon, Chuncheon | 0.0 | 0.009 ± 0.000 | - | |
0.2~1.2 | - | 99.8–101.8 | ||
Seawater | Namhyangjin, Gangreung | 0.000 | 0.008 ± 0.000 | - |
0.2~1.2 | - | 100.1–103.2 | ||
Sacheon, Gangreung | 0.000 | 0.003 ± 0.001 | - | |
0.1~0.5 | - | 97.2–100.7 | ||
Influent of wastewater treatment plant | Gangreung | 0.000 | 0.250 ± 0.001 | - |
0.3~0.9 | 0.537 ± 0.005 | 93.1–95.7 | ||
Effluent of wastewater treatment plant | Gangreung | 0.000 | 0.021 ± 0.001 | - |
0.3~0.9 | 0.317 ± 0.002 | 98.2–98.6 |
Process | MIBK-DCE Method | Chloroform Method | Remarks 1 |
---|---|---|---|
Total analytical time (min) | 90 | 270 | 2/3 reduction |
Solvent requirement (mL) | 600 | 1390 | 1/2 reduction |
Apparatus requirement (ea) | 12 | 36 | 2/3 reduction |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoon, J.-H.; Shin, Y.-G.; Kirkham, M.B.; Jeong, S.-S.; Lee, J.-G.; Kim, H.-S.; Yang, J.E. A Simplified Method for Anionic Surfactant Analysis in Water Using a New Solvent. Toxics 2022, 10, 162. https://doi.org/10.3390/toxics10040162
Yoon J-H, Shin Y-G, Kirkham MB, Jeong S-S, Lee J-G, Kim H-S, Yang JE. A Simplified Method for Anionic Surfactant Analysis in Water Using a New Solvent. Toxics. 2022; 10(4):162. https://doi.org/10.3390/toxics10040162
Chicago/Turabian StyleYoon, Jung-Hwan, Yong-Geon Shin, Mary Beth Kirkham, Seok-Soon Jeong, Jong-Geon Lee, Hyuck-Soo Kim, and Jae E. Yang. 2022. "A Simplified Method for Anionic Surfactant Analysis in Water Using a New Solvent" Toxics 10, no. 4: 162. https://doi.org/10.3390/toxics10040162
APA StyleYoon, J. -H., Shin, Y. -G., Kirkham, M. B., Jeong, S. -S., Lee, J. -G., Kim, H. -S., & Yang, J. E. (2022). A Simplified Method for Anionic Surfactant Analysis in Water Using a New Solvent. Toxics, 10(4), 162. https://doi.org/10.3390/toxics10040162