A Biomonitoring Pilot Study in Workers from a Paints Production Plant Exposed to Pigment-Grade Titanium Dioxide (TiO2)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects and Study Design
2.2. Characterisation of Materials Containing TiO2
2.3. Environmental and Personal Monitoring
2.4. Biological Sampling
2.5. Statistical Analysis
3. Results
3.1. Characterisation of the Exposure
3.2. Physico-Chemical Characterisation of the TiO2 Powders Handled by the Workers
3.3. General Descriptive of the Population under Study
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Paint and Coating Manufacture. Available online: https://www.iloencyclopaedia.org/part-xii-57503/chemical-processing/item/380-paint-and-coating-manufacture (accessed on 23 March 2022).
- Fonseca, A.S.; Viitanen, A.K.; Kanerva, T.; Säämänen, A.; Aguerre-Chariol, O.; Fable, S.; Dermigny, A.; Karoski, N.; Fraboulet, I.; Koponen, I.K.; et al. Occupational Exposure and Environmental Release: The Case Study of Pouring TiO2 and Filler Materials for Paint Production. Int. J. Environ. Res. Public Health 2021, 18, 418. [Google Scholar] [CrossRef] [PubMed]
- Van Broekhuizen, P. Applicability of Provisional NRVs to PGNPs and FCNPs; Bureau KLB: Den Haag, The Netherlands, 2017. [Google Scholar]
- Viitanen, A.K.; Uuksulainen, S.; Koivisto, A.J.; Hämeri, K.; Kauppinen, T. Workplace measurements of ultrafine particles—A literature review. Ann. Work Expo. Health 2017, 61, 749–758. [Google Scholar] [CrossRef]
- Saber, A.T.; Jensen, K.A.; Jacobsen, N.R.; Birkedal, R.; Mikkelsen, L.; Moller, P.; Loft, S.; Wallin, H.; Vogel, U. Inflammatory and genotoxic effects of nanoparticles designed for inclusion in paints and lacquers. Nanotoxicology 2012, 6, 453–471. [Google Scholar] [CrossRef] [PubMed]
- Yanamala, N.; Farcas, M.T.; Hatfield, M.K.; Kisin, E.R.; Kagan, V.E.; Geraci, C.L.; Shvedova, A.A. In Vivo Evaluation of the Pulmonary Toxicity of Cellulose Nanocrystals: A Renewable and Sustainable Nanomaterial of the Future. ACS Sustain. Chem. Eng. 2014, 2, 1691–1698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smulders, S.; Luyts, K.; Brabants, G.; Van Landuyt, K.; Kirschhock, C.; Smolders, E.; Golanski, L.; Vanoirbeek, J.; Hoet, P.H.M. Toxicity of nanoparticles embedded in paints compared with pristine nanoparticles in mice. Toxicol. Sci. 2014, 141, 132–140. [Google Scholar] [CrossRef] [PubMed]
- Braun, J.H. Titanium Dioxide—A Review. J. Coat. Technol. 1997, 69, 59–72. [Google Scholar]
- CDC-NIOSH. Occupational exposure to titanium dioxide: Current Intelligence Bulletin. DHHS (NIOSH) Publ. 2011, 63, 1–140. [Google Scholar] [CrossRef]
- European Chemicals Agency. ECHA Guide on the Classification and Labelling of Titanium Dioxide; European Chemicals Agency: Helsinki, Finland, 2021. [Google Scholar] [CrossRef]
- Pelclova, D.; Barosova, H.; Kukutschova, J.; Zdimal, V.; Navratil, T.; Fenclova, Z.; Vlckova, S.; Schwarz, J.; Zikova, N.; Kacer, P.; et al. Raman microspectroscopy of exhaled breath condensate and urine in workers exposed to fine and nano TiO2 particles: A cross-sectional study. J. Breath Res. 2015, 9, 036008. [Google Scholar] [CrossRef]
- Pelclova, D.; Zdimal, V.; Kacer, P.; Fenclova, Z.; Vlckova, S.; Syslova, K.; Navratil, T.; Schwarz, J.; Zikova, N.; Barosova, H.; et al. Oxidative stress markers are elevated in exhaled breath condensate of workers exposed to nanoparticles during iron oxide pigment production. J. Breath Res. 2016, 10, 016004. [Google Scholar] [CrossRef]
- Pelclova, D.; Zdimal, V.; Kacer, P.; Zikova, N.; Komarc, M.; Fenclova, Z.; Vlckova, S.; Schwarz, J.; Makeš, O.; Syslova, K.; et al. Markers of lipid oxidative damage in the exhaled breath condensate of nano TiO2 production workers. Nanotoxicology 2017, 11, 52–63. [Google Scholar] [CrossRef]
- Zhao, L.; Zhu, Y.; Chen, Z.; Xu, H.; Zhou, J.; Tang, S.; Xu, Z.; Kong, F.; Li, X.; Zhang, Y.; et al. Cardiopulmonary effects induced by occupational exposure to titanium dioxide nanoparticles. Nanotoxicology 2018, 12, 169–184. [Google Scholar] [CrossRef]
- Pelclova, D.; Zdimal, V.; Fenclova, Z.; Vlckova, S.; Turci, F.; Corazzari, I.; Kacer, P.; Schwarz, J.; Zikova, N.; Makes, O.; et al. Markers of oxidative damage of nucleic acids and proteins among workers exposed to TiO2 (nano) particles. Occup. Environ. Med. 2016, 73, 110–118. [Google Scholar] [CrossRef]
- Vietti, G.; Lison, D.; van den Brule, S. Mechanisms of lung fibrosis induced by carbon nanotubes: Towards an Adverse Outcome Pathway (AOP). Part. Fibre Toxicol. 2015, 13, 11. [Google Scholar] [CrossRef] [Green Version]
- Yazdi, A.S.; Guarda, G.; Riteau, N.; Drexler, S.K.; Tardivel, A.; Couillin, I.; Tschopp, J. Nanoparticles activate the NLR pyrin domain containing 3 (Nlrp3) inflammasome and cause pulmonary inflammation through release of IL-1α and IL-1β. Proc. Natl. Acad. Sci. USA 2010, 107, 19449–19454. [Google Scholar] [CrossRef] [Green Version]
- Kuwabara, T.; Ishikawa, F.; Kondo, M.; Kakiuchi, T. The Role of IL-17 and Related Cytokines in Inflammatory Autoimmune Diseases. Mediat. Inflamm. 2017, 2017, 3908061. [Google Scholar] [CrossRef] [Green Version]
- Guseva Canu, I.; Fraize-Frontier, S.; Michel, C.; Charles, S. Weight of epidemiological evidence for titanium dioxide risk assessment: Current state and further needs. J. Expo. Sci. Environ. Epidemiol. 2020, 30, 430–435. [Google Scholar] [CrossRef]
- Horváth, I.; Hunt, J.; Barnes, P.J.; Alving, K.; Antczak, A.; Baraldi, E.; Becher, G.; Van Beurden, W.J.C.; Corradi, M.; Dekhuijzen, R.; et al. Exhaled breath condensate: Methodological recommendations and unresolved questions. Eur. Respir. J. 2005, 26, 523–548. [Google Scholar] [CrossRef] [Green Version]
- Bellisario, V.; Mengozzi, G.; Grignani, E.; Bugiani, M.; Sapino, A.; Bussolati, G.; Bono, R. Towards a formalin-free hospital. Levels of 15-F2t-isoprostane and malondialdehyde to monitor exposure to formaldehyde in nurses from operating theatres. Toxicol. Res. 2016, 5, 1122–1129. [Google Scholar] [CrossRef] [Green Version]
- Gerloff, K.; Fenoglio, I.; Carella, E.; Kolling, J.; Albrecht, C.; Boots, A.W.; Förster, I.; Schins, R.P.F. Distinctive toxicity of TiO2 rutile/anatase mixed phase nanoparticles on Caco-2 cells. Chem. Res. Toxicol. 2012, 25, 646–655. [Google Scholar] [CrossRef]
- Fenoglio, I.; Ponti, J.; Alloa, E.; Ghiazza, M.; Corazzari, I.; Capomaccio, R.; Rembges, D.; Oliaro-Bosso, S.; Rossi, F. Singlet oxygen plays a key role in the toxicity and DNA damage caused by nanometric TiO2 in human keratinocytes. Nanoscale 2013, 5, 6567–6576. [Google Scholar] [CrossRef]
- Johnston, H.J.; Hutchison, G.R.; Christensen, F.M.; Peters, S.; Hankin, S.; Stone, V. Identification of the mechanisms that drive the toxicity of TiO2 particulates: The contribution of physicochemical characteristics. Part. Fibre Toxicol. 2009, 6, 33. [Google Scholar] [CrossRef]
- Marucco, A.; Carella, E.; Fenoglio, I. A comparative study on the efficacy of different probes to predict the photo-activity of nano-titanium dioxide toward biomolecules. RSC Adv. 2015, 5, 89559–89568. [Google Scholar] [CrossRef]
- Bermudez, E.; Mangum, J.B.; Wong, B.A.; Asgharian, B.; Hext, P.M.; Warheit, D.B.; Everitt, J.I. Pulmonary responses of mice, rats, and hamsters to subchronic inhalation of ultrafine titanium dioxide particles. Toxicol. Sci. 2004, 77, 347–357. [Google Scholar] [CrossRef] [Green Version]
- Dioxyde de Titane Sous Forme Nanoparticulaire: Recommandation de Valeurs Limites D’exposition Professionnelle|Anses—Agence Nationale de Sécurité Sanitaire de L’alimentation, de L’environnement et du Travail. Available online: https://www.anses.fr/fr/content/dioxyde-de-titane-sous-forme-nanoparticulaire-recommandation-de-valeurs-limites-d’exposition (accessed on 24 March 2022).
- Anses—Agence Nationale de Sécurité Sanitaire de L’alimentation, de L’environnement et du Travail Valeurs Toxicologiques de Référence le Dioxyde de Titane Sous Forme Nanoparticulaire. Available online: https://www.anses.fr/fr/content/dioxyde-de-titane-sous-forme-nanoparticulaire-l%E2%80%99anses-d%C3%A9finit-une-valeur-toxicologique-de (accessed on 30 March 2022).
- Driscoll, K.E.; Deyo, L.C.; Carter, J.M.; Howard, B.W.; Hassenbein, D.G.; Bertram, T.A. Effects of particle exposure and particle-elicited inflammatory cells on mutation in rat alveolar epithelial cells. Carcinogenesis 1997, 18, 423–430. [Google Scholar] [CrossRef] [PubMed]
- Friemann, J.; Albrecht, C.; Breuer, P.; Grover, R.; Weishaupt, C. Time-course analysis of type II cell hyperplasia and alveolar bronchiolization in rats treated with different particulates. Inhal. Toxicol. 1999, 11, 837–854. [Google Scholar] [CrossRef] [PubMed]
- Rinaldo, M.; Andujar, P.; Lacourt, A.; Martinon, L.; Raffin, M.C.; Dumortier, P.; Pairon, J.C.; Brochard, P. Perspectives in Biological Monitoring of Inhaled Nanosized Particles. Ann. Occup. Hyg. 2015, 59, 669–680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, M.; Zhang, T.; Xue, Y.; Wang, S.; Huang, M.; Yang, Y.; Lu, M.; Lei, H.; Kong, L.; Yuepu, P. Dose dependent in vivo metabolic characteristics of titanium dioxide nanoparticles. J. Nanosci. Nanotechnol. 2010, 10, 8575–8583. [Google Scholar] [CrossRef] [Green Version]
- Pujalté, I.; Dieme, D.; Haddad, S.; Serventi, A.M.; Bouchard, M. Toxicokinetics of titanium dioxide (TiO2) nanoparticles after inhalation in rats. Toxicol. Lett. 2017, 265, 77–85. [Google Scholar] [CrossRef]
- Mutlu, G.M.; Garey, K.W.; Robbins, R.A.; Danziger, L.H.; Rubinstein, I. Collection and analysis of exhaled breath condensate in humans. Am. J. Respir. Crit. Care Med. 2001, 164, 731–737. [Google Scholar] [CrossRef]
- Cracowski, J.L. Isoprostanes: A putative key role in vascular diseases. Rev. Med. Interne 2004, 25, 459–463. [Google Scholar] [CrossRef]
- Roberts, L.J.; Morrow, J.D. Measurement of F2-isoprostanes as an index of oxidative stress in vivo. Free Radic. Biol. Med. 2000, 28, 505–513. [Google Scholar] [CrossRef]
- Bono, R.; Capacci, F.; Cellai, F.; Sgarrella, C.; Bellisario, V.; Trucco, G.; Tofani, L.; Peluso, A.; Poli, C.; Arena, L.; et al. Wood dust and urinary 15-F2t isoprostane in Italian industry workers. Environ. Res. 2019, 173, 300–305. [Google Scholar] [CrossRef]
- Bono, R.; Tassinari, R.; Bellisario, V.; Gilli, G.; Pazzi, M.; Pirro, V.; Mengozzi, G.; Bugiani, M.; Piccioni, P. Urban air and tobacco smoke as conditions that increase the risk of oxidative stress and respiratory response in youth. Environ. Res. 2015, 137, 141–146. [Google Scholar] [CrossRef]
- Del Rio, D.; Stewart, A.J.; Pellegrini, N. A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutr. Metab. Cardiovasc. Dis. 2005, 15, 316–328. [Google Scholar] [CrossRef]
- Tsikas, D. Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: Analytical and biological challenges. Anal. Biochem. 2017, 524, 13–30. [Google Scholar] [CrossRef]
- Gong, J.; Zhu, T.; Kipen, H.; Wang, G.; Hu, M.; Ohman-Strickland, P.; Lu, S.E.; Zhang, L.; Wang, Y.; Zhu, P.; et al. Malondialdehyde in exhaled breath condensate and urine as a biomarker of air pollution induced oxidative stress. J. Expo. Sci. Environ. Epidemiol. 2013, 23, 322–327. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.-T.; Liao, H.-Y.; Chung, Y.-T.; Li, W.-F.; Tsou, T.-C.; Li, L.-A.; Lin, M.-H.; Ho, J.-J.; Wu, T.-N.; Liou, S.-H.; et al. Effect of Nanoparticles Exposure on Fractional Exhaled Nitric Oxide (FENO) in Workers Exposed to Nanomaterials. Int. J. Mol. Sci. 2014, 15, 878–894. [Google Scholar] [CrossRef] [Green Version]
- Pelclova, D.; Zdimal, V.; Komarc, M.; Schwarz, J.; Ondracek, J.; Ondrackova, L.; Kostejn, M.; Vlckova, S.; Fenclova, Z.; Dvorackova, S.; et al. Three-Year Study of Markers of Oxidative Stress in Exhaled Breath Condensate in Workers Producing Nanocomposites, Extended by Plasma and Urine Analysis in Last Two Years. Nanomaterials 2020, 10, 2440. [Google Scholar] [CrossRef]
- Klawitter, J.; Haschke, M.; Shokati, T.; Klawitter, J.; Christians, U. Quantification of 15-F2t-isoprostane in human plasma and urine: Results from enzyme-linked immunoassay and liquid chromatography/tandem mass spectrometry cannot be compared. Rapid Commun. Mass Spectrom. 2011, 25, 463–468. [Google Scholar] [CrossRef]
- Buonaurio, F.; Astolfi, M.L.; Canepari, S.; Di Basilio, M.; Gibilras, R.; Mecchia, M.; Papacchini, M.; Paci, E.; Pigini, D.; Tranfo, G. Urinary Oxidative Stress Biomarkers in Workers of a Titanium Dioxide Based Pigment Production Plant. Int. J. Environ. Res. Public Health 2020, 17, 9085. [Google Scholar] [CrossRef]
- Dobreva, Z.G.; Kostadinova, G.S.; Popov, B.N.; Petkov, G.S.; Stanilova, S.A. Proinflammatory and anti-inflammatory cytokines in adolescents from Southeast Bulgarian cities with different levels of air pollution. Toxicol. Ind. Health 2015, 31, 1210–1217. [Google Scholar] [CrossRef]
- Bianchi, M.G.; Allegri, M.; Costa, A.L.; Blosi, M.; Gardini, D.; Del Pivo, C.; Prina-Mello, A.; Di Cristo, L.; Bussolati, O.; Bergamaschi, E. Titanium dioxide nanoparticles enhance macrophage activation by LPS through a TLR4-dependent intracellular pathway. Toxicol. Res. 2015, 4, 385–398. [Google Scholar] [CrossRef]
- Kuroki, Y.; Takahashi, M.; Nishitani, C. Pulmonary collectins in innate immunity of the lung. Cell. Microbiol. 2007, 9, 1871–1879. [Google Scholar] [CrossRef]
- Tomonaga, T.; Izumi, H.; Yoshiura, Y.; Nishida, C.; Yatera, K.; Morimoto, Y. Examination of Surfactant Protein D as a Biomarker for Evaluating Pulmonary Toxicity of Nanomaterials in Rat. Int. J. Mol. Sci. 2021, 22, 4635. [Google Scholar] [CrossRef]
- Hermans, C.; Bernard, A. Lung epithelium-specific proteins: Characteristics and potential applications as markers. Am. J. Respir. Crit. Care Med. 1999, 159, 648–678. [Google Scholar] [CrossRef]
- Ohyabu, N.; Hinou, H.; Matsushita, T.; Izumi, R.; Shimizu, H.; Kawamoto, K.; Numata, Y.; Togame, H.; Takemoto, H.; Kondo, H.; et al. An essential epitope of anti-MUC1 monoclonal antibody KL-6 revealed by focused glycopeptide library. J. Am. Chem. Soc. 2009, 131, 17102–17109. [Google Scholar] [CrossRef]
- Hirasawa, Y.; Kohno, N.; Yokoyama, A.; Inoue, Y.; Abe, M.; Hiwada, K. KL-6, a human MUC1 mucin, is chemotactic for human fibroblasts. Am. J. Respir. Cell Mol. Biol. 1997, 17, 501–507. [Google Scholar] [CrossRef]
- Forest, V.; Pourchez, J.; Pélissier, C.; Durand, S.A.; Vergnon, J.M.; Fontana, L. Relationship between Occupational Exposure to Airborne Nanoparticles, Nanoparticle Lung Burden and Lung Diseases. Toxics 2021, 9, 204. [Google Scholar] [CrossRef]
- Bergamaschi, E.; Poland, C.; Guseva Canu, I.; Prina-Mello, A. The role of biological monitoring in nanosafety. Nano Today 2018, 10, 274–277. [Google Scholar] [CrossRef]
- Bergamaschi, E.; Guseva Canu, I.; Prina-Mello, A.; Magrini, A. Biomonitoring. In Adverse Effect of Engeneered Nanomaterials: Exposure, Toxicology and Impact on Human Health, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 125–158. [Google Scholar] [CrossRef]
- Schulte, P.; Leso, V.; Niang, M.; Iavicoli, I. Biological monitoring of workers exposed to engineered nanomaterials. Toxicol. Lett. 2018, 298, 112–124. [Google Scholar] [CrossRef] [PubMed]
- Canu, I.G.; Schulte, P.A.; Riediker, M.; Fatkhutdinova, L.; Bergamaschi, E. Methodological, political and legal issues in the assessment of the effects of nanotechnology on human health. J. Epidemiol. Community Health 2018, 72, 148–153. [Google Scholar] [CrossRef]
- Graczyk, H.; Lewinski, N.; Zhao, J.; Sauvain, J.J.; Suarez, G.; Wild, P.; Danuser, B.; Riediker, M. Increase in oxidative stress levels following welding fume inhalation: A controlled human exposure study. Part. Fibre Toxicol. 2016, 13, 31. [Google Scholar] [CrossRef] [Green Version]
- Marie-Desvergne, C.; Dubosson, M.; Touri, L.; Zimmermann, E.; Gaude-Môme, M.; Leclerc, L.; Durand, C.; Klerlein, M.; Molinari, N.; Vachier, I.; et al. Assessment of nanoparticles and metal exposure of airport workers using exhaled breath condensate. J. Breath Res. 2016, 10, 036006. [Google Scholar] [CrossRef] [Green Version]
- Shoman, Y.; Wild, P.; Hemmendinger, M.; Graille, M.; Sauvain, J.-J.; Hopf, N.B.; Canu, I.G. Reference Ranges of 8-Isoprostane Concentrations in Exhaled Breath Condensate (EBC): A Systematic Review and Meta-Analysis. Int. J. Mol. Sci. 2020, 21, 3822. [Google Scholar] [CrossRef]
- Graille, M.; Wild, P.; Sauvain, J.J.; Hemmendinger, M.; Guseva Canu, I.; Hopf, N.B. Urinary 8-isoprostane as a biomarker for oxidative stress. A systematic review and meta-analysis. Toxicol. Lett. 2020, 328, 19–27. [Google Scholar] [CrossRef]
Company Area/ Type of Samplig | Water-Based Paint System | Automatic Bin Filling | Mixing and Dispersion | Administrative Office | Outdoor (Day 1) |
---|---|---|---|---|---|
Area monitoring respirable dusts (mg/m3 8 h-TWA) | 0.064 | 0.013 | 0.112; 0.137 | 0.033 | |
Area monitoring respirable Ti (µg/m3 8 h-TWA) | 0.018 | 0.018; 0.114 | 0.012; 0.024 | 0.013 | |
PBZ-Ti (µg/m3 8 h-TWA) | 0.104; 0.462 | 0.011; 0.012 | 0.07; 0.014 | 0.012 | |
Particle number concentrations × 103 (average aerodynamic diameter, nm) | 24.98; 54.68 (64–73) | 20.8; 27.68 (78–93) | 40.72; 46.40 (67–95) | 16.97 (71) | 8.16 (72) |
TiO2 Sample | Elemental Composition (% w/w) | Crystal Phase | Particles Size (FPIA) (μm) | Size (Hydrodynamic Diameter, NTA) (nm) | Surface Area BET m2/g | ζ Potential (Water) (mV) |
---|---|---|---|---|---|---|
T-PS (untreated TiO2) | Ti 58.7, O 40.2, Al 1.1 | 100% rutile | 1–4 | 187.1 ± 118.6 | 56.2 ± 0.27 | −22.7 ± 0.642 |
T-PR (Al, Si, organic treatment) | Ti 55.0, O 40.9, Al 2.3, Si 1.8 | 100% rutile | 1–10 | 169.9 ± 96.6 | 14.66 ± 0.11 | 11.9 ± 1.13 |
Main General Characteristics of the Population Investigated | |||||||
---|---|---|---|---|---|---|---|
General Sample | Exposed (No. 15) | Controls (No. 20) | Levene’s Test | ||||
Height (cm) Mean ± SD | 174 ± 8.1 | 175 ± 8.9 | 173 ± 8 | 0.4 | |||
Weight (Kg) Mean ± SD | 80.7 ± 14.5 | 85.7 ± 14.5 | 82.3 ± 13.6 | 0.8 | |||
BMI Mean ± SD | 26.6 ± 4.1 | 27.9 ± 3.5 | 26 ± 4.4 | 0.5 | |||
Age (years) Mean ± SD | 47.3 ± 11.5 | 48.7 ± 10.05 | 45.9 ± 12.18 | 0.2 | |||
Working exposure (years) Mean ± SD | 13.8 ± 10.9 | 14.3 ± 10.8 | 13.5 ± 12 | 0.4 | |||
Smoke habits (N.) | YES | NO | YES | NO | YES | NO | 0.1 |
9 | 26 | 6 | 9 | 3 | 17 |
EBC | ||||
---|---|---|---|---|
Total | Exposed | Not Exposed | Mann-Whitney U Test | |
TNF-α [pg/mL] Mean ± SD, median, range, IQ | 1.6 ± 1.1 0.7; [0.5–1.7]; 1.2 | 0.6 ± 0.2 0.6; [0.5–0.7]; 0.3 | 1.6 ± 1.3 1.1; [0.6–2.6]; 2 | 0.03 |
IL-1β [pg/mL] Mean ± SD, median, range, IQ | 0.4 ± 0.1 0.45; [0.3–0.5]; 0.1 | 0.5 ± 0.05 0.48; [0.4–0.5]; 0.07 | 0.3 ± 0.1 0.35; [0.25–0.45]; 0.2 | <0.001 |
IL-10 [pg/mL] Mean ± SD, median, range, IQ | 1.6 ± 1.1 0.7; [0.5–1.7]; 1.2 | 0.8 ± 0.07 0.8; [0.7–0.8]; 0.09 | 0.6 ± 0.1 0.65; [0.5–0.7]; 0.2 | <0.001 |
IL 17 [pg/mL] Mean ± SD, median, range, IQ | 1.1 ± 1.1 1.12; [1–1.2]; 1.12 | 1.1 ± 0.07 1.1; [1–1.1]; 0.09 | 1.1 ± 1.4 1.15; [1.1–1.2];0.12 | 0.11 |
KL-6 [U/L] Mean ± SD, median, range, IQ | 990 ± 670 820; [620–1210]; 590 | 1370 ± 780 1190; [780–1470]; 690 | 690 ± 390 750; [300–1050]; 750 | 0.003 |
SPD [pg/mL] Mean ± SD, median, range, IQ | 23.7 ± 2.7 22.8; [21.9–24.4]; 2.4 | 22.2 ± 0.8 22; [21.7–22.9]; 1.2 | 24.9 ± 3.2 23.4; [22.2–28.6]; 6.4 | 0.011 |
URINE | ||||
MDA [µM] Mean ± SD, median, range, IQ | 6.6 ± 3.8 5.7; [3.1–9.3]; 6.2 | 8.8 ± 3.9 9; [6–10.6]; 4.6 | 4.8 ± 2.8 4.4; [2.8–5.5]; 2.7 | 0.002 |
ISOP [ng/mg crea] Mean ± SD, median, range, IQ | 3.7 ± 1.2 3.8; [2.7–4.4]; 1.8 | 3.9 ± 1.5 3.9; [2.6–4.6]; 2 | 3.6 ± 1 3.5; [2.7–4.2]; 1.6 | 0.5 |
Ti-U Mean ± SD, median, range, IQ | 20.4 ± 16.2 17.9; [1.72–90.4]; 17.2 | 25.9 ± 19.3 23.3; [10.6–90.4]; 15.7 | 14.5 ± 10.5 11.9; [1.72–44.4]; 17.9 | 0.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bergamaschi, E.; Bellisario, V.; Macrì, M.; Buglisi, M.; Garzaro, G.; Squillacioti, G.; Ghelli, F.; Bono, R.; Fenoglio, I.; Barbero, F.; et al. A Biomonitoring Pilot Study in Workers from a Paints Production Plant Exposed to Pigment-Grade Titanium Dioxide (TiO2). Toxics 2022, 10, 171. https://doi.org/10.3390/toxics10040171
Bergamaschi E, Bellisario V, Macrì M, Buglisi M, Garzaro G, Squillacioti G, Ghelli F, Bono R, Fenoglio I, Barbero F, et al. A Biomonitoring Pilot Study in Workers from a Paints Production Plant Exposed to Pigment-Grade Titanium Dioxide (TiO2). Toxics. 2022; 10(4):171. https://doi.org/10.3390/toxics10040171
Chicago/Turabian StyleBergamaschi, Enrico, Valeria Bellisario, Manuela Macrì, Martina Buglisi, Giacomo Garzaro, Giulia Squillacioti, Federica Ghelli, Roberto Bono, Ivana Fenoglio, Francesco Barbero, and et al. 2022. "A Biomonitoring Pilot Study in Workers from a Paints Production Plant Exposed to Pigment-Grade Titanium Dioxide (TiO2)" Toxics 10, no. 4: 171. https://doi.org/10.3390/toxics10040171
APA StyleBergamaschi, E., Bellisario, V., Macrì, M., Buglisi, M., Garzaro, G., Squillacioti, G., Ghelli, F., Bono, R., Fenoglio, I., Barbero, F., Riganti, C., Marrocco, A., Bonetta, S., & Carraro, E. (2022). A Biomonitoring Pilot Study in Workers from a Paints Production Plant Exposed to Pigment-Grade Titanium Dioxide (TiO2). Toxics, 10(4), 171. https://doi.org/10.3390/toxics10040171